Abstract

Applying the theory of strongly smooth operators, we derive a limiting absorption
principle (LAP) on any compact interval in R\{0} for the free massless Dirac opera-
tor,

H 0o=0u- (—l V)

in [L2RM]Y, n e N, n > 2, N = 2l+1D/2] We then use this to demonstrate
the absence of singular continuous spectrum of interacting massless Dirac operators
H = Hy + V, where the entries of the (essentially bounded) matrix-valued poten-
tial 1V decay like O(|x|~17%) as |x| — oo for some & > 0. This includes the special
case of electromagnetic potentials decaying at the same rate. In addition, we derive
a one-to-one correspondence between embedded eigenvalues of H in R\{0} and the
eigenvalue —1 of the (normal boundary values of the) Birman—Schwinger-type oper-
ator
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Upon expressing £ (-; H, Hp) as normal boundary values of regularized Fredholm de-
terminants to the real axis, we then prove that in the concrete case (H, Hyp), under ap-
propriate hypotheses on V (implying the decay of V like O(|x|™*~17%) as |x| — 00),
the associated spectral shift function satisfies £(-; H, Hg) € C((—o0,0) U (0, 00)),
and that the left and right limits at zero, £ (0+; H, Ho) = limg o §(£¢&; H, Hp), exist.

This fact is then used to express the resolvent regularized Witten index of the
non-Fredholm operator D , in L?(R; [L2(R™)]N ) given by

d
D, = yri A, dom(D,) = W"(R; [L*(R™")]Y) N dom(A4-),

where
A=A_+ B, dom(A)=dom(A-).

Here A, A_, A4, B, and B in L?(R; [L?(R")]") are generated with the help of
the Dirac-type operators H, Hy and potential matrices V, via

At)=A_+B(t), 1 €R, A_=H, A.=A_+ B, =H,
B(t) = b(t)By, 1 €R, Bi=V,
in [L2(R™)]", assuming

b® e C®R) N L®(R;dt), k e Ny, b e L'(R;dt),

lim (1) =1, lim b(r) = 0.
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In particular, A1 are the asymptotes of the family A(¢), t € R, as t — d00 in the
norm resolvent sense. (Here L2(R; #) = fuga dt H and T = fﬂga dt T(t) represent
direct integrals of Hilbert spaces and operators.)

Introducing the nonnegative, self-adjoint operators

H =D D,., H,=D,D}

in L2(R; [L2(R™)]"), one of the principal results proved in this manuscript expresses
the resolvent regularized Witten index Wy (D ,) of D , in terms of spectral shift
functions via

Wir(D 4) = §0(04; Hy, Hy) = [£(04; H, Ho) + §(0—; H, Ho)] /2,
keN, k= [n/2].

Here the notation &1, (04+; H,, Hy) indicates that O is a right Lebesgue point for
£(-; Hp, Hy), and Wy (T) represents the kth resolvent regularized Witten index of
the densely defined, closed operator 7" in the complex, separable Hilbert space X,
defined by

Wier(T) = lim(=2)" trse ((T*T = A0 ™ = (TT* = 243} ™),
0
whenever the limit exists for some k € N.
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