
Chapter 1

Introduction

In this introductory chapter we first give a brief historical review of optimal transport,
then we recall some basic definitions and facts from measure theory and Riemannian
geometry, and finally we present three examples of (not necessarily optimal) transport
maps, with an application to the Euclidean isoperimetric inequality.

1.1 Historical overview

1781 – Monge. In his celebrated work, Gaspard Monge introduced the concept of
transport maps starting from the following practical question: Assume one extracts
soil from the ground to build fortifications. What is the cheapest possible way to
transport the soil? To formulate this question rigorously, one needs to specify the
transportation cost, namely how much one pays to move a unit of mass from a point
x to a point y. In Monge’s case, the ambient space was R3, and the cost was the
Euclidean distance c.x; y/ WD jx � yj.

1940s – Kantorovich. After 150 years, Leonid Kantorovich revisited Monge’s prob-
lem from a different viewpoint. To explain this, consider N bakeries located at posi-
tions .xi /iD1;:::;N and M coffee shops located at .yj /jD1;:::;M . Assume that the i th
bakery produces an amount ˛i � 0 of bread and that the j th coffee shop needs an
amount ǰ � 0. Also, assume that demandDsupply, and normalize them to be equal
to 1: in other words

P
i ˛i D

P
j ǰ D 1.

In Monge’s formulation, the transport is deterministic: the mass located at x can
be sent to a unique destination T .x/. Unfortunately this formulation is incompati-
ble with the problem above, since one bakery may supply bread to multiple coffee
shops, and one coffee shop may buy bread from multiple bakeries. For this reason
Kantorovich introduced a new formulation: given c.xi ; yj / the cost to move one unit
of mass from xi to yj , he looked for matrices .
ij / iD1;:::;N

jD1;:::;M

such that

(a) 
ij � 0 (the amount of bread going from xi to yj is a nonnegative quantity);

(b) for all i , ˛i D
PM
jD1 
ij (the total amount of bread sent to the different coffee

shops is equal to the production);

(c) for all j , ǰ D
PN
iD1 
ij (the total amount of bread bought from the different

bakeries is equal to the demand);

(d) 
ij minimizes the cost
P
i;j 
ij c.xi ; yj / (the total transportation cost is mini-

mized).

It is interesting to observe that constraint (a) is convex, constraints (b) and (c) are
linear, and the objective function in (d) is also linear (all with respect to 
ij ). In other
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words, Kantorovich’s formulation corresponds to minimizing a linear function with
convex/linear constraints.

Applications. Optimal transport has been a topic of high interest in the last 30 years
due to its connection to several areas of mathematics. The properties and the applica-
tions of optimal transport depend heavily of the choice of the cost function c.x; y/,
representing the cost of moving a unit of mass from x to y. Let us mention some
important choices:
� c.x; y/ D jx � yj2 in Rd : connected to Euler equations, isoperimetric and Sob-

olev inequalities, evolution PDEs such as @tu D �u, @tu D �.um/, and @tu D

div.rW � uu/.
� c.x; y/ D jx � yj in Rd : appears in probability and kinetic theory.
� c.x; y/ D d.x; y/2 on a Riemannian manifold, with d. � ; �/ denoting the Rie-

mannian distance: has connections and applications to the study of Ricci curva-
ture.

� c.x; y/ D � log.jx � yj/ on the sphere S2 � R3: solving the optimal transport
problem between two densities on the sphere produces a solution to the associated
reflector antenna problem of how to construct an antenna (which is a reflecting
surface) in such a way that a light coming from the origin with a given density
(in the space of directions, which is parametrized by S2) is reflected into another
given density (again, in the space of directions).

In this book we mostly focus on the Euclidean quadratic cost jx � yj2, and we will
give references for further applications in Chapter 5.

1.2 Push-forward of measures

For simplicity, throughout this book we will always work on locally compact, sep-
arable, and complete metric spaces, which will be usually denoted by X (the space
where the source measure lives) and Y (the space where the target measure lives).
These assumptions are not optimal but simplify some of the proofs in the next chap-
ter (see also Remark 2.1.1). Still, readers not interested in such a level of generality
can always think that X D Y D Rd .

Remark 1.2.1. All measures under consideration are Borel measures, and all maps
are Borel (i.e., if S WX ! Y , then S�1.A/ is Borel for all A � Y Borel). The set
of probability measures over a space X will be denoted by P .X/, and the class of
Borel-measurable sets by B.X/. Also, 1A denotes the indicator function of a set:

1A.x/ WD

´
1 if x 2 A;

0 if x 62 A:
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Definition 1.2.2. Take a map T WX ! Y and a probability measure � 2 P .X/. We
define the image measure (or push-forward measure) T#� 2 P .Y / as

.T#�/.A/ WD �.T �1.A// for any A 2 B.Y /.

Lemma 1.2.3. T#� is a probability measure on Y .

Proof. The proof consists in checking that T#� is nonnegative, has total mass 1, gives
no mass to the empty set, and is � -additive on disjoint sets:
� .T#�/.;/ D �.T �1.;// D �.;/ D 0;
� .T#�/.Y / D �.T �1.Y // D �.X/ D 1;
� .T#�/.A/ D �.T �1.A// � 0 for all A 2 B.X/;
� Let .Ai /i2I � Y be a countable family of disjoint sets. We claim first that

.T �1.Ai //i2I are disjoint. Indeed, if that was not the case and x 2 T �1.Ai / \

T �1.Aj /, then T .x/ 2 Ai \ Aj , which is a contradiction. Thanks to this fact,
using that � is a measure (and thus � -additive on disjoint sets) we get

T#�
�[
i2I

Ai

�
D �

�
T �1

�[
i2I

Ai

��
D �

�[
i2I

T �1.Ai /
�

D

X
i2I

�.T �1.Ai // D
X
i2I

T#�.Ai /:

Remark 1.2.4. One might also be tempted to define the “pull-back measure”
S#�.E/ WD �.S.E// for S WX ! Y and � 2 P .Y /. However, this construction does
not work in general. Indeed, since the image of two disjoint sets might coincide (con-
sider for instance the case when S is a constant map), S#� may not be additive on
disjoint sets.

Lemma 1.2.5. Let T WX ! Y , � 2 P .X/, and � 2 P .Y /. Then

� D T#�

if and only if, for any 'WY ! R Borel and bounded, we haveZ
Y

'.y/ d�.y/ D

Z
X

'.T .x// d�.x/: (1.1)

Proof. The implication (1.1) ) � D T#� follows choosing ' D 1A with A 2 B.Y /.
We now focus on the other implication.

For any Borel subset A � Y , it holds thatZ
Y

1A d� D �.A/ D �.T �1.A// D

Z
X

1T�1.A/ d� D

Z
X

1A ı T d�:
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Thus, by linearity of the integral, we immediately deduceZ
Y

' d� D

Z
X

' ı T d�

for any simple function 'WY ! R, i.e., for any ' of the form
P
i2I �i1Ai where I is

a finite set, .Ai /i2I are Borel subsets, and .�i /i2I are real values.
In order to deduce the desired result, fix a bounded Borel function 'W Y ! R.

Since any bounded Borel function can be approximated uniformly by simple func-
tions,1 there is a sequence of simple functions .'k/k2N such that k'k � 'k1 ! 0 as
k ! 1. Therefore we haveZ

Y

' d� D lim
k!1

Z
Y

'k d� D lim
k!1

Z
X

'k ı T d� D

Z
X

' d�;

which is the desired identity.

An immediate consequence of the previous lemma is the following:

Corollary 1.2.6. For any function 'WY ! R Borel and bounded it holds thatZ
Y

' d.T#�/ D

Z
X

' ı T d�:

The next lemma shows the relation between composition and push-forward.

Lemma 1.2.7. Let T WX ! Y and S WY ! Z be measurable; then

.S ı T /#� D S#.T#�/:

Proof. Thanks to Corollary 1.2.6, for any 'WZ ! R Borel and bounded we haveZ
Z

' d.S ı T /#� D

Z
X

' ı .S ı T / d� D

Z
X

.' ı S/ ı T d�

D

Z
Y

' ı S dT#�

D

Z
Z

' dS#.T#�/:

The result follows from Lemma 1.2.5.

1To prove this, given 'W Y ! R a bounded Borel function, fix " > 0 and for any i 2 Z
consider the setAi WD ¹"i � ' < ".i C 1/º. Then define '" WD

P
i2Z "i1Ai . Since ' is bounded

we have Ai D ; for ji j � 1, hence '" is a simple function. Also

k' � '"kL1 D max
i2Z

k' � '"kL1.Ai /
� ":
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1.3 Basics of Riemannian geometry

Even though we are not going to work with Riemannian manifolds, some of the
results we present (namely Arnold’s theorem, geodesics in the Wasserstein space,
and the differential structure of the Wasserstein space) are heavily inspired by classi-
cal concepts in Riemannian geometry. Hence, we provide a very short introduction to
the subject, with an emphasis on those facts and structures that may help readers to
fully appreciate the content of this book.

First, for embedded submanifolds, we recall the definitions of tangent space, Rie-
mannian distance, (minimizing) geodesic, and gradient. Then we briefly explain how
these definitions can be generalized to the (more abstract) case of a (not necessarily
embedded) Riemannian manifold.

Our presentation of the subject is quick and superficial, but should be sufficient
to understand the related topics in this book. This material, and much more, may be
found in any introductory text on Riemannian geometry (see, for example, [31,47,56,
63]). Readers with some experience in the subject may skip this chapter.

Embedded submanifolds. Let M be a compact d -dimensional smooth manifold
embedded in RD . We are going to show how the Euclidean scalar product of the
ambient RD induces a distance – the Riemannian distance – onM , and how this gives
rise to a number of related concepts (gradients, minimizing geodesics, and geodesics).

In what follows, we implicitly assume that all curves are C 1.
Let us begin with the definition of tangent space. Notice that, for its definition,

we are not going to use the Euclidean scalar product of the ambient.

Definition 1.3.1 (Tangent space). Given a point p 2 M , the tangent space TpM �

RD of M at p is defined as

TpM WD ¹ P
.0/ j 
 W .�1; 1/!M; 
.0/ D pº:

Intuitively, the tangent space contains all the directions tangent to M at p. One
can show that TpM is a d -dimensional subspace of RD .

We now give the definition of gradient of a function, which is a convenient repre-
sentation of its differential.

Definition 1.3.2 (Gradient). Let F WM ! R be a smooth function. Its gradient
rF WM ! RD is defined as the unique tangent vector field on M , that is, rF.x/ 2
TxM for all x 2M , such that the following holds: for any curve 
 W .�1; 1/!M ,

hrF.
.0//; P
.0/i D
d

dt

ˇ̌̌
tD0
F.
.t//:

For the definition of the gradient we are using that the Euclidean scalar product
endows the tangent spaces of a scalar product (i.e., the restriction of the ambient
scalar product).
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Given a curve 
 W Œa; b�!M , its length is given by the formulaZ b

a

j P
.t/j dt:

Notice that the length of a curve is invariant under reparametrization. Notice also
that, to define the length of a curve, we need to compute the Euclidean norm only of
vectors tangent to M .

Once one knows how to measure the length of a curve, the following definition of
(Riemannian) distance is fairly natural.

Definition 1.3.3 (Riemannian distance). Given two points x; y 2M , their Riemann-
ian distance dM .x; y/ is defined as

dM .x; y/ WD inf
²Z b

a

j P
.t/j dt

ˇ̌̌̌

 W Œa; b�!M; 
.a/ D x; 
.b/ D y

³
:

The Riemannian distance is indeed a distance onM , that is, it satisfies the triangle
inequality (besides dM .x; y/ D dM .y; x/, and dM .x; y/ D 0 if and only if x D y).

Since any curve can be reparametrized to have constant speed, one can show that
an equivalent definition of the Riemannian distance is given by

dM .x; y/
2
D inf

²Z 1

0

j P
.t/j2 dt

ˇ̌̌̌

 W Œ0; 1�!M; 
.0/ D x; 
.1/ D y

³
: (1.2)

It turns out that there is always a (not necessarily unique) curve achieving the infi-
mum in the definition of the Riemannian distance (this follows from the compactness
of M or, more generally, from its completeness).

Definition 1.3.4 (Minimizing geodesic). A curve 
 W Œa; b�!M with constant speed
(i.e., j P
 j is constant) such that 
.a/ D x; 
.b/ D y, and whose length is equal to
dM .x; y/, is called a minimizing geodesic.

The restriction of a minimizing geodesic on a smaller interval is still a minimizing
geodesic. Moreover, any minimizing geodesic is smooth.

One may think of minimizing geodesics as “straight lines in a curved space.”
Indeed, since a minimizing geodesic has constant speed and achieves the minimum
also in (1.2), it can be proven (with a variational argument, as a consequence of the
minimality) that

R
.t/ ? T
.t/M (1.3)

for all t 2 Œ0; 1�. In other words, apart from the distortion induced by M , minimizing
geodesics go “as straight as possible.”

Definition 1.3.5 (Geodesic). A (not necessarily minimizing) geodesic is a curve

 W Œa; b�!M that satisfies (1.3).



Transport maps 7

It can be readily checked that a geodesic has constant speed; indeed

d

dt
j P
 j2 D 2h P
; R
i D 0;

where we have used that R
 ? T
M 3 P
 .
Moreover, any geodesic is locally minimizing. More precisely, if 
 W Œa; b�! M

satisfies (1.3), then for any t0 2 .a; b/ there is " > 0 such that 
 restricted on Œt0 � ";
t0 C "� is a minimizing geodesic.

Abstract Riemannian manifolds. In the previous paragraph we described how a
submanifold of RD inherits a number of structures (tangent space, gradient, distance,
geodesics) from the ambient. Let us briefly explain what is necessary for an abstract
manifold to have such structures.

Given a compact d -dimensional smooth manifold M , there is an intrinsic def-
inition of tangent space TpM (as an appropriate quotient of the curves through p,
where two curves are identified if “they have the same derivative at p”). To proceed
further and talk about gradients, lengths, etc., we need to endow our manifold M
with an additional structure, that is, a Riemannian metric. A Riemannian metric is a
(symmetric and positive definite) scalar product gx W TxM � TxM ! R, defined on
each tangent space, that varies continuously with respect to x 2M . If M is endowed
with a Riemannian metric g D .gx/x2M , we say that .M; g/ is a Riemannian mani-
fold. On a Riemannian manifold, all the definitions given previously (gradient, length,
Riemannian distance, and minimizing geodesic) make perfect sense (for example, the
length of a curve is

R b
a
g
 . P
; P
/

1
2 ), and all the facts we have stated remain true.

It is more delicate to generalize (1.3) to this more abstract setting, and thus to
define what a (not necessarily minimizing) geodesic is. We prefer not to delve into
this topic, as it goes beyond the basic understanding of Riemannian geometry that is
necessary to appreciate the rest of this book.

1.4 Transport maps

Definition 1.4.1. Given � 2 P .X/ and � 2 P .Y /, a map T WX ! Y is called a
transport map from � to � if T#� D �.

Remark 1.4.2. Given � and �, the set ¹T j T#� D �º may be empty. For instance,
given � D ıx0 with x0 2 X and a map T WX ! Y , we haveZ

Y

'.y/ d.T#�/.y/ D

Z
Y

' ı T .x/ d�.x/ D '.T .x0// 8'WY ! R

) T#� D ıT.x0/:

Hence, unless � is a Dirac delta, for any map T we have T#� ¤ � and the set ¹T j

T#� D �º is empty.
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Definition 1.4.3. We call 
 2 P .X � Y / a coupling2 of � and � if

.�X /#
 D � and .�Y /#
 D �;

where
�X .x; y/ D x; �Y .x; y/ D y 8 .x; y/ 2 X � Y:

This is equivalent to requiring thatZ
X�Y

'.x/ d
.x; y/ D

Z
X�Y

' ı �X .x; y/ d
.x; y/ D

Z
X

'.x/ d�.x/

for all 'WX ! R Borel and bounded, andZ
X�Y

 .y/ d
.x; y/ D

Z
X�Y

 ı �Y .x; y/ d
.x; y/ D

Z
Y

 .y/ d�.y/

for all  W Y ! R Borel and bounded. We denote by �.�; �/ the set of couplings of
� and �.

Remark 1.4.4. Given � and �, the set �.�; �/ is always nonempty. Indeed the prod-
uct measure 
 D �˝ � (defined by

R
�.x; y/d
.x; y/D

R
�.x; y/d�.x/d�.y/ for

every �WX � Y ! R) is a coupling:Z
X�Y

'.x/ d�.x/ d�.y/ D

Z
Y

d�.y/

Z
X

'.x/ d�.x/

D 1 �

Z
X

'.x/ d�.x/ D

Z
X

'.x/ d�.x/;Z
X�Y

 .y/ d�.x/ d�.y/ D

Z
X

d�.x/

Z
Y

 .y/ d�.y/

D 1 �

Z
Y

 .y/ d�.y/ D

Z
Y

 .y/ d�.y/:

Remark 1.4.5 (Transport map vs. coupling). Let T WX ! Y satisfy T#� D �. Con-
sider the map Id � T WX ! X � Y , i.e., x 7! .x; T .x//, and define


T WD .Id � T /#� 2 P .X � Y /:

We claim that 
T 2 �.�; �/. Indeed, recalling Lemma 1.2.7 we have

.�X /#
T D .�X /#.Id � T /#� D .�X ı .Id � T //#� D Id#� D �;

.�Y /#
T D .�Y /#.Id � T /#� D .�Y ı .Id � T //#� D T#� D �:

This proves that any transport map T induces a coupling 
T .

2The terminology “coupling” is common in probability. However, in optimal transport the-
ory one often uses the expression transport plan in place of coupling.
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1.4.1 Examples of transport maps

We now discuss three examples of transport maps: measurable transport, one-dimen-
sional monotone rearrangement, and the Knothe map.

Measurable transport. The following result can be found in [15, Thm. 11.25]:

Theorem 1.4.6. Let � 2 P .X/ be a probability measure such that � has no atoms
(i.e.,�.¹xº/D 0 for any x 2X ). Then there exists T�WX!R such that T� is injective
�-a.e. and

.T�/#� D dxjŒ0;1�:

Moreover, T �1
� W Œ0; 1�! X exists Lebesgue-a.e. and .T �1

� /# dx D �.

In other words, given � 2 P .X/ and � 2 P .Y / without atoms, this abstract the-
orem tells us that we can always transport one onto the other by simply considering
T �1
� ı T� (this is a transport map from � to �) or T �1

� ı T� D .T �1
� ı T�/

�1 (this
is a transport map from � to �). Unfortunately these maps have no structure, so they
are of little interest in concrete applications in analysis/geometry. Indeed, as we will
see in this book, a very important feature of optimal transport maps is their structural
properties (for instance, optimal maps for the quadratic cost are gradients of convex
functions; see Theorem 2.5.10).

Monotone rearrangement. Given �; � 2 P .R/, set

F.x/ WD

Z x

�1

d�.t/; G.y/ WD

Z y

�1

d�.t/:

Note that these maps are not well defined at points where measures have atoms, since
one needs to decide whether the mass of the atom is included in the value of the
integral or not. We adopt the convention that the masses of the atoms are included, so
that both maps are continuous from the right. More precisely, we set

F.x/ WD lim
"!0C

Z xC"

�1

d�.t/ D �
�
.�1; x�

�
;

G.y/ WD lim
"!0C

Z yC"

�1

d�.t/ D �
�
.�1; y�

�
:

Note that F and G are nondecreasing. If G was strictly increasing, it would be injec-
tive and we could naturally consider its inverse G�1. However, G may be constant in
some regions, so we need to define a “pseudo-inverse” as follows:

G�1.y/ WD inf¹t 2 R j G.t/ > yº:

Note that also G�1 is continuous from the right.
With these definitions, we define the nondecreasing map T WD G�1 ı F WR ! R

and we want to prove that it transports � to �. Of course this cannot be true in general,
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since the set of transport maps may be empty (recall Remark 1.4.2). The following
result shows that this is the case if � has no atoms:

Theorem 1.4.7. If � has no atoms, then T#� D �.

To prove this theorem, we need some preliminary results.

Lemma 1.4.8. If � has no atoms, then for all t 2 Œ0; 1� we have

�
�
F �1.Œ0; t �/

�
D t:

Proof. The statement is easily seen to be true for t D 0 and t D 1.
Also, since � has no atoms,

jF.tk/ � F.t/j D

ˇ̌̌̌Z tk

t

d�

ˇ̌̌̌
���!
tk!t

0 8 t 2 R;

thus F 2 C 0.R;R/. Since F.t/! 0 as t ! �1 and F.t/! 1 as t ! C1, by the
intermediate value theorem it follows that F is surjective on .0; 1/.

Given t 2 .0; 1/, consider the largest value x 2 R such that F.x/ D t (this point
exists by the continuity of F ). With this choice of x, we have

�
�
F �1.Œ0; t �/

�
D

Z
F�1.Œ0;t�/

d� D

Z x

�1

d� D t;

as desired.

Corollary 1.4.9. If � has no atoms, then for all t 2 Œ0; 1� we have

�
�
F �1.Œ0; t//

�
D t:

Proof. We apply Lemma 1.4.8 to the intervals Œ0; t � and Œ0; t � "� with " > 0:

t D �
�
F �1.Œ0; t �/

�
� �

�
F �1.Œ0; t//

�
� �

�
F �1.Œ0; t � "�/

�
D t � " ����!

"!0C
t:

Proof of Theorem 1.4.7. We split the proof into five steps.

(1) Let A D .�1; a� with a 2 R. Applying Corollary 1.4.9, we have

T#�.A/ D �.T �1.A// D �
�
F �1

ıG..�1; a�/
�

D �
�
F �1.Œ0; G.a/�/

�
D G.a/ D �..�1; a�/ D �.A/:

(2) Let A D .a; b� D .�1; b� n .�1; a�. Applying step (1) we have

T#�.A/ D T#�..�1; b�/ � T#�..�1; a�/ D �..�1; b�/ � �..�1; a�/

D �.A/:
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(3) Let A D .a; b/, and consider A" WD .a; b � "�. Thanks to step (2) and monotone
convergence we have

�.A/- �.A"/ D T#�.A"/% T#�.A/ as "! 0C:

(4) Let A � R be an open set. We can write A D
S
i2I .ai ; bi / with

�
.ai ; bi /

�
i2I

disjoint and countable. Thus, by step (3) we get

�.A/ D
X
i2I

�..ai ; bi // D
X
i2I

T#�..ai ; bi // D T#�.A/:

(5) Since open sets are generators of the Borel � -algebra, step (4) proves that T#�D�:

Knothe map. We are going to build a transport map, known as the Knothe map [53],
that is a multidimensional generalization of monotone rearrangement. First we need
to state the disintegration theorem (for a proof of this result, see Appendix B).

Theorem 1.4.10 (Disintegration theorem). Let � 2 P .R2/ and set �1 WD .�1/#� 2

P .R/, where �1WR2 ! R is defined as �1.x1; x2/ WD x1. Then there exists a family
of probability measures .�x1/x12R � P .R/ such that

�.dx1; dx2/ D �x1.dx2/˝ �1.dx1/I

that is, for any 'WR2 ! R continuous and bounded, we haveZ
R2
'.x1; x2/ d�.x1; x2/ D

Z
R

�Z
R
'.x1; x2/ d�x1.x2/

�
d�1.x1/:

Moreover, the measures �x1 are unique �1-a.e.

Example 1.4.11. Let � D f .x1; x2/ dx1 dx2 with
R

R2 f dx1 dx2 D 1, and set

�1 WD .�1/#�; F1.x1/ WD

Z
R
f .x1; x2/ dx2:

We claim that �1 D F1 dx1. Indeed, given any test function 'WR ! R,Z
R
'.x1/ d�1.x1/ D

Z
R2
'.x1/ d�.x1; x2/ D

Z
R2
'.x1/f .x1; x2/ dx1; dx2

Fubini
D

Z
R
'.x1/

�Z
R
f .x1; x2/ dx2

�
dx1

D

Z
R
'.x1/F1.x1/ dx1;

as desired.
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Also, let �x1.dx2/ be the disintegration provided by the previous theorem. ThenZ
R

�Z
R
'.x1; x2/ d�x1.x2/

�
d�1.x1/ D

Z
R2
'.x1; x2/ d�.x1; x2/

D

Z
R2
'.x1; x2/f .x1; x2/ dx1 dx2

D

Z
R

�Z
R
'.x1; x2/

f .x1; x2/

F1.x1/
dx2

�
F1.x1/ dx1:

Hence, by uniqueness of the disintegration we deduce that

�x1.dx2/ D
f .x1; x2/

F1.x1/
dx2; �1-a.e.

Note that �x1 are indeed probability measures:Z
R
d�x1.x2/ D

1

F1.x1/

Z
R
f .x1; x2/ dx1 D

1

F1.x1/
F1.x1/ D 1:

Remark 1.4.12 (An absolutely continuous measure lives where its density is posi-
tive). Note that F1 > 0 �1-a.e. Indeed,Z

¹F1D0º

d�1 D

Z
¹F1D0º

F1 dx1 D

Z
¹F1D0º

0 dx1 D 0:

Construction of a Knothe map. Take two absolutely continuous measures on R2,
namely

�.x1; x2/ D f .x1; x2/ dx1 dx2 D
f .x1; x2/

F1.x1/
dx2 ˝ F1.x1/ dx1;

�.y1; y2/ D g.y1; y2/ dy1 dy2 D
g.y1; y2/

G1.y1/
dy2 ˝G1.y1/ dy1;

where

F1.x1/ D

Z
R
f .x1; x2/ dx2 and G1.y1/ D

Z
R
g.y1; y2/ dy2:

Using Theorem 1.4.7, monotone rearrangement provides us with a map T1WR ! R
such that T1#.F1 dx1/ D G1 dy1. Then, for F1 dx1-a.e. x1 2 R, we consider the
monotone rearrangement T2.x1; �/WR ! R such that

T2.x1; �/#

�f .x1; �/
F1.x1/

dx2

�
D
g.T1.x1/; �/

G1.T1.x1//
dy2: (1.4)

In other words, for each fixed x1, F.x1; �/ is a map that sends the disintegration of �
at the point x1 onto the disintegration of � and the point T .x1/.
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Theorem 1.4.13. The Knothe map T .x1; x2/ WD .T1.x1/; T2.x1; x2// transports �
to �.

Proof. For 'WR2 ! R Borel and bounded, we haveZ
R2
'.y1; y2/g.y1; y2/ dy1 dy2 D

Z
R

�Z
R
'.y1; y2/

g.y1; y2/

G1.y1/
dy2

�
„ ƒ‚ …

‰.y1/

G.y1/ dy1

.T1/#.F1 dx1/DG1 dy1
D

Z
R
‰.T1.x1//F1.x1/ dx1

D

Z
R

�Z
R
'.T1.x1/; y2/

g.T1.x1/; y2/

G1.T1.x1//
dy2

�
F1.x1/ dx1

(1.4)
D

Z
R

�Z
R
'.T1.x1/; T2.x1; x2//

f .x1; x2/

F1.x1/
dx2

�
F1.x1/ dx1

D

Z
R

Z
R
'.T1.x1/; T2.x1; x2//f .x1; x2/ dx2 dx1

D

Z
R2
.' ı T /.x1; x2/ d�.x1; x2/:

Remark 1.4.14. Since monotone rearrangement is an increasing function, we have
(under the assumption that the map T .x1; x2/ D .T1.x1/; T1.x1; x2// is smooth)

rT D

�
@1T1 � 0 �

0 @2T2 � 0

�
:

One can use the previous construction of the Knothe map in R2 and iterate it to
obtain a Knothe map on Rd . Let

�.x1; : : : ; xd / D f .x1; : : : ; xd / dx1 � � � dxd ;

�.y1; : : : ; yd / D g.y1; : : : ; yd / dy1 � � � dyd

be two absolutely continuous measures. Using monotone rearrangement we get a
map T1WR ! R such that T1#.F1 dx1/ D G1 dy1, where F1.x1/ D

R
f dx2 : : : dxd

and G1.y1/ D
R
g dy2 : : : dyd . Also, the analogues of Theorem 1.4.10 and Exam-

ple 1.4.11 in Rd yield probability measures on Rd�1 given by

�x1.x2; : : : ; xd / D
f .x1; x2; : : : ; xd /

F1.x1/
dx2 � � � dxd

and

�y1.y2; : : : ; yd / D
g.y1; y2; : : : ; yd /

G1.y1/
dy2 � � � dyd ;

such that � D �x1 ˝ F1 dx1 and � D �y1 ˝G1 dy1.
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By induction on the dimension, there exists a Knothe map Tx1 WR
d�1 ! Rd�1

sending �x1 onto �T1.x1/, and then we obtain a Knothe map in Rd as

T .x1; : : : ; xd / WD .T1.x1/; Tx1.x2; : : : ; xd //:

Remark 1.4.15. Suppose again that the map T is smooth. Then

rT D

0BBBBBB@
@1T1 � � � �

0 @2T2 � � �

0 0
: : : � �

0 0 0
: : : �

0 0 0 0 @dTd

1CCCCCCA :
Note that this is an upper triangular matrix and that all the values on the diagonal are
nonnegative. This will be important for the next section.

Remark 1.4.16. Although we call it the Knothe map, the map itself is by no means
unique. Indeed, by fixing a basis in Rd but changing the order of integration, one
obtains a different Knothe map. Even more, changing the basis of Rd yields in general
a different map.

1.5 An application to isoperimetric inequalities

The following is the classical (sharp) isoperimetric inequality in Rd .

Theorem 1.5.1. Let E � Rd be a bounded set with smooth boundary. Then

Area.@E/ � d jB1j
1
d jEj

d�1
d ;

where jB1j is the volume of the unit ball.

To prove this result, let jEj denote the Lebesgue measure of E and consider the
probability measures � WD

1
jE j

1E and � WD
1

jB1j
1B1 . Notice that here, as often in the

book, we identify a measure with its density with respect to Lebesgue.

Proposition 1.5.2. Let T be a Knothe map from � to �, and assume it to be smooth.3

Then,

(a) for any x 2 E, it holds that jT .x/j � 1;

(b) detrT D
jB1j
jE j

in E;

(c) divT � d .detrT /
1
d .

3The smoothness assumption can be dropped with some fine analytic arguments. To obtain
a rigorous proof one can also work with the optimal transport map (instead of the Knothe map)
and use the theory of functions with bounded variation, as done in [44].
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Proof. We prove the three properties.

(a) If x 2 E, then T .x/ 2 B1 and thus jT .x/j � 1.

(b) Let A � B1, so that T �1.A/ � E. Since T#� D �, we have

�.A/ D �.T �1.A// D

Z
T�1.A/

dx

jEj
:

On the other hand, by the change of variable formulas, setting y D T .x/ we have
dy D jdetrT j dx, therefore

�.A/ D

Z
A

dy

jB1j
D

Z
T�1.A/

1

jB1j
j detrT .x/j dx:

Furthermore, since rT is upper triangular and its diagonal elements are nonneg-
ative (see Remark 1.4.15), it follows that detrT � 0, henceZ

T�1.A/

dx

jEj
D �.A/ D

Z
T�1.A/

1

jB1j
detrT .x/ dx:

Since A � B1 is arbitrary, we obtain

detrT
jB1j

D
1

jEj
inside E:

(c) Note that, since the matrix rT is upper triangular (see Remark 1.4.15), its deter-
minant is given by the product of its diagonal elements. Hence

divT .x/ D
dX
iD1

@iTi .x/ D d

�
1

d

dX
iD1

@iTi .x/

�
� d

� dY
iD1

@iTi .x/

� 1
d

D d
�
detrT .x/

� 1
d ;

where the inequality follows from the fact that the arithmetic mean of the non-
negative numbers @iTi .x/ is greater than the geometric one.

Proof of Theorem 1.5.1. Thanks to properties (a), (b), (c) in Proposition 1.5.2, denot-
ing by �E the outer unit normal to @E and by d� the surface measure on @E, we
have

Area.@E/ D
Z
@E

1 d�
(a)
�

Z
@E

jT j d� �

Z
@E

T � �E d�
�
D

Z
E

divT dx

(c)
� d

Z
E

�
detrT

� 1
d dx

(b)
D d

Z
E

�
jB1j

jEj

� 1
d
dx D d jB1j

1
d jEj

d�1
d ;

where the equality marked with � follows from the Stokes theorem.
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1.6 A Jacobian equation for transport maps

Let T W Rd ! Rd be a smooth diffeomorphism with det rT > 0, and assume that
T#.f dx/ D g dy, where f and g are probability densities.

First of all, by the definition of the push-forward measure, for any bounded Borel
function �WRd ! R we haveZ

Rd
�.y/g.y/ dy D

Z
Rd
�.T .x//f .x/ dx:

On the other hand, using the change of variablesyDT .x/we have dyDdetrT .x/dx,
and thereforeZ

Rd
�.y/g.y/ dy D

Z
Rd
�.T .x//g.T .x// detrT .x/ dx:

Comparing the two equations above, since � is arbitrary we deduce that T satisfies

g.T .x// detrT .x/ D f .x/:

Note that the transport maps we are going to construct in the next chapters (and also
the Knothe map we have just studied) are not smooth diffeomorphisms in general,
thus proving that the validity (in a suitable sense) of this Jacobian equation would
require some additional work.


