Appendix D

Glossary of notation

Basic notation

- $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ have their usual meaning.
- For $a \in \mathbb{R}, \mathbb{Z}_{\geq a}:=\mathbb{Z} \cap[a, \infty), \mathbb{R}_{\geq a}:=\mathbb{R} \cap[a, \infty)$, and $\mathbb{R}_{>a}:=\mathbb{R} \cap(a, \infty)$.
- z^{*} denotes the complex conjugate of $z \in \mathbb{C}$.
- $\mathcal{I} \subseteq \mathbb{R}$ usually denotes an interval, that is, a connected subset of \mathbb{R}.
- $\mathcal{I}_{\ell}=[0, \ell], \ell \in \mathbb{R}_{>0}$.
- For a given set S, \#S denotes its cardinality if S is finite; otherwise set $\# S=\infty$.
- We shall denote by $\left(x_{n}\right)$ or sometimes $\left(x_{n}\right)_{n \geq 0}$ a sequence $\left(x_{n}\right)_{n=0}^{\infty}$.

Graphs

- $\mathcal{E}_{d}=(\mathcal{V}, \mathcal{E})$ is a graph with the vertex set \mathcal{V} and the edge set \mathcal{E}.
- \mathcal{E}_{v} is the set of edges at $v \in \mathcal{V}$.
- $\overrightarrow{\mathcal{E}}_{d}=(\mathcal{V}, \overrightarrow{\mathcal{E}})$ is an oriented graph and $\overrightarrow{\mathcal{E}}$ the set of oriented edges.
- $\vec{\varepsilon}_{v}$ is the set of oriented (both incoming and outgoing) edges at v.
- e_{l} and e_{τ} are the initial and terminal vertices of an oriented edge \vec{e}.
- deg is the vertex degree function.
- Deg is the weighted vertex degree.
- $\quad b$ or $(\mathcal{V}, m ; b)$ is a weighted graph on \mathcal{V}.
- (b, c) or $(\mathcal{V}, m ; b, c)$ is a weighted graph with killing term c on \mathcal{V}.
- $\boldsymbol{E}_{b}=\left(\mathcal{V}, \mathcal{E}_{b}\right)$ is the underlying simple graph of b.
- $\mathscr{E}=\left(\mathcal{E}_{d},|\cdot|\right)$ is a metric graph or its model.
- $(\mathscr{E}, \mu, \nu)=\left(\mathcal{E}_{d},|\cdot|, \mu, \nu\right)$ is a weighted metric graph or its model.
- ϱ_{0} is the length metric on \mathcal{E}, i.e., the natural path metric on \mathscr{E}.
- ϱ_{η} is the intrinsic metric on (\mathscr{E}, μ, v) and $\eta=\sqrt{\frac{\mu}{v}}$ is the intrinsic weight.
- ϱ_{m} is the star path metric on \mathcal{V} corresponding to the star weight m.
- $\quad S_{n}$ is the n-th combinatorial sphere of a rooted graph $\mathscr{E}_{d}=(\mathcal{V}, \mathcal{E})$.
- $\mathfrak{C}(\mathscr{E})$ is the space of topological ends of a metric graph \mathscr{E}.
- $\mathfrak{C}_{0}(\mathscr{E} ; \mu)$ is the set of finite volume (with respect to μ) ends of \mathscr{E}.

Function spaces

- $\quad X$ is a locally compact Hausdorff space X, and μ is a Borel measure on X.
- $\quad C(X)$ is the space of continuous functions on X.
- $\quad C(X)$ is the set of complex-valued functions on X if X is countable.
- $C_{b}(X), C_{0}(X)$, and $C_{c}(X)$ are, respectively, the spaces bounded, vanishing at infinity, and compactly supported continuous functions on X.
- $C^{+}(X)$ is the cone of positive functions on X.
- $\mathcal{F}_{b}(\mathcal{V})$ denotes the domain of definition of the formal graph Laplacian $L_{c, b, m}$.
- $\mathrm{CA}(\mathscr{G} \backslash \mathcal{V})$ is the set of continuous, edgewise affine functions on a metric graph \mathcal{E}.
- $\quad L^{p}(X ; \mu)$ is the complex Banach space of measurable functions, $p \in[1, \infty]$.
- $L_{c}^{p}(X ; \mu)$ is the subspace of compactly supported functions in $L^{p}(X ; \mu)$.
- $\quad \ell^{p}(X ; m):=L^{p}(X ; m), \ell_{c}^{p}(X ; m):=L_{c}^{p}(X ; m)$ if X is countable.
- $H_{\text {loc }}^{1}(\mathscr{G} \backslash \mathcal{V})$ is the space of all edgewise H^{1} functions.
- $H_{\mathrm{loc}}^{1}(\mathcal{E})=H_{\mathrm{loc}}^{1}(\mathcal{G} \backslash \mathcal{V}) \cap C(\mathcal{E})$.
- $H_{c}^{1}(\mathcal{E})=H_{\mathrm{loc}}^{1}(\mathcal{E}) \cap C_{c}(\mathscr{E})$.
- $H^{1}(\mathscr{E})=H^{1}(\mathscr{E} ; \mu, \nu)$ is the first (weighted) Sobolev space on \mathcal{G}.

- $H_{0}^{1}(\mathscr{G} \backslash \mathcal{V})$ is the subspace of $H^{1}(\mathscr{G})$-functions vanishing at all vertices.
- $\dot{H}^{1}(\mathcal{E})=\dot{H}^{1}(\mathcal{E}, v)$ is the space of functions of finite energy on \mathcal{E}.

Laplacians and their quadratic/energy forms

- $L=L_{c, b, m}$ is the formal graph Laplacian on $(\mathcal{V}, m ; b, c)$.
- $\mathbf{h}, \mathbf{h}^{\prime}, \mathbf{h}^{0}$ are the maximal, pre-minimal, minimal graph Laplacians in $\ell^{2}(\mathcal{V} ; m)$.
- \mathbf{h}_{D} and \mathbf{h}_{N} are the Dirichlet and Neumann Laplacians in $\ell^{2}(\mathcal{V} ; m)$.
- $\mathfrak{q}=\mathfrak{q}_{c, b}$ is the energy form on (b, c).
- \mathfrak{q}_{D} and \mathfrak{q}_{N} are the maximal and the minimal forms in $\ell^{2}(\mathcal{V} ; m)$.
- Δ is the weighted Laplacian on $(\boldsymbol{\mathcal { E }}, \mu, v)$.
- $\mathbf{H}, \mathbf{H}^{\prime}$ and \mathbf{H}^{0} are the maximal, pre-minimal and minimal Kirchhoff Laplacians in $L^{2}(\mathscr{G} ; \mu)$.
- \mathbf{H}_{D} and \mathbf{H}_{N} are the Dirichlet and Neumann Laplacians in $L^{2}(\mathscr{E} ; \mu)$.
- \mathbf{H}_{G} and $\mathbf{H}_{G, \text { min }}$ are the maximal and minimal Gaffney Laplacians in $L^{2}(\boldsymbol{e} ; \mu)$.
- $\mathbf{H}_{\alpha}, \mathbf{H}_{\alpha}^{\prime}$ and \mathbf{H}_{α}^{0} are the maximal, pre-minimal and minimal Laplacians with δ-couplings.
- \mathcal{Z} is the energy form on (\mathcal{G}, μ, ν).
- \mathfrak{Q}_{D} and \mathfrak{Q}_{N} are the maximal and the minimal forms in $L^{2}(\mathscr{E} ; \mu)$.

Operator theory

- \mathscr{H} and 5 are separable complex Hilbert spaces.
- $\mathscr{B}(\mathscr{H})$ is the algebra of bounded linear operators on \mathscr{H}.
- $\mathbb{S}_{p}(\mathscr{H}), p \in(0, \infty]$ are the Schatten-von Neumann ideals in $\mathcal{B}(\mathscr{H})$.
- $\mathrm{I}_{\mathscr{H}}$ is the identity operator in \mathscr{H}, and $\mathrm{I}_{n}:=\mathrm{I}_{\mathbb{C}^{n}}$.
- $\mathbb{O}_{\mathscr{H}}$ is the zero operator in \mathscr{H}, and $\mathbb{O}_{n}:=\mathbb{O}_{\mathbb{C}^{n}}$.
- For a self-adjoint operator A in $\mathscr{H}, \lambda_{0}(A)$ and $\lambda_{0}^{\text {ess }}(A)$ denote the bottoms of the spectrum, respectively, of the essential spectrum

$$
\lambda_{0}(A)=\inf \sigma(A), \quad \lambda_{0}^{\mathrm{ess}}(A)=\inf \sigma_{\mathrm{ess}}(A)
$$

and $A^{-}:=A \mathbb{1}_{(-\infty, 0)}(A)$, where $\mathbb{1}_{(-\infty, 0)}(A)$ is the spectral projection on the negative subspace of A.

- For a closed symmetric operator A,
- $\operatorname{Ext}(A)$ is the set of its proper extensions,
- $\operatorname{Ext}_{S}(A)$ is the set of its self-adjoint extensions.
- For a non-negative symmetric operator A,
- $\operatorname{Ext}_{S}^{+}(A)$ is the set of its non-negative self-adjoint extensions,
- $\operatorname{Ext}_{S}^{\kappa}(A), \kappa \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$, are self-adjoint extensions of A with the total multiplicity of the negative spectrum equal to κ,
- $\operatorname{Ext}_{M}(A)$ is the set of Markovian extensions of A.

