Appendix A

Boundary triplets and Weyl functions

A.1 Linear relations

Let \mathcal{H} be a separable Hilbert space. A *(closed) linear relation* in \mathcal{H} is a (closed) linear subspace in $\mathcal{H} \times \mathcal{H}$. The set of all closed linear relations is denoted by $\tilde{\mathcal{C}}(\mathcal{H})$. Since every linear operator in \mathcal{H} can be identified with its graph, the set of linear operators can be seen as a subset of all linear relations in \mathcal{H} . In particular, the set of closed linear operators $\mathcal{C}(\mathcal{H})$ is a subset of $\tilde{\mathcal{C}}(\mathcal{H})$.

Recall that the domain, the range, the kernel and the multivalued part of a linear relation Θ are given, respectively, by

$$dom(\Theta) = \{ f \in \mathcal{H} : \text{there exists } g \in \mathcal{H} \text{ such that } (f,g) \in \Theta \},\$$

$$ran(\Theta) = \{ g \in \mathcal{H} : \text{there exists } f \in \mathcal{H} \text{ such that } (f,g) \in \Theta \},\$$

$$ker(\Theta) = \{ f \in \mathcal{H} : (f,0) \in \Theta \},\$$

$$mul(\Theta) = \{ g \in \mathcal{H} : (0,g) \in \Theta \}.$$

The adjoint linear relation Θ^* is defined by

$$\Theta^* = \{ (\tilde{f}, \tilde{g}) \in \mathcal{H} \times \mathcal{H} : \langle g, \tilde{f} \rangle_{\mathcal{H}} = \langle f, \tilde{g} \rangle_{\mathcal{H}} \text{ for all } (f, g) \in \Theta \}.$$

 Θ is called *symmetric* if $\Theta \subseteq \Theta^*$. If $\Theta = \Theta^*$, then it is called *self-adjoint*. Note that mul(Θ) is orthogonal to dom(Θ) if Θ is symmetric. For a closed symmetric Θ satisfying mul(Θ) = mul(Θ^*) (the latter is further equivalent to the fact that Θ is densely defined on mul(Θ)^{\perp}), setting

$$\mathcal{H}_{op} := \overline{\operatorname{dom}(\Theta)} = \operatorname{mul}(\Theta)^{\perp},$$

we obtain the following orthogonal decomposition:

$$\Theta = \Theta_{\rm op} \oplus \Theta_{\infty}, \tag{A.1}$$

where $\Theta_{\infty} = \{0\} \times \text{mul}(\Theta)$ and Θ_{op} is the graph of a closed symmetric linear operator in \mathcal{H}_{op} , called the *operator part* of Θ . Notice that for non-closed symmetric linear relations the decomposition (A.1) may not hold true as the next example shows.

Example A.1. Let $\mathcal{H} = \mathcal{H}_{op} \oplus \mathcal{M}$, where \mathcal{H}_{op} and \mathcal{M} are closed infinite-dimensional subspaces. Suppose A_0 is a non-closed, densely defined symmetric operator in \mathcal{H}_{op} and $\mathcal{M}_0 \subsetneq \mathcal{M}$ a non-closed subspace such that $\overline{\mathcal{M}_0} = \mathcal{M}$. Let A be the closure of A_0 , fix $f_0 \in \text{dom}(A) \setminus \text{dom}(A_0)$ and $g_0 \in \mathcal{M} \setminus \mathcal{M}_0$ and define

$$\mathbf{f}_0 = (f_0, g_0 + Af_0) \in \Theta := \operatorname{Gr}(A) \oplus (\{0\} \times \mathcal{M}),$$

where $\operatorname{Gr}(A)$ is the graph of A. Define the linear relation Θ_0 as the linear (non-closed) span of $\operatorname{Gr}(A_0) \oplus (\{0\} \times \mathcal{M}_0)$ and \mathbf{f}_0 . Clearly, $\Theta_0 \subsetneq \Theta$ and hence it is symmetric. Moreover, by construction $\overline{\operatorname{dom}(\Theta_0)} = \operatorname{mul}(\Theta_0)^{\perp}$. However, (A.1) fails to hold for Θ_0 . Indeed, if P_2 is the projection in $\mathcal{H} \times \mathcal{H}$ onto the second component and $P_{\mathcal{M}}$ is the projection in \mathcal{H} onto \mathcal{M} , then (A.1) would imply $\mathcal{M}_0 = \operatorname{mul}(\Theta_0) = P_M P_2(\Theta_0)$. However,

$$g_0 = P_M(g_0 + Af_0) = P_M P_2 \mathbf{f}_0 \notin \mathcal{M}_0.$$

This is a clear contradiction to the definition of Θ_0 .

The inverse of the linear relation Θ is given by

$$\Theta^{-1} = \{ (g, f) \in \mathcal{H} \times \mathcal{H} : (f, g) \in \Theta \}.$$

The sum of linear relations Θ_1 and Θ_2 is defined by

$$\Theta_1 + \Theta_2 = \{ (f, g_1 + g_2) : (f, g_1) \in \Theta_1, (f, g_2) \in \Theta_2 \}.$$

Hence one can introduce the resolvent $(\Theta - z)^{-1}$ of the linear relation Θ , which is well defined for all $z \in \mathbb{C}$. However, the set of those $z \in \mathbb{C}$ for which $(\Theta - z)^{-1}$ is the graph of a closed bounded operator in \mathcal{H} is called the *resolvent set* of Θ and is denoted by $\rho(\Theta)$. Its complement $\sigma(\Theta) = \mathbb{C} \setminus \rho(\Theta)$ is called the *spectrum* of Θ . If Θ is self-adjoint, then taking into account (A.1) we obtain

$$(\Theta - z)^{-1} = (\Theta_{\rm op} - z)^{-1} \oplus \mathbb{O}_{\rm mul}(\Theta). \tag{A.2}$$

This immediately implies that $\rho(\Theta) = \rho(\Theta_{op}), \sigma(\Theta) = \sigma(\Theta_{op})$ and, moreover, one can introduce the spectral types of Θ as those of its operator part Θ_{op} . Let us mention that self-adjoint linear relations admit a very convenient representation, which was first observed by F. S. Rofe-Beketov [188] in the finite-dimensional case (see also [191, Exercises 14.9.3–4]).¹

Proposition A.2. Let C and D be closed bounded operators on \mathcal{H} and

$$\Theta_{C,D} := \{ (f,g) \in \mathcal{H} \times \mathcal{H} : Cf = Dg \}.$$

Then $\Theta_{C,D}$ is self-adjoint if and only if

$$CD^* = DC^*, \quad \ker \begin{pmatrix} C & -D \\ D & C \end{pmatrix} = \{0\}.$$
 (A.3)

The second condition in (A.3) is equivalent to $\operatorname{rank}(C|D) = \dim(\mathcal{H})$ whenever $\dim(\mathcal{H}) < \infty$.

¹This representation was rediscovered later by many authors; in the context of self-adjoint vertex conditions for metric graphs, the reference usually goes to [150].

We also need the following definition. For a symmetric linear relation Θ in \mathcal{H} , its defect subspace at $z \in \mathbb{C}$ is defined by $\mathcal{N}_z(\Theta) = \ker(\Theta^* - z)$. The numbers

$$n_{\pm}(\Theta) := \dim \mathcal{N}_{\pm i}(\Theta) = \dim \ker(\Theta^* \mp i)$$

are called the deficiency indices of Θ .

Let us mention that the adjoint relation $\Theta_{C,D}^*$ to $\Theta_{C,D}$ is given by

$$\Theta_{C,D}^* = \overline{\{(D^*f, C^*f) : f \in \mathcal{H}\}}.$$

In particular, $\Theta_{C,D}^*$ is symmetric exactly when the first equality in (A.3) holds true. Moreover, in this case the deficiency indices are given by

$$n_{\pm}(\Theta_{C,D}^*) = \dim \ker(C \mp iD).$$

Further details and facts about linear relations in Hilbert spaces can be found in, e.g., [56, Chapter 6.1], [191, Chapter 14].

A.2 Boundary triplets and proper extensions

Let *A* be a densely defined closed symmetric operator in a separable Hilbert space \mathfrak{S} with equal deficiency indices $n_{\pm}(A) = \dim \mathcal{N}_{\pm i} \leq \infty$, $\mathcal{N}_z := \ker(A^* - z)$.

Definition A.3 ([86]). A triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is called *a boundary triplet* for the adjoint operator A^* if \mathcal{H} is a Hilbert space and $\Gamma_0, \Gamma_1: \text{dom}(A^*) \to \mathcal{H}$ are bounded linear mappings such that the abstract Green's identity

$$\langle A^*f,g\rangle_{\mathfrak{H}} - \langle f,A^*g\rangle_{\mathfrak{H}} = \langle \Gamma_1f,\Gamma_0g\rangle_{\mathscr{H}} - \langle \Gamma_0f,\Gamma_1g\rangle_{\mathscr{H}}$$

holds for all $f, g \in \text{dom}(A^*)$ and the mapping

$$\Gamma: \operatorname{dom}(A^*) \to \mathcal{H} \times \mathcal{H},$$
$$f \mapsto (\Gamma_0 f, \Gamma_1 f)$$

is surjective.

A boundary triplet for A^* exists if and only if the deficiency indices of A are equal (see, e.g., [56, Proposition 7.4], [191, Proposition 14.5]). Moreover, $n_{\pm}(A) = \dim(\mathcal{H})$ and $A = A^* \upharpoonright \ker(\Gamma)$. Note also that the boundary triplet for A^* is not unique.

An extension \widetilde{A} of A is called *proper* if $dom(A) \subset dom(\widetilde{A}) \subset dom(A^*)$. The set of all proper extensions is denoted by Ext(A).

Theorem A.4 ([55, 157]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . Then the mapping Γ defines a bijective correspondence between Ext(A) and the set of all linear relations in \mathcal{H} :

$$\Theta \mapsto A_{\Theta} := A^* \upharpoonright \{ f \in \operatorname{dom}(A^*) : \Gamma f = (\Gamma_0 f, \Gamma_1 f) \in \Theta \}.$$
(A.4)

Moreover, the following holds:

- (i) $A_{\Theta}^* = A_{\Theta^*}.$
- (ii) $A_{\Theta} \in \mathcal{C}(\mathfrak{S})$ if and only if $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$.
- (iii) A_Θ is symmetric if and only if Θ is symmetric and n_±(A_Θ) = n_±(Θ) holds. In particular, A_Θ is self-adjoint if and only if Θ is self-adjoint.
- (iv) If $A_{\Theta} = A_{\Theta}^*$ and $A_{\widetilde{\Theta}} = A_{\widetilde{\Theta}}^*$, then for every $p \in (0, \infty]$ the following equivalence holds:

$$(A_{\Theta} - \mathbf{i})^{-1} - (A_{\widetilde{\Theta}} - \mathbf{i})^{-1} \in \mathfrak{S}_p(\mathfrak{H}) \iff (\Theta - \mathbf{i})^{-1} - (\widetilde{\Theta} - \mathbf{i})^{-1} \in \mathfrak{S}_p(\mathcal{H}).$$

Notice that according to (A.2), a self-adjoint linear relation Θ is said to belong to the von Neumann–Schatten ideal \mathfrak{S}_p if its operator part Θ_{op} belongs to $\mathfrak{S}_p(\mathcal{H}_{op})$.

Remark A.5. The proof of Theorem A.4 (i)–(ii) can be found in [56, Proposition 7.8] and [191, Proposition 14.7], and statement (iii) was obtained in [157, Proposition 3], see also [56, Proposition 7.14].

A.3 Weyl functions and extensions of semibounded operators

With a boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ one can associate two linear operators

$$A_0 := A^* \upharpoonright \ker(\Gamma_0), \quad A_1 := A^* \upharpoonright \ker(\Gamma_1).$$

It is clear that (A.4) implies $A_0 = A_{\Theta_0}$ and $A_1 = A_{\Theta_1}$, where $\Theta_0 = \{0\} \times \mathcal{H}$ and $\Theta_1 = \mathcal{H} \times \{0\}$. Hence, by Theorem A.4 (iii), $A_0 = A_0^*$ and $A_1 = A_1^*$.

Definition A.6 ([55]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . The operator-valued function $M: \rho(A_0) \to \mathcal{B}(\mathcal{H})$ defined by

$$M(z) := \Gamma_1(\Gamma_0 \upharpoonright \mathcal{N}_z)^{-1}, \quad z \in \rho(A_0),$$

is called *the Weyl function* corresponding to the boundary triplet Π .

The Weyl function is well defined and holomorphic on $\rho(A_0)$. Moreover, it is a Herglotz–Nevanlinna function (see [55, Section 1], [56, Section 7.4.2] and also [191, Section 14.5]). If $A_{\Theta} \in \text{Ext}(A)$, then one has the *Krein resolvent formula* (see [55, Section 1], [56, Section 7.6.1])

$$(A_{\Theta} - z)^{-1} = (A_0 - z)^{-1} + \gamma(z)(\Theta - M(z))^{-1}\gamma(z^*)^*$$
(A.5)

for all $z \in \rho(A_{\Theta}) \cap \rho(A_0)$. Here

$$\gamma(z) := (\Gamma_0 \upharpoonright \mathcal{N}_z)^{-1}$$

is the so-called γ -field.

Assume now that $A \in \mathcal{C}(\mathfrak{H})$ is a *lower semibounded* operator, i.e., $A \ge a \operatorname{I}_{\mathfrak{H}}$ with some $a \in \mathbb{R}$. Let a_0 be the largest lower bound for A,

$$a_0 := \inf_{\substack{0 \neq f \in \operatorname{dom}(A)}} \frac{\langle Af, f \rangle_{\mathfrak{S}}}{\|f\|_{\mathfrak{S}}^2}.$$

The Friedrichs extension of A is denoted by A_F . If $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* such that $A_0 = A_F$, then the corresponding Weyl function M is holomorphic on $\mathbb{C} \setminus [a_0, \infty)$. Moreover, M is strictly increasing on $(-\infty, a_0)$ (that is, for all $x, y \in (-\infty, a_0), M(x) - M(y)$ is positive definite whenever x > y) and the following strong resolvent limit exists (see [55])

$$M(a_0) := s - R - \lim_{x \uparrow a_0} M(x).$$

However, $M(a_0)$ is in general a closed linear relation, which is bounded from below.

Theorem A.7 ([55, 158]). Let $A \ge a$ I₅ with some $a \ge 0$ and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* such that $A_0 = A_F$. Also, let $\Theta = \Theta^* \in \widetilde{\mathcal{C}}(\mathcal{H})$ and let A_Θ be the corresponding self-adjoint extension (A.4). If $M(a) \in \mathcal{B}(\mathcal{H})$, then:

- (i) $A_{\Theta} \ge a \operatorname{I}_{\mathfrak{S}}$ if and only if $\Theta M(a) \ge \mathbb{O}_{\mathcal{H}}$.
- (ii) $\kappa_{-}(A_{\Theta} a \mathbf{I}) = \kappa_{-}(\Theta M(a)).$

If additionally A is positive definite, that is, a > 0, then:

- (iii) A_{Θ} is positive definite if and only if $\Theta(0) := \Theta M(0)$ is positive definite.
- (iv) For every $p \in (0, \infty]$ the following equivalence holds:

 $A_{\Theta}^{-} \in \mathfrak{S}_{p}(\mathfrak{H}) \iff \Theta(0)^{-} \in \mathfrak{S}_{p}(\mathcal{H}),$

where $\Theta(0)^- := \Theta(0)^-_{op} \oplus \Theta(0)_{\infty}$.

Remark A.8. For the proofs of (i) and (ii) consult [55, Theorems 5 and 6]; the proofs of (iii)–(iv) can be found in [158, Theorem 3]. If A is not positive definite, then " \Leftrightarrow " in Theorem A.7 (iv) is replaced by the implication " \Leftarrow ".

We also need the next result (see [55, Theorem 3] and [56, Theorem 8.22]).

Theorem A.9 ([55]). Assume the conditions of Theorem A.7. Then the following statements

- (i) $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$ is lower semibounded,
- (ii) A_{Θ} is lower semibounded,

are equivalent if and only if M(x) tends uniformly to $-\infty$ as $x \to -\infty$, that is, for every N > 0 there exists $x_N < 0$ such that $M(x) < -N \cdot I_{\mathcal{H}}$ for all $x < x_N$.

Implication (ii) \Rightarrow (i) always holds true (cf. Theorem A.7 (i)), however, the validity of the converse implication requires that M tends uniformly to $-\infty$. Let us mention in this connection that the weak convergence of M(x) to $-\infty$, i.e., the relation

$$\lim_{x\to -\infty} \langle M(x)h,h\rangle_{\mathcal{H}} = -\infty$$

holds for all $h \in \mathcal{H} \setminus \{0\}$ whenever $A_0 = A_F$. Moreover, this relation characterizes Weyl functions of the Friedrichs extension A_F among all non-negative (and even lower semibounded) self-adjoint extensions of A (see [55, Proposition 4]).

The next result establishes a connection between the essential spectra of A_{Θ} and Θ and also it can be seen as an improvement of Theorem A.7 (iv).

Theorem A.10 ([68]). Let $A \ge a_0 I_{\mathfrak{S}} > 0$ and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* such that $A_0 = A_F$. Also, let M be the corresponding Weyl function and let $\Theta = \Theta^* \in \widetilde{\mathcal{C}}(\mathcal{H})$ be such that $A_{\Theta} = A_{\Theta}^*$ is lower semibounded. Then the following equivalences hold:

$$\inf \sigma_{\text{ess}}(A_{\Theta}) \ge 0 \iff \inf \sigma_{\text{ess}}(\Theta - M(0)) \ge 0,$$

$$\inf \sigma_{\text{ess}}(A_{\Theta}) > 0 \iff \inf \sigma_{\text{ess}}(\Theta - M(0)) > 0,$$

$$\inf \sigma_{\text{ess}}(A_{\Theta}) = 0 \iff \inf \sigma_{\text{ess}}(\Theta - M(0)) = 0.$$

A.4 Direct sums of boundary triplets

Let \mathfrak{J} be a countably infinite index set. For each $j \in \mathfrak{J}$, let A_j be a closed densely defined symmetric operator in a Hilbert space \mathfrak{H}_j such that

$$0 < \mathbf{n}_+(A_j) = \mathbf{n}_-(A_j) \le \infty.$$

Also, let $\Pi_j = \{\mathcal{H}_j, \Gamma_{0,j}, \Gamma_{1,j}\}$ be a boundary triplet for the operator $A_j^*, j \in \mathfrak{F}$. In the Hilbert space $\mathfrak{S} := \bigoplus_{j \in \mathfrak{F}} \mathfrak{S}_j$, consider the operator $A := \bigoplus_{j \in \mathfrak{F}} A_j$, which is symmetric and $\mathfrak{n}_+(A) = \mathfrak{n}_-(A) = \infty$. Its adjoint is given by $A^* = \bigoplus_{j \in \mathfrak{F}} A_j^*$. Let us define a direct sum $\Pi := \bigoplus_{j \in \mathfrak{F}} \Pi_j$ of boundary triplets Π_j by setting

$$\mathcal{H} := \bigoplus_{j \in \mathfrak{J}} \mathcal{H}_j, \quad \Gamma_0 := \bigoplus_{j \in \mathfrak{J}} \Gamma_{0,j}, \quad \Gamma_1 := \bigoplus_{j \in \mathfrak{J}} \Gamma_{1,j}.$$
(A.6)

The next result provides several criteria for (A.6) to be a boundary triplet for the operator $A^* = \bigoplus_{i \in \mathfrak{X}} A_i^*$.

Theorem A.11 ([143]). Let $A = \bigoplus_{j \in \mathcal{J}} A_j$ and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be defined by (A.6). Then the following conditions are equivalent:

- (i) $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for the operator A^* .
- (ii) The mappings Γ_0 and Γ_1 are bounded as mappings from dom (A^*) equipped with the graph norm to \mathcal{H} .

(iii) The Weyl functions M_j corresponding to the triplets Π_j , $j \in \mathfrak{J}$, satisfy the following condition:

$$\sup_{j\in\mathfrak{J}} \left(\|M_j(\mathbf{i})\|_{\mathcal{H}_j} + \|(\operatorname{Im} M_j(\mathbf{i}))^{-1}\|_{\mathcal{H}_j} \right) < \infty.$$

(iv) If in addition A is non-negative, then (i)-(iii) are further equivalent to

$$\sup_{j \in \mathfrak{Z}} \left(\|M_j(-1)\|_{\mathcal{H}_j} + \|M_j'(-1)\|_{\mathcal{H}_j} + \|(M_j'(-1))^{-1}\|_{\mathcal{H}_j} \right) < \infty.$$
(A.7)

Remark A.12. Theorem A.11 was proved in [143, Section 3], however, it is essentially contained in [156, Section 3].