Appendix A
Boundary triplets and Weyl functions

A.1 Linear relations

Let # be a separable Hilbert space. A (closed) linear relation in # is a (closed) linear
subspace in # x K. The set of all closed linear relations is denoted by ‘(~f(]€ ). Since
every linear operator in J can be identified with its graph, the set of linear operators
can be seen as a subset of all linear relations in J. In particular, the set of closed
linear operators € (#) is a subset of ‘E’(e% ).

Recall that the domain, the range, the kernel and the multivalued part of a linear
relation ® are given, respectively, by

dom(®) = {f € H : there exists g € J such that (f, g) € O},
ran(®) = {g € H : there exists f € J such that (£, g) € O},
ker(®) ={f € # : (f,0) € ®},
mul(®) ={g e #:(0,g) € O}.

The adjoint linear relation ®* is defined by

O ={(f.5)eHxH: (g [la = (f,8)xforall (fg) € O).

O is called symmetric if ® C ©*. If ® = ©*, then it is called self-adjoint. Note
that mul(®) is orthogonal to dom(®) if ® is symmetric. For a closed symmetric ®
satisfying mul(®) = mul(©®*) (the latter is further equivalent to the fact that ® is
densely defined on mul(®)=1), setting

Hop := dom(®) = mul(®)*,
we obtain the following orthogonal decomposition:
O = O ® O, (A1)

where @4 = {0} x mul(®) and O, is the graph of a closed symmetric linear operator
in H,p, called the operator part of ©. Notice that for non-closed symmetric linear
relations the decomposition (A.1) may not hold true as the next example shows.

Example A.1. Let # = H,, ® M, where H,, and M are closed infinite-dimensional
subspaces. Suppose Ay is a non-closed, densely defined symmetric operator in
and Mo & M a non-closed subspace such that Mo = M. Let A be the closure of Ay,
fix fo € dom(A) \ dom(A4yp) and gg € M \ My and define

fo = (fo0.80 + Afo) € © := Gr(4) & ({0} x M),
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where Gr(A) is the graph of A. Define the linear relation ® as the linear (non-closed)
span of Gr(Ag) @& ({0} x Myp) and fy. Clearly, ®9p & ® and hence it is symmet-
ric. Moreover, by construction dom(®g) = mul(®)+. However, (A.1) fails to hold
for ®¢. Indeed, if P, is the projection in J x # onto the second component and P
is the projection in # onto M, then (A.1) would imply Mo = mul(®g) = Ppr P2(0y).
However,

go = Py (go + Afo) = Pu Pafo & Mo.

This is a clear contradiction to the definition of ®.

The inverse of the linear relation ® is given by

O ={(g. f) e H x H :(f.g) €O}

The sum of linear relations ®; and ®; is defined by

O1+ 02 ={(f.g1+g2):(fg1) €091, (fg) € Oz}

Hence one can introduce the resolvent (® — z)~! of the linear relation ®, which is
well defined for all z € C. However, the set of those z € C for which (© — z)™! is
the graph of a closed bounded operator in # is called the resolvent set of ® and is
denoted by p(®). Its complement 0 (®) = C \ p(®) is called the spectrum of ®. If
O is self-adjoint, then taking into account (A.1) we obtain

(® - Z)_l = (®op - Z)_l S ©mu1(®)- (A2)

This immediately implies that p(®) = p(®,p), 0(®) = 0(0O,,) and, moreover, one
can introduce the spectral types of ® as those of its operator part ®,,. Let us mention
that self-adjoint linear relations admit a very convenient representation, which was
first observed by F. S. Rofe-Beketov [188] in the finite-dimensional case (see also
[191, Exercises 14.9.3-4]).!

Proposition A.2. Let C and D be closed bounded operators on H and
Ocp:={(f,g)e H xH :Cf = Dg}.

Then Oc,p is self-adjoint if and only if

* * ¢ -D _
CD* = DC*, ker(D c ) = {0}. (A3)

The second condition in (A.3) is equivalent to rank(C|D) = dim(JH) whenever
dim(#) < oo.

I'This representation was rediscovered later by many authors; in the context of self-adjoint
vertex conditions for metric graphs, the reference usually goes to [150].
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We also need the following definition. For a symmetric linear relation ® in #, its
defect subspace at z € C is defined by N;(®) = ker(®* — z). The numbers
nt(®) := dim N4;(®) = dimker(®* F i)

are called the deficiency indices of ©.
Let us mention that the adjoint relation ®¢. ,, to Oc,p is given by

Oc.p =UD*f,C*f): f e H}.

In particular, @’(":, p 1s symmetric exactly when the first equality in (A.3) holds true.
Moreover, in this case the deficiency indices are given by

n4(Og¢ p) = dimker(C FiD).

Further details and facts about linear relations in Hilbert spaces can be found in, e.g.,
[56, Chapter 6.1], [191, Chapter 14].

A.2 Boundary triplets and proper extensions

Let A be a densely defined closed symmetric operator in a separable Hilbert space $
with equal deficiency indices ny(A4) = dim Ny; < 0o, N; := ker(4* — z).

Definition A.3 ([86]). A triplet [T = {J#, ['g, I'1} is called a boundary triplet for the
adjoint operator A* if J¢ is a Hilbert space and I'g, I';: dom(A4*) — J# are bounded
linear mappings such that the abstract Green’s identity

(A f.8)s — (£ A"g)s = (T1 . Tog)xe — (To £, T18) 2
holds for all f, g € dom(A*) and the mapping
I':dom(A4*) — J x J,
S TofiT1f)

is surjective.

A boundary triplet for A* exists if and only if the deficiency indices of A are equal
(see, e.g., [56, Proposition 7.4], [191, Proposition 14.5]). Moreover, nt (A) =dim(H)
and A = A* | ker(I"). Note also that the boundary triplet for A* is not unique.

An extension A4 of A is called proper if dom(A) C dom(A4) C dom(A4*). The set
of all proper extensions is denoted by Ext(A).

Theorem A.4 ([55,157]). Let T1 = {J, Ty, 'y} be a boundary triplet for A*. Then
the mapping T defines a bijective correspondence between Ext(A) and the set of all
linear relations in ¥ :

O Ag:= A" M {f edom(A*): Tf = Tof.T1f) € O}. (A4)
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Moreover, the following holds:
(i) A= Ae~.
(i) Ag € €(®) ifand only if © € €(J).

(iii) Ae is symmetric if and only if ® is symmetric and ny (Ag) = ny(®) holds.
In particular, Ae is self-adjoint if and only if © is self-adjoint.

(iv) IfAde = Agand Ag = A%, then for every p € (0, 00| the following equiv-
alence holds:

(Ao —1) "= (Ag—) ' €By(®) <= (O—i) ' —(O—i)" €&, (H).

Notice that according to (A.2), a self-adjoint linear relation ® is said to belong to
the von Neumann—Schatten ideal ©,, if its operator part ®,, belongs to G, (Hp).

Remark A.5. The proof of Theorem A.4 (i)—(ii) can be found in [56, Proposition 7.8]
and [191, Proposition 14.7], and statement (iii) was obtained in [157, Proposition 3],
see also [56, Proposition 7.14].

A.3 Weyl functions and extensions of semibounded operators

With a boundary triplet IT = {J¢, I'g, "1} one can associate two linear operators
Ag := A* | ker(Ty), A;:= A* }ker(T'y).

It is clear that (A.4) implies Ap = Ag, and A; = Ag,, where g = {0} x # and
©; = H# x {0}. Hence, by Theorem A.4 (iii), A9 = Ay and A; = A7.

Definition A.6 ([55]). Let IT = {J¢, Iy, I'1 } be a boundary triplet for A*. The oper-
ator-valued function M: p(Ag) — B(H) defined by

M(z):=T1(To } N2)™',  z € p(Ao),
is called the Weyl function corresponding to the boundary triplet IT.

The Weyl function is well defined and holomorphic on p(Ag). Moreover, it is
a Herglotz—Nevanlinna function (see [55, Section 1], [56, Section 7.4.2] and also
[191, Section 14.5]). If Ag € Ext(A), then one has the Krein resolvent formula (see
[55, Section 1], [56, Section 7.6.1])

(Ao —2)7' = (Ao —2)7' +y(2)(© = M(2)) "' y(z)* (A5)
forall z € p(Ag) N p(Ap). Here
y(z) = (To } M)

is the so-called y-field.
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Assume now that A € €(9) is a lower semibounded operator, i.e., A > a lg with
some a € R. Let ag be the largest lower bound for A,

{(Af. fs

ap .= n —
0# fedom(4) || fIIg

The Friedrichs extension of A4 is denoted by Af. If I1 = {J#, Iy, ['1} is a boundary
triplet for A* such that A9 = AF, then the corresponding Weyl function M is holo-
morphic on C \ [ag, 00). Moreover, M is strictly increasing on (—o0, ag) (that is,
forall x, y € (—00,aq), M(x) — M(y) is positive definite whenever x > y) and the
following strong resolvent limit exists (see [55])

M(ag) ;=5 — R— lim M(x).
xtag

However, M (ay) is in general a closed linear relation, which is bounded from below.

Theorem A.7 ([55,158]). Let A > alg with some a > 0 and let T1 =~{J€, o, 'y}
be a boundary triplet for A* such that Ay = Af. Also, let ® = ©* € €(H) and let
Aeg be the corresponding self-adjoint extension (A.4). If M(a) € B(H), then:

(i) Ae=>algifandonlyif® — M(a) = Oy.
(i) k—_(Ag—al) =k_(® — M(a)).
If additionally A is positive definite, that is, a > 0, then:
(iii) Ag is positive definite if and only if ®(0) := ® — M(0) is positive definite.
(iv) For every p € (0, 00| the following equivalence holds:
Ag € C,(H) <= O(0)” € Gy(H),
where ©(0)™ := ©(0),, ® O(0)co.

Remark A.8. For the proofs of (i) and (ii) consult [55, Theorems 5 and 6]; the proofs
of (iii)—(iv) can be found in [158, Theorem 3]. If A is not positive definite, then “&”
in Theorem A.7 (iv) is replaced by the implication “<=".

We also need the next result (see [55, Theorem 3] and [56, Theorem 8.22]).
Theorem A.9 ([55]). Assume the conditions of Theorem A.7. Then the following

statements
i ©Oc¢ %(Jf ) is lower semibounded,
(i1) Ae is lower semibounded,
are equivalent if and only if M (x) tends uniformly to —oo as x — —oo, that is, for

every N > 0 there exists xy < 0 such that M(x) < —N -Lg forall x < xp.

Implication (ii) = (i) always holds true (cf. Theorem A.7 (i)), however, the valid-
ity of the converse implication requires that M tends uniformly to —co. Let us men-
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tion in this connection that the weak convergence of M(x) to —oo, i.e., the relation
lim (M(x)h,h)g = —o0
X—>—00

holds for all & € # \ {0} whenever A9 = Ar. Moreover, this relation characterizes
Weyl functions of the Friedrichs extension Ar among all non-negative (and even
lower semibounded) self-adjoint extensions of A (see [55, Proposition 4]).

The next result establishes a connection between the essential spectra of Ag
and ® and also it can be seen as an improvement of Theorem A.7 (iv).

Theorem A.10 ([68]). Let A > ag I > 0 and let T1 = {H#, Ty, I'1} be a boundary
triplet for A* such that Ag = AF. Also, let M be the corresponding Weyl function
and let ® = O* € g’(]f) be such that Ag = Ag is lower semibounded. Then the
following equivalences hold:

infoess(Ap) > 0 <= infoes(© — M(0)) > 0,
infoes(Ae) > 0 < infoes(® — M(0)) > 0,
inf Ou(Ag) = 0 = inf0ees(© — M(0)) = 0.

A.4 Direct sums of boundary triplets

Let § be a countably infinite index set. For each j € J, let A; be a closed densely
defined symmetric operator in a Hilbert space £; such that

0<nt(A4;) =n_(4;) < oo.

Also, let IT; = {J;, I',;, I'1,;} be a boundary triplet for the operator A7, j € J.
In the Hilbert space $ := P ie3 $;, consider the operator A := P ieg Aj, which is
symmetric and ny (4) = n_(4) = oo. Its adjoint is given by 4™ = P, 5 A7 Letus
define a direct sum IT := @je g I1; of boundary triplets IT; by setting

H = @Jf, F() = @Fo,]’, Fl = @Fl,]‘. (A6)

JES Jje JES
The next result provides several criteria for (A.6) to be a boundary triplet for the
operator A* = (P 5 A7
Theorem A.11 ([143]). Let A = @jeg Aj and let T1 = {JH, o, I'1} be defined by
(A.6). Then the following conditions are equivalent:
(1) TI = {3,091} is a boundary triplet for the operator A*.

(i1)  The mappings Ty and Ty are bounded as mappings from dom(A*) equipped
with the graph norm to ¥.
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(iii) The Weyl functions M; corresponding to the triplets T1;, j € &, satisfy the
J jJ &€d
following condition:

sup (1M; ()llze; + Il (Im M; (@)~ |13, ) < oo
JES

(iv) Ifin addition A is non-negative, then (1)—(iii) are further equivalent to
S}lg (I1M; (=Dl ge; + IM](=Dllge; + I(Mj(=1)) "l 3¢;) < 00. (A7)
j€

Remark A.12. Theorem A.11 was proved in [143, Section 3], however, it is essen-
tially contained in [156, Section 3].



