
Chapter I

Introduction
by Nicola Oswald and Jörn Steuding

The concept of number and the evolution of number systems are topics of utmost
importance in the history of mathematics. An early observation was the discovery of
irrational quantities in geometrical figures by ancient Greek mathematicians. Inter-
estingly, the foundation of integers was established much later, namely by Richard
Dedekind and Giuseppe Peano in 1888/89, almost two decades after the constructions
of real numbers due to Dedekind himself, Georg Cantor, Charles Méray, and others.
These works reflect very well a new way of thinking about numbers in particular,
and mathematics and logic more generally, indicating that mathematics had achieved
a certain maturity in the second half of the 19th century. In the very beginning the
human concept of number was tied to practical purposes such as counting quanti-
ties. Later, however, a larger supply of numbers was needed, for example, for solving
polynomial equations or for studying processes by analytic means. This applies not
only to integers or real numbers but to complex numbers too, although their invention
followed a somehow different path.

Whereas the construction of real numbers relies on rather advanced – and at that
time completely new methods (e.g. Dedekind cuts or Cauchy sequences) – the foun-
dation of complex numbers is, at least from today’s point of view, realized by a simple
quadratic extension of the field of real numbers. However, adjoining such an imag-
inary square root

p
�1 has caused a lot of controversial discussions. For centuries,

mathematicians could hardly accept that a square can be negative (which is coun-
terintuitive to our usual way of thinking, having geometrical figures in mind where
squares do have a positive area).

The new numbers, sets and methods, in combination with a novel way of thinking
in mathematics, led to a variety of powerful and omnipresent structures, for instance,
groups, rings and fields, as well as substructures like semigroups and ideals. In the
context of numbers we list here the semigroup of positive integers, the ring of integers,
and the fields of rationals, real and complex numbers, denoted by

N � Z � Q � R � C:

Further concepts of numbers have been introduced and used for various reasons, e.g.
p-adic numbers and hypercomplex numbers. While the first type of numbers yields
number-theoretically relevant completions of Q, the latter numbers were, at least in
their early days, expected to be as useful as the complex numbers with respect to
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various mathematical disciplines. Here we shall only sketch the developments around
complex and hypercomplex numbers.1

In 1545, Girolamo Cardano solved in his Artis magnae sive de regulis algebraicis
liber unus the equation

X.10 �X/ D 40

by
x D 5˙

p
�15

and called
p
�15 a formal quantity (“quantitas sophistica”). A little later, in 1572,

Rafael Bombelli computed with complex quantities and used them for solving cubic
equations. Indeed, applying Cardano’s formula, square roots of negative numbers
appear naturally besides real solutions of cubic equations. The word “imaginary” was
coined by René Descartes who wrote in his La Géométrie (1637) that, “along with any
equation one can imagine as many roots as the degree, though these imagined roots
sometimes do not correspond to real quantities.” This statement may be considered
as an early unprecise formulation of the celebrated fundamental theorem of alge-
bra, which states that every non-constant polynomial has a zero (or that the field of
complex numbers C is algebraically closed). Whereas for Isaac Newton in his Univer-
sal Arithmetic, complex numbers indicated unsolvable problems. Gottfried Wilhelm
Leibniz called imaginary roots “almost a hermaphrodite by nature in between being
and non-being”2, and found astonishing identities, such asq

1C
p
�3C

q
1 �
p
�3 D

p
6

(appearing in a letter to Christiaan Huygens from 1674/5). In his ground-breaking
Introductio in analysin infinitorum (1748) [81], Leonhard Euler viewed complex
numbers z D x C iy in the complex plane with right angular real coordinates .x; y/
and the imaginary unit

i D
p
�1

(meaning that i2D�1), as well as in polar coordinates .r;�/ as zD r.cos�C i sin�/,
with real r measuring the distance of z from the origin and an angle � between the
positive real axis and the straight line passing through z and the origin; in this context
the imaginary unit i was treated as a number linearly independent from 1. Euler’s
famous formula

exp.i�/ D cos� C i sin�

1For a more complete history (including references) we refer to the collection of essays,
entitled Numbers [72] by Heinz-Dieter Ebbinghaus et al. as well as Bartel van der Waerden’s
History of Algebra [254].

2The original Latin is “inter ens et non ens amphibio”; see Acta Eruditorum, 1702.
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relates the complex exponential function with trigonometric functions and provides
a parametrization of the unit circle. The first published proof of the fundamental the-
orem of algebra was given by Jean d’Alembert in 1746; the gaps in his reasoning
can now be fixed by standard methods. Moreover, it was Jean Robert Argand in his
Essay sur une manière de représenter les quantités imaginaires dans les construc-
tions géométriques (1806), who interpreted multiplication with i as a rotation around
the origin by 90 degrees. The big change around complex numbers, their arithmetic,
geometry and, last but not least, their acceptance, however, came with the eminent
Carl Friedrich Gauss.

In his doctoral thesis of 1799, the young Gauss gave another proof of the funda-
mental theorem (claiming that his proof was the first satisfying one). And in his theory
of cyclotomy (included in his Disquistiones Arithmeticae (1801) [100, Section 7]), he
used roots of unity for number theoretical investigations. In 1831/2, Gauss coined the
name “complex number” in his Theoria residuorum biquadraticorum, commentatio
secunda [101] on biquadratic residues and a biquadratic reciprocity law. Moreover, it
was here that the Gaussian integers

aC ib with a; b 2 Z

and their sophisticated multiplicative structure first saw the light of day. In this context
Gauss wrote:

After we had already begun to think about this subject in 1805, we soon came
to the conclusion that the natural source of a general theory is to be found in
an extension of the field of arithmetic [. . .] While the higher arithmetic in the
questions dealt with so far only has to do with real integers, the propositions
relating to the biquadratic remainders only appear in all their simplicity and
natural beauty when the field of arithmetic is also extended to the imaginary
numbers [. . .]3

Then, Gauss continued with defining the Gaussian integers as the counterparts of the
ordinary rational integers in this extension. Indeed, Gauss observed that the set ZŒi� of
those complex numbers has the structure of a factorial ring and may be considered as
the counterpart of the ring Z of the rational integers within the field Q.i/ of rational

3„Nachdem wir schon im Jahr 1805 über diesen Gegenstand nachzudenken begonnen hat-
ten, kamen wir bald zu der Überzeugung, dass die natürliche Quelle einer allgemeinen Theorie
in einer Erweiterung des Feldes der Arithmetik zu suchen sei [. . .] Während nämlich die höhere
Arithmetik in den bisher behandelten Fragen es nur mit ganzen reellen Zahlen zu thun hat,
erscheinen die auf die biquadratischen Reste bezüglichen Sätze nur dann in ihrer ganzen Ein-
fachheit und natürlichen Schönheit, wenn das Feld der Arithmetik auch auf die imaginären
Zahlen erstreckt wird [. . .]“ [101, p. 540]. The text emphases are similar to those of the original.
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Figure 1. Carl Friedrich Gauss (left) and Sir William Rowan Hamilton (right). The
drawings were approximately made when Gauss studied the Gaussian integers and
Hamilton discovered the quaternions, respectively. Hamilton was knighted in 1835 for
his work in physics, however, Gauss was considered to be “princeps mathematicorum”,
which is Latin for the foremost of mathematicians.

Gaussian numbers. Of course, the notions of ring and field were not fixed at that time.
Nevertheless, one may say that the rise of complex numbers and investigations into
the arithmetic of algebraic number fields started with this influential paper.4

Another important contribution at that time appeared in the analytic studies of
Augustin-Louis Cauchy. Inspired by Gauss’s work on quadratic forms, Cauchy made
calculations with complex numbers by computing real polynomials modulo X2 C 1
which, in modern terms, rely on the isomorphism between the field of complex num-
bers and the quotient ring of real polynomials modulo the maximal ideal generated
by X2 C 1 (the minimal polynomial of

p
�1), i.e.,

C D RŒi� ' RŒX�=.X2 C 1/I

an important result that Leopold Kronecker would later generalize for the construc-
tion of field extensions.

4Euler had already used the imaginary unit as a tool for factoring quadratic forms, e.g.
xx C yy D .x C y

p
�1/.x � y

p
�1/, and considered notions such as prime and coprimality;

however, his investigations did not lead to a coherent theory. Jeremy Gray writes that, “[i]t is
this combination of deep intuitive perceptiveness, going for the significance of numbers of a
certain form, while making elementary errors in the logic of proof that provides an illustration
of Euler’s amazing ability to take the ‘right’ risks.” [109, p. 20]
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Figure 2. The inscription at Brougham (or Broom) Bridge in Dublin reads, “Here as
he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of
genius discovered the fundamental formula for quaternion multiplication i2 D j 2 D
k2 D ijk D �1 & cut it on a stone of this bridge”. Photo: Athanasios Sourmelidis

Quaternions are generalizations of complex numbers, first discovered by William
Rowan Hamilton about 175 years ago.5 At first, Hamilton tried to generalize complex
numbers by triples of real numbers, and his son’s daily question, “Well, Papa, can
you multiply triplets?”6 was always answered negatively. The innocent reader, who
is unaware of the story and the mathematics behind it, may attempt to solve this
problem on her or his own (but we suggest to do so only for short time).

After a struggle of 13 years, however, Hamilton had a breakthrough:

But on the 16th day of the month [October 1843] which happened to be a
Monday and a council day of the Royal Irish Academy – I was walking along
[. . .] the Royal Canal. [. . .] An electric current seemed to close, and a spark
flashed forth, the herald (as I foresaw immediately) of many long years to
come of definitely directed thought and work. . . I pulled out on the spot a
pocket-book, which still exists, and made an entry there and then. Nor could
I resist the impulse – unphilosophical as it may have been – to cut with a
knife on a stone of Brougham Bridge the fundamental formula with the sym-
bols i; j; k:

i2 D j2 D k2 D ijk D �1;

5The word quaternion is probably related to a scene in the New Testament where Herod the
Great sends Saint Peter to jail: “he put him in prison, and delivered him to four quaternions of
soldiers to keep him”; see Acts of the Apostles, 12.4.

6cf. [157, p. 153]
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which contains the solution of the problem, but of course, as an inscription it
has long since mouldered away.7

These are Hamilton’s own words a short time before his death in 1865. In order to
establish the quaternions Hamilton had to give up commutativity; for example,

ij D k ¤ �k D ji;

as follows from Hamilton’s inscription on this very bridge in Dublin (by multiplying
with k from the right and so forth). The (probably) first instance of non-commutativity
appears in geometry with the symmetries of a regular triangle (or, using modern terms
the non-commutative dihedral group D3, isomorphic to the symmetric group S3);
matrices entered the stage only about a decade after the quaternions.

When it is about numbers, we want to add and subtract them, we want to multiply
them and, if possible, to divide them. Moreover, there are further assumptions (or
rules) about numbers in the background, like commutativity or associativity (although
that was not explicitly mentioned in old texts since the ‘classical numbers’ simply
follow these rules). Looking for extensions of the complex numbers, of course, one
may have a principle of permanence in mind that certain properties of addition and
multiplication should transfer to hypercomplex numbers. In this respect, the need to
give up commutativity must have been an unexpected step!

A central role was played by those number systems which are closed with respect
to these operations. For centuries, mathematicians worked implicitly with such num-
ber systems, e.g. Q and R, without giving a definition of the underlying structures.
It is worth noting that the first definition of a field had only been given by Dedekind
in his supplements [40] from 1879 to Peter Gustav Lejeune Dirichlet’s influential
treatise [62] on number theory. Hamilton’s quaternions, however, form a skew field
(or division algebra in some literature), an alien object not observed before. At this
time some contemporary mathematicians may have felt uncomfortable with the new
concepts of complex or even hypercomplex numbers. On the contrary, Hamilton and
some of his followers were rather enthusiastic about these numbers.

It is an interesting aside that in 1895 even an International Association for Pro-
moting the Study of Quaternions was founded8. Actually, the turn of the century was
the time of professionalization, global movements and, last but not least, internation-
alization. Felix Klein, however, was not too excited about this particular association.
In his monograph on the development of mathematics in the 19th century [156], he
wrote the rather harsh comment:

7cf. [254, p. 182]
8with 68 members in March 1900; see Hubert Kennedy’s article [148] on one of the pro-

moters, James Mills Peirce, in particular, and the cult of quaternions, in general.
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Figure 3. In the course of his investigations of quaternions, Hamilton designed the
Icosian game about traveling along the edges of a dodecahedron. This turned out to
be the birth of Hamiltonian circuits in graph theory; the game itself, however, was not
too successful after its publication in 1857. For more information, we refer to Biggs
et al. [17].
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As I indicated before, Hamilton was followed by a school which surpassed
their master in rigidity and intolerance. [. . .] The quaternions are fine and
useful in their place; but their significance does not come up with the usual
complex numbers. [. . .] The simplicity and elegance with which far-reaching
theorems can be derived are indeed surprising and this may grasp the by far
not hostile enthusiasm of the quaternionists for their system, which [. . .] soon
grew beyond all rational limits neither being beneficial for mathematics in
general nor for the theory of quaternions in particular.9

The history of quaternions has been documented and studied quite intensively10 (and
some episodes can be found in this book). Our intention, however, is different. We
focus on number-theoretical aspects of quaternions here. In order to motivate this
theme, we first need to discuss the arithmetic of squares.

Integer squares are multiplicative objects in the first place, nevertheless they pos-
sess interesting additive features. In particular, sums of squares have been investigated
for millennia. The ancient Greek mathematician Diophantus mentioned in his Arith-
metica [56, Book III, Problem 19] (from the 3rd century), that

65 D 72 C 42 D 82 C 12

due to the fact that 65 D 13 � 5 and each factor is a sum of two squares.11 Therefore,
some mathematicians believe that he knew about the two-square identity

.a21 C b
2
1/.a

2
2 C b

2
2/ D .a1a2 � b1b2/

2
C .a1b2 ˙ a2b1/

2;

9„Wie ich schon andeutete, schloß sich Hamilton eine Schule an, die ihren Meister an Starr-
heit und Intoleranz noch überbot. [. . .] Die Quaternionen sind gut und brauchbar an ihrem
Platze; sie reichen aber in ihrer Bedeutung an die gewöhnlichen komplexen Zahlen nicht heran.
[. . .] Die Leichtigkeit und Eleganz, mit der sich hier die weittragendsten Theoreme ergeben,
ist in der Tat überraschend, und es läßt sich wohl von hier aus die alles andere ablehnende
Begeisterung der Quaternionisten für ihr System begreifen, die [. . .] nun bald über vernünftige
Grenzen hinauswuchs, in einer weder der Mathematik als Ganzem noch der Quaternionenthe-
orie selbst förderlichen Weise.“ [156, p. 184]

10For this purpose we refer once more to van der Waerden’s History of Algebra [254]
including an excellent survey on the discovery of algebras starting from complex numbers over
Hamilton’s quaternions up to the work of Emmy Noether, Helmut Hasse, and others. Another
wonderful and even more extensive source on the development of numbers and algebras is the
already mentioned collection [72] with valuable contributions by Max Koecher and Reinhold
Remmert on divison algebras (including Hamilton’s quaternions) amongst others. A highly
readable brief account can be found in Chapter 20 of John Stillwell’s second edition of his
Mathematics and Its History [241].

11For details we refer to Stillwell [241, p. 417] and Heath [121, p. 167].
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Figure 4. Claude Gaspard Bachet de Méziriac (left), Pierre de Fermat (right). Almost
nothing is known about Diophantus. The translation of his Arithmetica into Latin by
Bachet inspired many mathematicians, including Fermat.

which we nowadays may deduce from the multiplication rule for complex numbers,

.a1 ˙ ib1/ � .a2 ˙ ib2/ D a1a2 � b1b2 ˙ i.a1b2 C a2b1/;

by taking the respective norms.12 The general formula appears in the works of Brahm-
agupta (in the seventh century), Abu Jafar Al-Khazin (c. 950), and Fibonacci (1225),
who also provided a proof. Consequently, the set of sums of two squares is multiplica-
tively closed. Concerning the multiplicative structure, Pierre de Fermat discovered
in 1640 (at the latest) the following remarkable theorem.

Two-square theorem. Every prime number p�1 mod 4 can be represented as a sum
of two integer squares.

For instance,

5 D 12 C 22; 13 D 22 C 32; : : : ; 30449 D 1002 C 1432; : : :

The two-square theorem is indeed a surprising result: multiplicative objects as squares
and primes in additive combination. Since squares are congruent to 0 or 1 modulo 4,
primes p � 3 mod 4 cannot be written as sums of two squares. In letters to his con-
temporaries,13 Fermat communicated his method of infinite descent with which he

12And the even older Babylonian clay tablet ‘Plimpton 322’ (from around 1700 BCE) con-
tains a list of pythagorean triples which, according to some speculations, are related to the
identity above; see Stillwell [241, p. 385].

13namely to Pierre de Carcavi (1659) and to Christiaan Huygens (undated); see Walter
William Rouse Ball [8, p. 296], Eric Temple Bell [11, p. 89], resp., [41, p. 65].
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likely proved his statement on sums of two squares. The mathematical community
worked a rather different way at that time; new results were usually distributed by
letters to contemporaries, often enough without providing a hint of the proof. Fermat
was probably aware of the two-square identity above; its first appearance in print,
however, is in a paper from 1748 by Leonhard Euler. In the following year, Euler
communicated the first rigorous proof of Fermat’s two-square theorem in a letter to
Christian Goldbach. A modern algebraic proof relies on the arithmetic of the ring ZŒi�
of Gaussian integers (see Box J), namely the splitting of rational primes p � 1 mod 4
as, for example,

5 D .2 � i/.2C i/;

where neither 2C i nor 2 � i are units (hence 5 is not a prime in this extended ring
of integers). As a spin-off, the product leads via the norm immediately to the desired
representation of 5 as a sum of two squares.

This splitting of primes in algebraic extensions marks the very beginning of what
is now called class field theory and this line of investigation has prompted impor-
tant results in algebraic number theory in the last two centuries. However, there is
another idea arising from this observation and this very idea stands, as we shall see,
at the beginning of the research started by Rudolf Lipschitz and continued by Adolf
Hurwitz. It is the following supplement to the two-square theorem:

Four-square theorem. Every positive integer can be represented as a sum of at most
four integer squares.

For example,

14 D 32 C 22 C 12; 1770 D 412 C 92 C 22 C 22 D 422 C 22 C 12 C 12:

Three squares, however, are in general not sufficient, e.g. 7 or any other integer of
the form 4k.8`C 7/ cannot be written as a sum of three squares (which follows from
considering squares modulo 8). The squares constitute a rather small set within the set
of positive integers14, therefore it might be surprising that a small number of squares
is sufficient to represent every positive integer. The four-square theorem was first
conjectured in 1621 by Claude Bachet in his translation [56] of Diophantus’s Arith-
metica into Latin. This book, with its valuable editorial remarks by Bachet, had been
a great inspiration for Fermat (and not only with respect to Fermat’s last theorem).
Diophantus’s book is a collection of exercises which have to be solved numerically15,

14Since there are n integer squares below n2, their proportion tends with increasing n to
zero.

15For example, Problem VII, 17 asks for finding a representation as a sum of four rational
squares: .13=3/2 D 12 C .24=10/2 C .4=3/2 C .32=10/2.
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Figure 5. Leonhard Euler (left) and Joseph-Louis Lagrange (right). They established
the two-square theorem as well as the four-square theorem; both were working in
Berlin at the time of their proofs: Euler in 1748 as a member of the Prussian Academy
of Sciences, which he had been offered by Frederick the Great of Prussia, and Lagrange
as Euler’s successor as the director of mathematics at the academy in 1770.

so his approach was rather explicit and by no means abstract. Nevertheless, Diophan-
tus must have had a deep understanding and some of his exercises are indeed related
to quite modern objects (for example, point addition on elliptic curves). In our story,
however, more important are Bachet’s comments guiding us to general or abstract
results beyond the numerical examples.16 Indeed, this book was an inspiration to
many. In a letter to Marin Mersenne from 1636, Fermat first mentioned the statement
of the four-square theorem17 as well as the stronger one that every positive integer is
a sum of three triangular numbers.18

16We refer to the monographs of Thomas Heath [121] and Ad Meskens [191] for this and
further details on the reception of Diophantus’s Arithmetica.

17In a letter to Kenelm Digby from 1658, Fermat communicated that he possessed a proof of
the four square theorem: “I announce to your illustrious correspondents that I found a complete
proof of it”; cf. [21, p. 61]

18This latter statement was first proved by the 19-year-old Gauss and is best documented
by the entry “EUREKA num D �C�C�” in his diary. A positive integer of the form n D
1
2
m.mC 1/ is called a triangular number (taking into account that the sum 1C 2C � � � C m

can be illustrated by a triangle). Since every integer n is the sum of three triangular numbers
1
2
mj .mj C 1/, it follows that 8nC 3 can be written as a sum of three squares .2mj C 1/2 and

this implies that 8nC 7 D 8nC 3C 22 is a sum of four squares. The remaining cases can be
deduced from the two-square theorem and the four-square identitiy.
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There is not only a counterpart to the two-square theorem, but also the two-square
identity has an analogue, namely the four-square identity

.a21 C a
2
2 C a

2
3 C a

2
4/.b

2
1 C b

2
2 C b

2
3 C b

2
4/

D .a1b1 C a2b2 C a3b3 C a4b4/
2
C .a1b2 � a2b1 C a3b4 � a4b3/

2

C .a1b3 � a2b4 � a3b1 C a4b2/
2
C .a1b4 C a2b3 � a3b2 � a4b1/

2:

In a remarkable letter to Christian Goldbach (May 1748) in which Euler commu-
nicated his proof of the two-square theorem, he also mentioned this four-square
identity [98]19 which reduced the original problem to showing that every prime can
be written as a sum of four squares; in view of the two-square theorem, the case of
primes p � 1 mod 4 is trivial. In 1770, Euler communicated his four-square iden-
tity to the young Joseph-Louis Lagrange who succeeded that same year in treating
the remaining case of primes p � 3 mod 4; his proof was published two years later
as [165].

Although the two-square theorem concerns an arithmetical feature of integers, at
its core is the multiplication rule for complex numbers. When it is about sums of four
squares, however, the quaternions assume the role of the complex numbers.

In retrospect, it is not easy to understand Hamilton’s path to his quaternions. Lack-
ing knowledge of the works of Euler and Lagrange, he first aimed to generalize the
two-square identity arising from the multiplication of two complex numbers to sums
of three squares, although for anyone with a background in number theory, it is easy
to produce a counterexample. For instance,

.12 C 12 C 12/.42 C 22 C 12/ D 3 � 21 D 63 ¤ x2 C y2 C z2

for any integers x; y; z.20 Precisely this example appeared in the third edition of
Adrien-Marie Legendre’s textbook [174] in 1830. Bartel van der Waerden commented
on Hamilton’s struggle: “Fortunately, he did not read Legendre: he was self-taught.”21

19According to his notebooks, Euler discovered this formula between 1636 and 1640
(cf. [188, p. 604]). This result illustrates Euler’s attempt to prove Fermat’s open statements
on sums of squares. What Euler could show about four squares was that every positive integer
can be written as a sum of four rational squares, an example of such an identity can already
be found in Diophantus’s Arithmetica as Problem VII, 17; see [234] and footnote 15. Euler
mentioned this result in a letter to Goldbach from 1749, and published it in 1754/60 as [82].
Goldbach and Euler discussed this, and further questions about sums of squares, in many let-
ters during the 1740s. For further information on Euler’s number-theoretical investigations, see
Andre Weil’s historical account [267].

20Since squares are� 0; 1 or 4 mod 8, it follows that x2 C y2 C z2 6� 7 mod 8.
21[253, p. 234]. There is an interesting letter from Graves to Hamilton from 1844 about

Euler’s four square identity given in Legendre’s book; cf. [241].
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From our modern perspective on science, it is sometimes not easy to distinguish
between the small progress made in developing a theory further and the great break-
throughs. We have been educated in a rather different context than that of Hamilton
and his contemporaries, or the – soon to enter the stage – protagonists, Lipschitz and
Hurwitz. It may serve as a good illustration to point out the parallel development of
another non-mathematical subject. For instance, the first application for a patent for
a lighter-than-air aircraft is from 1843, due to William Samuel Henson of London.
This was in the same year that another William made his discovery of hypercomplex
numbers about 288 ( D 122 C 122) miles away on a neighboring island. Ferdinand
Graf Zeppelin filed a patent for his aircraft in 1895 in Stuttgart, around the same time
as Adolf Hurwitz began his studies on quaternions in Zurich; a distance of about 164
( D 102 C 82) kilometers.

The 19th century is well known for the Industrial Revolution and technological
breakthroughs (such as aircraft), however, mathematics was also to develop from a
shadowy existence to a modern discipline in the same period. In particular, through
the rise of structures such as groups, invented by Évariste Galois, algebras by Hamil-
ton, John Thomas Graves22, Arthur Cayley, etc., and fields by Dedekind, to name just
a few. Another – though not unrelated – example of the drastic changes in mathemat-
ical thinking from this period are the foundations of the number universes, the topic
with which we started.

The first to investigate quaternions from a number theoretical point of view in a
serious way was Rudolf Lipschitz in 1885/6 with his treatise Untersuchungen über
die Summen von Quadraten [183]. However, his approach is rather difficult to read
and his reasoning, in particular, not easy to follow. Nevertheless, Lipschitz gave a first
quaternionic proof of Lagrange’s four-square theorem. In 1896, Adolf Hurwitz pub-
lished his notes [135] on the arithmetic of quaternions in the Göttinger Nachrichten
and in 1919 he extended these studies to a booklet of 74 pages entitled Vorlesun-
gen über die Zahlentheorie der Quaternionen [137], which appeared only half a year
before Hurwitz’s death (its English translation follows in Chapter II). The main dif-
ference between the work of Lipschitz and Hurwitz is the definition of what should
be understood as the counterpart of integers within the set of quaternions. Here, it is
worth recalling how Dedekind began his supplement to Dirichlet’s treatise [40]:

22A Dublin born professor of jurisprudence at University College, London, fellow of the
Royal Society of London and, in addition, hobby mathematician who was first teacher and
later friend of Hamilton; he should not be confused with his younger brother Charles, who also
became a notable mathematician.
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Figure 6. Portraits of Adolf Hurwitz (left) and Rudolf Lipschitz (right). The picture
of Hurwitz was taken approximately when he started his studies on the arithmetic of
quaternions in 1896. The quality of Lipschitz’s picture does not allow to guess his age.

The notion of an integer number has found an extension in this century lead-
ing to entirely new lines in number theory; the first and most important step
in this area has been done by Gauss [. . .]23

Dedekind refers here to Gauss’s Theoria residuorum biquadraticorum, commentatio
secunda [101], dealing with the arithmetic of Gaussian integers (and applications, as
has already been mentioned above). Lipschitz defined integer quaternions by inte-
gral coefficients; for example 3 C 5i � 7j C k is a Lipschitz quaternion integer. In
addition to these quaternions, Hurwitz also considered quaternions with half integral
coefficients as quaternion integers, for instance, 1

2
.3C 5i � 7jC k/. On first glimpse

it might be surprising that the definition of integer quaternions may lead to signifi-
cant differences, however, in Lipschitz’s arithmetic there is no unique factorization
into prime elements in general, whereas Hurwitz obtained this cornerstone for num-
ber theory within his setting (up to non-commutativity). In this book we shall discuss
why Hurwitz succeeded where Lipschitz failed and this will also explain how mathe-
matics (sometimes) develops.

There is a famous example in number theory that nicely illustrates the role of def-
inition and its impact on structure. In his attempt to solve the cubic Fermat equation

X3 C Y 3 D Z3;

23„Der Begriff der ganzen Zahl hat in diesem Jahrhundert eine Erweiterung erfahren, durch
welche der Zahlentheorie wesentlich neue Bahnen eröffnet sind; den ersten und wichtigen
Schritt auf diesem Gebiet hat Gauss gethan, [. . .]“ [40, p. 434]
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Figure 7. A magic square of squares found by Euler in 1770. The sums of the squares
of all entries in every row, every column and both diagonals are all equal to 8515.
Moreover, mixed sums as 68 � .�17/C .�29/ � 31C � � � adds up to zero. This structure
is related to orthogonality.

Euler considered the arithmetic of numbers of the form a C b
p
�3 with integer

coefficients a and b. For his aim to apply Fermat’s method of infinite descent he
required unique prime factorization for the ring ZŒ

p
�3� (see [87]), however, this

ring is not factorial. Using unique prime factorization in the slightly larger factorial
ring ZŒ1

2
.1C

p
�3/� of algebraic integers, however, one can make Euler’s reasoning

watertight. The gap Euler had left was filled by Gauss [102] using indeed complex
numbers of the form 1

2
.aC b

p
�3/. Thus, Gauss worked with the better suited ring

of integers.24

In his booklet, Hurwitz established a number theory of quaternions that goes
beyond Lipschitz’s work (which had a stronger focus on sums of squares and was
not intended to build an arithmetic theory). Another example of the power of Hur-
witz’s approach is a quaternionic solution to Euler’s magic square of squares problem
(in the final lecture according to Hurwitz’s naming of the chapters of his booklet).
Here, Hurwitz applied quaternion arithmetic to deduce some rational parametriza-
tion, which Euler had found for orthogonal 4 � 4-matrices by educated guesses.

Although there is much more to be said about the history of quaternions and sums
of squares, we stop our introduction here and hand the words over to Hurwitz . . .

24For this and more details on their reasoning with respect to the cubic case of Fermat’s last
theorem, we refer to Paulo Ribenboim’s monograph [221, Chapter I.2], as well as to Günter
Bergmann’s careful analysis [14].


