Appendix D

Glossary of notation

Basic notation

- $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ have their usual meaning.
- For $a \in \mathbb{R}$, $\mathbb{Z}_{\geq a} := \mathbb{Z} \cap [a, \infty)$, $\mathbb{R}_{\geq a} := \mathbb{R} \cap [a, \infty)$, and $\mathbb{R}_{>a} := \mathbb{R} \cap (a, \infty)$.
- z^* denotes the complex conjugate of $z \in \mathbb{C}$.
- $\mathcal{I} \subseteq \mathbb{R}$ usually denotes an interval, that is, a connected subset of \mathbb{R} .
- $\mathcal{I}_{\ell} = [0, \ell], \ell \in \mathbb{R}_{>0}.$
- For a given set S, #S denotes its cardinality if S is finite; otherwise set $\#S = \infty$.
- We shall denote by (x_n) or sometimes $(x_n)_{n\geq 0}$ a sequence $(x_n)_{n=0}^{\infty}$.

Graphs

- $\mathscr{G}_d = (\mathcal{V}, \mathcal{E})$ is a graph with the vertex set \mathcal{V} and the edge set \mathcal{E} .
- \mathcal{E}_v is the set of edges at $v \in \mathcal{V}$.
- $\vec{\mathcal{G}}_d = (\mathcal{V}, \vec{\mathcal{E}})$ is an oriented graph and $\vec{\mathcal{E}}$ the set of oriented edges.
- $\vec{\mathcal{E}}_v$ is the set of oriented (both incoming and outgoing) edges at v.
- e_i and e_{τ} are the initial and terminal vertices of an oriented edge \vec{e} .
- deg is the vertex degree function.
- Deg is the weighted vertex degree.
- b or $(\mathcal{V}, m; b)$ is a weighted graph on \mathcal{V} .
- (b, c) or $(\mathcal{V}, m; b, c)$ is a weighted graph with killing term c on \mathcal{V} .
- $\mathscr{G}_b = (\mathcal{V}, \mathscr{E}_b)$ is the underlying simple graph of b.
- $\mathscr{G} = (\mathscr{G}_d, |\cdot|)$ is a metric graph or its model.
- $(\mathcal{G}, \mu, \nu) = (\mathcal{G}_d, |\cdot|, \mu, \nu)$ is a weighted metric graph or its model.
- ϱ_0 is the length metric on \mathcal{G} , i.e., the natural path metric on \mathcal{G} .
- ρ_{η} is the intrinsic metric on (\mathcal{G}, μ, ν) and $\eta = \sqrt{\frac{\mu}{\nu}}$ is the intrinsic weight.
- ρ_m is the star path metric on \mathcal{V} corresponding to the star weight m.
- S_n is the *n*-th combinatorial sphere of a rooted graph $\mathscr{G}_d = (\mathcal{V}, \mathcal{E})$.
- $\mathfrak{C}(\mathscr{G})$ is the space of topological ends of a metric graph \mathscr{G} .
- $\mathfrak{C}_0(\mathcal{G};\mu)$ is the set of finite volume (with respect to μ) ends of \mathcal{G} .

Function spaces

- X is a locally compact Hausdorff space X, and μ is a Borel measure on X.
- C(X) is the space of continuous functions on X.
- C(X) is the set of complex-valued functions on X if X is countable.
- $C_b(X)$, $C_0(X)$, and $C_c(X)$ are, respectively, the spaces bounded, vanishing at infinity, and compactly supported continuous functions on X.
- $C^+(X)$ is the cone of positive functions on X.
- $\mathcal{F}_b(\mathcal{V})$ denotes the domain of definition of the formal graph Laplacian $L_{c,b,m}$.
- $CA(\mathcal{G} \setminus \mathcal{V})$ is the set of continuous, edgewise affine functions on a metric graph \mathcal{G} .
- $L^{p}(X;\mu)$ is the complex Banach space of measurable functions, $p \in [1,\infty]$.
- $L_c^p(X;\mu)$ is the subspace of compactly supported functions in $L^p(X;\mu)$.
- $\ell^{p}(X;m) := L^{p}(X;m), \ell^{p}_{c}(X;m) := L^{p}_{c}(X;m)$ if X is countable.
- $H^1_{\text{loc}}(\mathscr{G} \setminus \mathcal{V})$ is the space of all edgewise H^1 functions.
- $H^1_{\text{loc}}(\mathscr{G}) = H^1_{\text{loc}}(\mathscr{G} \setminus \mathcal{V}) \cap C(\mathscr{G}).$
- $H^1_c(\mathscr{G}) = H^1_{\text{loc}}(\mathscr{G}) \cap C_c(\mathscr{G}).$
- $H^1(\mathscr{G}) = H^1(\mathscr{G}; \mu, \nu)$ is the first (weighted) Sobolev space on \mathscr{G} .
- $H_0^1(\mathscr{G}) = H_0^1(\mathscr{G}; \mu, \nu) = \overline{H_c^1(\mathscr{G})}^{\|\cdot\|_{H^1(\mathscr{G}; \mu, \nu)}}.$
- $H_0^1(\mathcal{G} \setminus \mathcal{V})$ is the subspace of $H^1(\mathcal{G})$ -functions vanishing at all vertices.
- $\dot{H}^{1}(\mathcal{G}) = \dot{H}^{1}(\mathcal{G}, \nu)$ is the space of functions of finite energy on \mathcal{G} .

Laplacians and their quadratic/energy forms

- $L = L_{c,b,m}$ is the formal graph Laplacian on $(\mathcal{V}, m; b, c)$.
- **h**, **h**', **h**⁰ are the maximal, pre-minimal, minimal graph Laplacians in $\ell^2(\mathcal{V}; m)$.
- \mathbf{h}_D and \mathbf{h}_N are the Dirichlet and Neumann Laplacians in $\ell^2(\mathcal{V}; m)$.
- $q = q_{c,b}$ is the energy form on (b, c).
- \mathfrak{q}_D and \mathfrak{q}_N are the maximal and the minimal forms in $\ell^2(\mathcal{V}; m)$.
- Δ is the weighted Laplacian on (\mathcal{G}, μ, ν) .
- H, H' and H⁰ are the maximal, pre-minimal and minimal Kirchhoff Laplacians in L²(𝔅; μ).
- \mathbf{H}_D and \mathbf{H}_N are the Dirichlet and Neumann Laplacians in $L^2(\mathcal{G}; \mu)$.
- \mathbf{H}_G and $\mathbf{H}_{G,\min}$ are the maximal and minimal Gaffney Laplacians in $L^2(\mathcal{G}; \mu)$.
- \mathbf{H}_{α} , \mathbf{H}'_{α} and \mathbf{H}^{0}_{α} are the maximal, pre-minimal and minimal Laplacians with δ -couplings.

- \mathfrak{Q} is the energy form on (\mathcal{G}, μ, ν) .
- \mathfrak{Q}_D and \mathfrak{Q}_N are the maximal and the minimal forms in $L^2(\mathscr{G};\mu)$.

Operator theory

- \mathcal{H} and \mathfrak{H} are separable complex Hilbert spaces.
- $\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on \mathcal{H} .
- $\mathfrak{S}_p(\mathcal{H}), p \in (0, \infty]$ are the Schatten-von Neumann ideals in $\mathcal{B}(\mathcal{H})$.
- $I_{\mathcal{H}}$ is the identity operator in \mathcal{H} , and $I_n := I_{\mathbb{C}^n}$.
- $\mathbb{O}_{\mathcal{H}}$ is the zero operator in \mathcal{H} , and $\mathbb{O}_n := \mathbb{O}_{\mathbb{C}^n}$.
- For a self-adjoint operator A in \mathcal{H} , $\lambda_0(A)$ and $\lambda_0^{ess}(A)$ denote the bottoms of the spectrum, respectively, of the essential spectrum

$$\lambda_0(A) = \inf \sigma(A), \quad \lambda_0^{\mathrm{ess}}(A) = \inf \sigma_{\mathrm{ess}}(A),$$

and $A^- := A \mathbb{1}_{(-\infty,0)}(A)$, where $\mathbb{1}_{(-\infty,0)}(A)$ is the spectral projection on the negative subspace of A.

- For a closed symmetric operator A,
 - Ext(A) is the set of its proper extensions,
 - $Ext_S(A)$ is the set of its self-adjoint extensions.
- For a non-negative symmetric operator A,
 - $\operatorname{Ext}_{S}^{+}(A)$ is the set of its non-negative self-adjoint extensions,
 - $\operatorname{Ext}_{S}^{\kappa}(A), \kappa \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$, are self-adjoint extensions of A with the total multiplicity of the negative spectrum equal to κ ,
 - $\operatorname{Ext}_{M}(A)$ is the set of Markovian extensions of A.