Appendix B

Dirichlet forms

In this appendix, we collect necessary definitions and facts about Dirichlet forms. The standard reference is [78]. We stress that most of the literature treats Dirichlet forms on real Hilbert spaces (i.e., restricting to real-valued functions), however the theory easily extends to complex Hilbert spaces (see, e.g., [99, Appendix B]).

B.1 Basic notions

In the following, let X be a locally compact separable metric space and μ a positive Radon measure on X of full support. The associated Hilbert space of complex-valued, square integrable functions is denoted by $\mathcal{H} := L^2(X; \mu)$. For a quadratic form t: dom(t) $\rightarrow \mathbb{C}$, whose domain dom(t) is a subspace of \mathcal{H} , we denote by t[u, v], $u, v \in \text{dom}(t)$ its corresponding sesquilinear form.

Definition B.1. A *Dirichlet form* in \mathcal{H} is a densely defined, non-negative and closed quadratic form t satisfying the *Markovian condition*: for all $f \in \text{dom}(t)$ and any normal contraction¹ $\varphi, \varphi \circ f \in \text{dom}(t)$, and

$$\mathfrak{t}[\varphi \circ f] \le \mathfrak{t}[f]. \tag{B.1}$$

A Dirichlet form in the wide sense is a quadratic form t satisfying all the above conditions, except that dom(t) $\subseteq \mathcal{H}$ is (possibly) not dense.

By the first representation theorem (see [126, Chapter VI.2.1]), to each Dirichlet form we can associate a non-negative, self-adjoint operator $A: dom(A) \rightarrow \mathcal{H}$. The corresponding *heat semigroup* $T_t := e^{-tA}$, $t \ge 0$ is then *Markovian*, that is, all operators T_t satisfy $0 \le T_t f \le 1$ for functions f with $0 \le f \le 1$. The latter means that e^{-tA} is *positivity preserving* (i.e., maps non-negative functions to non-negative functions) and *contractive* (i.e., it is a contraction in L^{∞}). Moreover, the heat semigroup has a canonical extension from $L^1(X; \mu) \cap L^{\infty}(X; \mu)$ to a positive contraction semigroup on $L^p(X; \mu)$ for all $p \in [1, \infty]$ (see, e.g., [51, Theorem 1.4.1] and also [78, p. 56] for details).

Definition B.2. A Dirichlet form t is *strongly local* if t[f, g] = 0 for any functions $f, g \in dom(t)$ with compact support² and such that f is constant in a neighborhood

¹A function $\varphi : \mathbb{C} \to \mathbb{C}$ is called a *normal contraction* if $|\varphi(x) - \varphi(y)| \le |x - y|$ for all $x, y \in \mathbb{C}$ and $\varphi(0) = 0$.

²The support of a measurable function f is defined as the support of the measure $fd\mu$. If f is continuous, this coincides with the closure of $\{x \in X : f(x) \neq 0\}$.

of supp(g). Moreover, a Dirichlet form t is *regular* if the set dom(t) $\cap C_c(X)$ is

- (i) dense in $C_c(X)$ with respect to the uniform norm $\|\cdot\|_{\infty}$, and
- (ii) dense in $(\text{dom}(t), \|\cdot\|_t)$ with respect to the graph norm $\|\cdot\|_t^2 = t[\cdot] + \|\cdot\|_{L^2}^2$.

Remark B.3. Let us remark that a regular Dirichlet form t has an additional stochastic interpretation: there is an associated (unique up to equivalence) Hunt process $\mathcal{M} = ((X_t)_{t \ge 0}, (\mathbb{P}_x)_{x \in X})$ on X such that for $t \ge 0$ and $E \subseteq X$ measurable,

$$T_t \mathbb{1}_E(x) = \mathbb{P}_x(X_t \in E) \quad \mu\text{-a.e.}$$

For details on Hunt processes and their relationship to Dirichlet forms we refer to [78, Appendix A.2, Theorem 4.2.8 and Theorem 7.2.1].

B.2 Transience, recurrence and stochastic completeness

Let t be a Dirichlet form in \mathcal{H} and let $T_t := e^{-tA}$, t > 0, be the corresponding heat semigroup. For a non-negative function $f \in L^1(X; \mu)$, we define its *potential* $Gf: X \to [0, \infty]$ by

$$Gf(x) = \lim_{N \to \infty} \int_0^N (T_s f)(x) \,\mathrm{d}s,$$

where the limit exists for μ -a.e. $x \in X$. We call the Dirichlet form (or heat semigroup $(T_t)_{t>0}$ associated to it) *transient* if

$$Gf(x) < \infty$$
 μ -a.e. for all $0 \le f \in L^1(X;\mu)$,

and recurrent if

$$Gf(x) = 0$$
 μ -a.e. or $Gf(x) = \infty$ μ -a.e. for all $0 \le f \in L^1(X; \mu)$.

Note that an arbitrary Dirichlet form might be neither recurrent nor transient. However, the dichotomy holds for *irreducible* Dirichlet forms,³ that is, every irreducible Dirichlet form is either transient or recurrent (but not both!).

Remark B.4. One can reformulate transience/recurrence by means of quadratic forms. For instance (see [78, Theorem 1.5.1]), the Dirichlet form t in \mathcal{H} is *transient* exactly when there exists $0 < g \in L^1(X; \mu) \cap L^{\infty}(X; \mu)$ such that

$$\int_X |f(x)| g(x) \, \mu(\mathrm{d} x) \le \sqrt{\mathsf{t}[f]}$$

for all $f \in dom(t)$.

³A measurable set $Y \subseteq X$ is called t-invariant if $\mathbb{1}_Y f$, $\mathbb{1}_{X \setminus Y} f \in \text{dom}(t)$ and $t(f) = t(\mathbb{1}_Y f) + t(\mathbb{1}_{X \setminus Y} f)$ for any $f \in \text{dom}(t)$. This is equivalent to the equality $T_t \mathbb{1}_Y f = \mathbb{1}_Y T_t f$ for all $f \in \mathcal{H}$. The form t is *irreducible* if $\mu(Y) = 0$ or $\mu(X \setminus Y) = 0$ for each t-invariant set Y.

We also need the following convenient characterization of recurrence (see, e.g., [78, Theorem 1.6.3]).

Lemma B.5. Let t be a Dirichlet form in \mathcal{H} . Then the following are equivalent:

- (i) t is recurrent.
- (ii) There exists a sequence (f_n) in dom(t) such that $\lim_{n\to\infty} f_n = 1 \ \mu$ -a.e. on X and $\lim_{n\to\infty} t[f_n] = 0$.

A Dirichlet form (or heat semigroup $(T_t)_{t>0}$ associated to it) is *stochastically complete* if⁴

$$T_t \mathbb{1} = \mathbb{1} \quad \mu\text{-a.e.} \tag{B.2}$$

for some (equivalently for all) t > 0. For a regular Dirichlet form, this means that the associated stochastic process has infinite lifetime almost surely (see [78, p. 187] for details). If A is the generator of the corresponding heat semigroup $(T_t)_{t>0}$, then stochastic completeness is equivalent to the equality

$$\lambda (A + \lambda)^{-1} \mathbb{1} = \mathbb{1} \quad \mu$$
-a.e.

for some (and hence for all) $\lambda > 0$. Similarly to Lemma B.5, one can characterize stochastic completeness in terms of the quadratic form (e.g., [78, Theorem 1.6.6]).

Lemma B.6. Let t be a Dirichlet form in H. Then the following are equivalent:

- (i) t is stochastically complete.
- (ii) There is a sequence (f_n) in dom(t) such that $0 \le f_n \le 1$, $\lim_{n\to\infty} f_n = \mathbb{1}$ μ -a.e. on X, and

$$\lim_{n \to \infty} t[f_n, g] = 0$$

for all $g \in \operatorname{dom}(\mathfrak{t}) \cap L^1(X;\mu)$.

B.3 Extended Dirichlet spaces

Let t: dom(t) $\rightarrow [0, \infty)$ be a Dirichlet form on $\mathcal{H} = L^2(X; \mu)$. A sequence (f_n) in dom(t) is said to be an *approximating sequence* for a function $f: X \rightarrow \mathbb{C}$ if one has $\lim_{n\to\infty} f_n = f \mu$ -a.e. on X and $(f_n)_n$ is a t-Cauchy sequence, that is,

$$\lim_{m,n\to\infty} \mathfrak{t}[f_n - f_m] = 0.$$

⁴Usually in the literature (see, e.g., [78, 198]) the term *conservative* is used in this context and then one says that (X, μ) is stochastically complete with respect to t (or with respect to the heat semigroup $(T_t)_{t>0}$ associated to it).

The *extended Dirichlet space* of t is the space of all measurable functions on X which admit at least one approximating sequence. It turns out that (see [78, Theorem 1.5.2]) for a function $f \in \text{dom}(t_e)$, where $\text{dom}(t_e)$ is the extended Dirichlet space of t, the limit

$$\mathbf{t}_{e}[f] := \lim_{n \to \infty} \mathbf{t}[f_{n}]$$

exists and is independent of the approximating sequence (f_n) . In particular, this extends the Dirichlet form t to a non-negative quadratic form t_e on dom (t_e) :

$$t_e: \operatorname{dom}(t_e) \to [0, \infty),$$
$$f \mapsto t_e[f].$$

The obtained form t_e is called the *extended Dirichlet form* of t.

The *Markovian condition* also carries over from t to t_e : for each normal contraction $\varphi: \mathbb{C} \to \mathbb{C}$ and $f \in \text{dom}(t_e), \varphi \circ f$ belongs to $\text{dom}(t_e)$ and (B.1) holds (see, e.g., [78, Corollary 1.6.3]). Moreover, the form domain of t (see [78, Theorem 1.5.2]) can be recovered from t_e by the relation

$$\operatorname{dom}(\mathfrak{t}) = \operatorname{dom}(\mathfrak{t}_e) \cap L^2(X;\mu). \tag{B.3}$$

The above notions lead to another convenient characterization of recurrence (see [78, Theorem 1.6.3]):

Lemma B.7. Let t be a Dirichlet form on \mathcal{H} . Then t is recurrent if and only if $\mathbb{1}$ belongs to dom (t_e) and $t_e[\mathbb{1}] = 0$.