
Chapter 1

Introduction

The primary motivation for writing this manuscript was to express the Witten index of
a certain class of non-Fredholm operators, generated from multi-dimensional, mass-
less Dirac operators, in terms of appropriate underlying spectral shift functions. This
goal necessitated a detailed control over continuity properties (more precisely, the
existence of Lebesgue points) for the spectral shift functions involved, and hence the
bulk of this manuscript is devoted to an exhaustive investigation of the spectral prop-
erties of multi-dimensional, massless Dirac operators.

We refer the reader to Appendix E for notational conventions used throughout
this manuscript.

To set the stage, let n 2 N, n � 2, N D 2b.nC1/=2c, and denote by j̨ , 1 � j � n,
˛nC1 WD ˇ, nC 1 anti-commuting Hermitian N �N matrices with squares equal to
IN , that is,

˛�j D j̨ ; j̨˛k C ˛k j̨ D 2ıj;kIN ; 1 � j; k � nC 1; (1.1)

and introduce in ŒL2.Rn/�N the free massless Dirac operator

H0 D ˛ � .�ir/ D

nX
jD1

j̨ .�i@j /; dom.H0/ D ŒW 1;2.Rn/�N ; (1.2)

where @j D @=@xj , 1 � j � n. Introducing the self-adjoint matrix-valued potential
V D ¹V`;`0º1�`;`0�N satisfying for some fixed � 2 .1;1/, C 2 .0;1/,

V 2 ŒL1.Rn/�N�N ;ˇ̌
V`;`0.x/

ˇ̌
� C hxi�� for a.e. x 2 Rn; 1 � `; `0 � N; (1.3)

then permits one to introduce the massless Dirac operator H in ŒL2.Rn/�N via

H D H0 C V; dom.H/ D dom.H0/ D ŒW 1;2.Rn/�N : (1.4)

In this context we recall our convention

ŒL2.Rn/�N D L2
�
RnICN

�
; ŒW 1;2.Rn/�N D W 1;2

�
RnICN

�
; etc.;

to be used throughout.
Then H0 and H are self-adjoint in ŒL2.Rn/�N , with essential spectrum covering

the entire real line,
�ess.H/ D �ess.H0/ D �.H0/ D R;

In addition,
�ac.H0/ D R; �p.H0/ D �sc.H0/ D ;:
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Relying on the theory of (local) Kato-smoothness (see, e.g., [140, Section XIII.7],
[184, Chapter 4], and [186, Chapters 0–2]) and its variant, strong (local)Kato-smooth-
ness (see, e.g., [184, Chapter 4], [186, Chapters 0–2]), then yields under the stated
hypotheses on V that actually,

�ess.H/ D �ac.H/ D R; (1.5)

�sc.H/ D ;; (1.6)

�s.H/ \ .Rn¹0º/ D �p.H/ \ .Rn¹0º/; (1.7)

with the only possible accumulation points of �p.H/ being 0 and ˙1. Relations
(1.5)–(1.7) describe only the tip of the proverbial iceberg in connection with Chap-
ters 2 and 3. In fact, leading up to (1.7) we establish a limiting absorption principle
(LAP) on any compact interval in Rn¹0º for the free (i.e., non-interacting) mass-
less Dirac operator H0, prove the absence of singular continuous spectrum of H D

H0 C V for matrix elements V`;`0 , 1 � `; `0 � N , of V decaying like O.jxj�1�"/ as
jxj!1 for some " > 0, derive Hölder continuity of the boundary values .H0 � .�˙
i0/IŒL2.Rn/�N /

�1 in appropriate weighted L2-spaces for � varying in compact subin-
tervals of Rn¹0º, and derive Hölder continuity of the boundary values .H � .� ˙

i0/IŒL2.Rn/�N /
�1 in appropriate weighted L2-spaces for � varying in compact subin-

tervals of Rn¹0º away from the possibly embedded eigenvalues of H . In particular,
factoring V into V D V �

1 V2, we derive a 1 � 1-correspondence between embedded
eigenvalues of H in Rn¹0º and the eigenvalue �1 of the (normal boundary values of
the) Birman–Schwinger-type operator V2.H0 � .�0 ˙ i0/IŒL2.Rn/�N /

�1V �
1 .

This leaves open the existence of eigenvalues embedded in the essential spectrum,
and particularly, the existence of an eigenvalue 0. To deal with these situations one
follows [103, Theorem 2.3] and assumes in addition that

V W Rn ! Cn�n is Lebesgue measurable and self-adjoint a.e. on Rn;

and that

for some R > 0; V 2 ŒC 1.ER/�
N�N ; where ER D

®
x 2 Rn j jxj > R

¯
; (1.8)

and
jxj1=2V`;`0.x/ D

jxj!1
o.1/; .x � rV`;`0/.x/ D

jxj!1
o.1/; (1.9)

for 1 � `; `0 � N , uniformly with respect to directions. Under all these conditions on
V one then obtains

�p.H/ � ¹0º: (1.10)

This still leaves open the possibility of an eigenvalue 0. To exclude that as well [103,
Theorem 2.1] assume in addition that

ess: sup
x2Rn

jxjkV.x/kB.CN / � C for some C 2
�
0; .n � 1/=2

�
; (1.11)
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with k � kB.CN / denoting the operator norm of anN �N matrix in CN . Then finally,

�p.H/ D ;; (1.12)

and hence H and H0 are unitarily equivalent under these conditions on V . The facts
(1.10) and (1.12) are discussed in detail in Chapter 4.

We emphasize, however, that in the bulk of this manuscript we will not assume
(1.11) as we explicitly intend to include situations with 0 an eigenvalue (and/or a
threshold resonance) of H .

Chapter 5 provides a detailed study of the Green’s function (matrix) of the free
Dirac operator H0, that is, the integral kernel of the resolvent .H0 � zIŒL2.Rn/�N /

�1,
in terms of the Hankel function of order 1 and half integer index .n � 2/=2 and n=2,

G0.zI x; y/ WD .H0 � zI /
�1.x; y/

D i4�1.2�/.2�n/=2jx � yj2�nz Œzjx � yj�.n�2/=2H
.1/

.n�2/=2
.zjx � yj/IN

� 4�1.2�/.2�n/=2jx � yj1�nŒzjx � yj�n=2H
.1/

n=2
.zjx � yj/˛ �

.x � y/

jx � yj
: (1.13)

The Green’s functionG0.zI � ; � / ofH0 continuously extends to z 2 CC, in particular,
the limit z ! 0 exists,

lim
z!0;

z2CCn¹0º

G0.zI x; y/ WDG0.0Ci 0I x; y/D i2
�1��n=2�.n=2/ ˛ �

.x�y/

jx�yjn
;

x; y 2 Rn; x ¤ y; n 2 N; n � 2; (1.14)

and no blow up occurs for all n 2 N, n � 2.
This chapter ends with various boundedness properties of integral operators R0;ı

and R0;ı.z/ in ŒL2.Rn/�N , n � 2, associated with integral kernels that are bounded
entrywise byˇ̌

R0;ı. � ; � /j;k
ˇ̌
�C h � i

�ı
ˇ̌
G0.0I � ; � /j;k

ˇ̌
h � i

�ı ; ı�1=2; 1�j; k�N; (1.15)

and ˇ̌
R0;ı.zI � ; � /j;k

ˇ̌
� C h � i

�ı
ˇ̌
G0.zI � ; � /j;k

ˇ̌
h � i

�ı ;

ı � .nC 1/=4; z 2 CC; 1 � j; k � N; (1.16)

for some C 2 .0;1/. In particular, we prove that

R0;ı 2 B
�
ŒL2.Rn/�N

�
; ı � 1=2; (1.17)

R0;ı.z/ 2 B
�
ŒL2.Rn/�N

�
; ı > .nC 1/=4; z 2 CC: (1.18)
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Chapter 6 takes the boundedness property of R0;ı and R0;ı.z/ a step further by
proving trace ideal properties. In fact, employing interpolation techniques for trace
ideals, we prove, among a variety of related results, that for n � 2 and ı > .nC 1/=4,

R0;ı.z/ 2 Bp
�
ŒL2.Rn/�N

�
; p > n; z 2 CC: (1.19)

Since we are dealing with n-dimensional Dirac operators, n � 2, the study of
resolvents alone is insufficient and certain n-dependent powers of the resolvent ofH0
and H naturally enter the analysis. As a result, in Chapter 7 we prove that for all
k 2 N, k � n,�
.H � zIŒL2.Rn/�N /

�k
� .H0 � zIŒL2.Rn/�N /

�k
�
2 B1

�
ŒL2.Rn/�N

�
; z 2 CnR;

as well as for all " > 0,

V
�
H 2
0 C IŒL2.Rn/�N

��.n=2/�"
2 B1

�
ŒL2.Rn/�N

�
;

now assuming additional decay of V of the type, for some " > 0,

V 2 ŒL1.Rn/�N�N ;
ˇ̌
V`;`0.x/

ˇ̌
�C hxi�n�" for a.e. x2Rn; 1�`; `0�N: (1.20)

The next two chapters, Chapters 8 and 9, are devoted to the notion of the spectral
shift function for a pair of self-adjoint operators .S;S0/ in H , particularly building on
work of Yafaev [185]: We start by introducing the class of functions Fr.R/, r 2 N,
by

Fr.R/ WD
°
f 2 C 2.R/

ˇ̌̌
f .`/ 2 L1.R/I there exists " > 0 and f0 D f0.f / 2 C

such that .d `=d�`/
�
f .�/ � f0�

�r
�

D
j�j!1

O
�
j�j�`�r�"

�
; ` D 0; 1; 2

±
(1.21)

(it is implied that f0 D f0.f / is the same as �!˙1); one observes that C1
0 .R/�

Fr.R/, r 2 N. Assuming that

dom.S/ D dom.S0/; .S � S0/ 2 B.H /;

for some 0 < " < 1=2; .S � S0/.S
2
0 C IH /

�.r=2/�"
2 B1.H /; (1.22)

the following are then the principal results of Chapter 8: Let r 2 N, then�
f .S/ � f .S0/

�
2 B1.H /; f 2 Fr.R/;

and there exists a function

�. � IS; S0/ 2 L
1
�
RI .1C j�j/�r�1 d�

�
(1.23)
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such that the following trace formula holds,

trH

�
f .S/ � f .S0/

�
D

Z
R
�.�IS; S0/d� f

0.�/; f 2 Fr.R/: (1.24)

In particular, one has�
.S � zIH /

�r
� .S0 � zIH /

�r
�
2 B1.H /; z 2 CnR; (1.25)

and

trH

�
.S � zIH /

�r
� .S0 � zIH /

�r
�
D �r

Z
R

�.�IS; S0/d�

.� � z/rC1
; z 2 CnR: (1.26)

The following chapter (Chapter 9) then derives an explicit representation for the
spectral shift function �. � I S; S0/ in terms of normal boundary values to the real
axis of regularized Fredholm determinants as follows: Slightly extending our set of
hypotheses and now assuming that S0 and S are self-adjoint operators in H with
.S � S0/ 2 B.H /, we suppose in addition the following two conditions:

(i) If r 2 N is odd, assume that�
.S � zIH /

�r
� .S0 � zIH /

�r
�
2 B1.H /; z 2 CnR; (1.27)

and

.S � S0/.S0 � zIH /
�j

2 B.rC1/=j .H /; j 2 N; 1� j � r C 1: (1.28)

(ii) If r 2 N is even, assume that for some 0 < " < 1=2,

.S � S0/.S
2
0 C IH /

�.r=2/�"
2 B1.H /: (1.29)

(In this case one can show that (1.28) holds as well).

Introducing

FS;S0
.z/ WD ln

�
detH ;rC1

�
.S � zIH /.S0 � zIH /

�1
��
; z 2 CnR; (1.30)

where detH ;rC1. � / denotes the .r C 1/st regularized Fredholm determinant, and
introducing the analytic function GS;S0

. � / in CnR such that

d r

dzr
GS;S0

.z/

D trH

 
d r�1

dzr�1

r�1X
jD0

.�1/r�j .S0 � zIH /
�1
�
.S � S0/.S0 � zIH /

�1
�r�j!

;

z 2 CnR; (1.31)
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the main result of Chapter 9 then reads as follows: If FS;S0
and GS;S0

have normal
(or nontangential) boundary values on R, then for a.e. � 2 R,

�.�IS; S0/ D ��1 Im
�
FS;S0

.�C i0/
�
� ��1 Im

�
GS;S0

.�C i0/
�

C Pr�1.�/ for a.e. � 2 R; (1.32)

where Pr�1 is a polynomial of degree less than or equal to r � 1.
The subsequent two chapters then analyze (1.30) and (1.31) and their normal

boundary values to the real axis in the concrete case where S D H and S0 D H0.
More precisely, Chapter 10 establishes continuity properties of

Im
�
FH;H0

.�C i0/
�
; � 2 R;

by invoking a lengthy study of threshold spectral properties of H , following an
approach by Jensen and Nenciu [99], and, especially, by Erdoğan, Goldberg, and
Green [59, 60, 64, 65]. In particular, we recall an exhaustive study of eigenvalues
0 and/or resonances at 0 and finally prove that under assumptions (1.8), (1.9), and
(1.20), FH;H0

. � /, has normal boundary values on Rn¹0º. In addition, the boundary
values to R of the function Im.FH;H0

.z//, z 2 CC, are continuous on .�1; 0/ [

.0;1/,
Im
�
FH;H0

.�C i0/
�
2 C

�
.�1; 0/ [ .0;1/

�
; (1.33)

and the left and right limits at zero,

Im
�
FH;H0

.0˙ C i0/
�
D lim

"#0
Im
�
FH;H0

.˙"C i0/
�
; (1.34)

exist. In particular, if 0 is a regular point forH (i.e., in the absence of any zero energy
eigenvalue and resonance of H ), then

Im
�
FH;H0

.�C i0/
�
2 C.R/: (1.35)

Under the following strengthened decay assumption on V , for some " > 0,

V 2 ŒL1.Rn/�N�N ;ˇ̌
V`;`0.x/

ˇ̌
� C hxi�n�1�" for a.e. x 2 Rn; 1 � `; `0 � N; (1.36)

an unrelenting barrage of estimates finally proves in Chapter 11 that if n 2 N is odd,
n � 3, then dn

dznGH;H0
. � / is analytic in CC and continuous in CC. If n 2 N is even,

then dn

dznGH;H0
. � / is analytic in CC, continuous in CCn¹0º. Moreover, if n� 4, then dndznGH;H0

. � /


B.CN /

D
z!0;

z2CCn¹0º

O
�
jzj�Œn�.n=.n�1//�

�
; (1.37)
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and if n D 2, then for any ı 2 .0; 1/, d2dz2GH;H0
. � /


B.C2/

D
z!0;

z2CCn¹0º

O
�
jzj�.1Cı/

�
: (1.38)

Thus, combining (1.32)–(1.35), (1.37), (1.38) finally yields the first principal
result of Chapter 12 in the following form: Under the hypotheses (1.8), (1.9), and
(1.36),

�. � IH;H0/ 2 C
�
.�1; 0/ [ .0;1/

�
; (1.39)

and the left and right limits at zero,

�.0˙IH;H0/ D lim
"#0

�.˙"IH;H0/; (1.40)

exist. In particular, if 0 is a regular point for H , then

�. � IH;H0/ 2 C.R/: (1.41)

This represents the main spectral theoretic result derived in this manuscript. The
remainder of Chapter 12 then describes our application to the (resolvent regularized)
Witten index of a particular class of non-Fredholm operators acting in the Hilbert
spaceL2

�
RI ŒL2.Rn/�N

�
in connection with multi-dimensional, massless Dirac oper-

ators.
This requires some preparations to which we turn next. We recall a bit of nota-

tion: Linear operators in the Hilbert space L2.RI dt I H /, in short, L2.RI H /, will
be denoted by boldface symbols of the type T , to distinguish them from operators T
in H . In particular, operators denoted by T in the Hilbert space L2.RIH / represent
operators associated with a family of operators ¹T .t/ºt2R in H , defined by

.T f /.t/ D T .t/f .t/ for a.e. t 2 R;

f 2 dom.T / D
²
g 2 L2.RIH /

ˇ̌̌
g.t/ 2 dom

�
T .t/

�
for a.e. t 2 RI

t 7! T .t/g.t/ is (weakly) measurable;
Z

R
dt
T .t/g.t/2

H
<1

³
:

(1.42)

In the special case, where ¹T .t/º is a family of bounded operators on H with

sup
t2R

T .t/
B.H/

<1;

the associated operator T is a bounded operator on L2.RIH / with

kT kB.L2.RIH// D sup
t2R

T .t/
B.H/

:
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For brevity we will abbreviate I WD IL2.RIH/ in the following and note that
in the concrete situation of n-dimensional, massless Dirac operators at hand, H D

ŒL2.Rn/�N .
Denoting

A� D H0; BC D V; AC D A� C BC D H;

we introduce two families of operators in ŒL2.Rn/�N by

B.t/ D b.t/BC; t 2 R;

b.k/ 2 C1.R/ \ L1.RI dt/; k 2 N0; b0 2 L1.RI dt/;

lim
t!1

b.t/ D 1; lim
t!�1

b.t/ D 0;

A.t/ D A� C B.t/; t 2 R:

(1.43)

Next, following the general setups described in [38,41–44,78,137], the operators
A, B;A0 D B 0 are now given in terms of the familiesA.t/, B.t/, and B 0.t/, t 2 R, as
in (1.42). In addition, A� in L2.RI ŒL2.Rn/�N / represents the self-adjoint (constant
fiber) operator defined by

.A�f /.t/ D A�f .t/ for a.e. t 2 R;

f 2dom.A�/ D

²
g2L2

�
RI ŒL2.Rn/�N

� ˇ̌̌
g.t/2dom.A�/ for a.e. t 2R;

t 7! A�g.t/ is (weakly) measurable,
Z

R
dt
A�g.t/

2
ŒL2.Rn/�N

<1

³
:

(1.44)

At this point one can introduce the fundamental operator D
A

in L2
�
RI ŒL2.Rn/�N

�
by

DA D
d

dt
C A; dom.DA/ D W 1;2

�
RI ŒL2.Rn/�N

�
\ dom.A�/; (1.45)

where

A D A� C B; dom.A/ D dom.A�/; B 2 B
�
L2
�
RI ŒL2.Rn/�N

��
:

Here the operator d=dt in L2
�
RI ŒL2.Rn/�N

�
is defined by�

d

dt
f

�
.t/ D f 0.t/ for a.e. t 2 R;

f 2 dom.d=dt/ D W 1;2
�
RI ŒL2.Rn/�N

�
: (1.46)

Since D
A

is densely defined and closed in L2
�
RI ŒL2.Rn/�N

�
, one can introduce the

nonnegative, self-adjoint operators Hj , j D 1; 2, in L2
�
RI ŒL2.Rn/�N

�
by

H1 D D�
ADA; H2 D DAD�

A:
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Introducing the operator H0 in L2.RI ŒL2.Rn/�N / by

H0 D �
d2

dt2
C A2

�; dom.H0/ D W 2;2
�
RI ŒL2.Rn/�N

�
\ dom

�
A2

�

�
; (1.47)

then H0 is self-adjoint and one obtains the following decomposition of the operators
Hj , j D 1; 2,

Hj D �
d2

dt2
C A2

C .�1/jA0

D H0 C BA� C A�B C B2
C .�1/jB 0;

dom.Hj / D dom.H0/; j D 1; 2:

(1.48)

Next, we turn to a canonical approximation procedure: Consider the characteristic
function for the interval Œ�`; `� � R,

�`.�/ D �Œ�`;`�.�/; � 2 R; ` 2 N; (1.49)

and hence s-lim`!1 �`.A�/ D IŒL2.Rn/�N . Introducing

A`.t/ D A� C �`.A�/B.t/�`.A�/ D A� C B`.t/;

dom
�
A`.t/

�
D dom.A�/; ` 2 N; t 2 R;

B`.t/D�`.A�/B.t/�`.A�/; dom
�
B`.t/

�
D ŒL2.Rn/�N ; `2N; t 2R;

AC;` D A� C �`.A�/BC�`.A�/; dom.AC;`/ D dom.A�/; ` 2 N;

(1.50)

one concludes that

AC;` � A� D �`.A�/BC�`.A�/2B1

�
ŒL2.Rn/�N

�
; `2N; (1.51)

A0
`.t/ D B 0

`.t/ D �`.A�/B
0.t/�`.A�/2B1

�
ŒL2.Rn/�N

�
; `2N; t 2R: (1.52)

As a consequence of (1.51), the spectral shift functions �. � IAC;`; A�/, ` 2 N,
exist and are uniquely determined by

�. � IAC;`; A�/ 2 L
1.RI d�/; ` 2 N: (1.53)

We also note the analogous decompositions,

Hj;` D �
d2

dt2
C A2

` C .�1/jA0
` D H0 C B`A� C A�B` C B2

` C .�1/jB 0
`;

dom.Hj;`/ D dom.H0/ D W 2;2
�
RI ŒL2.Rn/�N

�
; ` 2 N; j D 1; 2;

with
B` D �`.A�/B�`.A�/; B 0

` D �`.A�/B
0�`.A�/; ` 2 N:
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Under hypotheses (1.8), (1.9), (1.36), and

V`;`0 2 W
4n;1.Rn/; 1 � `; `0 � N; (1.54)

it is proven in [44] that�
.H2 � z I/�r � .H1 � z I/�r

�
;
�
.H2;` � z I/�r � .H1;` � z I/�r

�
2 B1

�
L2
�
RI ŒL2.Rn/�N

��
; ` 2 N; r 2 N; r � dn=2e; (1.55)

and

lim
`!1

�.H2;` � z I/�r � .H1;` � z I/�r
�

�
�
.H2 � z I/�r � .H1 � z I/�r

�
B1.L2.RIŒL2.Rn/�N //

D 0;

z 2 CnŒ0;1/: (1.56)

Relations (1.55) together with the fact that Hj � 0, Hj;` � 0, ` 2 N, j D 1; 2,
imply the existence and uniqueness of spectral shift functions �. � I H2;H1/ and
�. � IH2;`;H1;`/ for the pair of operators .H2;H1/ and .H2;`;H1;`/, ` 2 N, respec-
tively, employing the normalization

�.�IH2;H1/ D 0; �.�IH2;`;H1;`/ D 0; � < 0; ` 2 N (1.57)

(cf. [184, Section 8.9]). Moreover,

�. � IH2;H1/ 2 L
1
�
RI .1C j�j/�r�1d�

�
: (1.58)

Since Z
R
dt
A0

`.t/


B1.ŒL2.Rn/�N /
<1; ` 2 N; (1.59)

employing b0. � / 2 L1.RI dt/, one obtains (cf. [78, 137])�
.H2;` � z I/�1 � .H1;` � z I/�1

�
2 B1

�
L2
�
RI ŒL2.Rn/�N

��
; ` 2 N;

and hence
�. � IH2;`;H1;`/ 2 L

1.RI d�/; ` 2 N:

In addition, (12.20), (1.57), and (1.59) imply the approximate trace formula,Z
Œ0;1/

�.�IH2;`;H1;`/ d�

.� � z/2
D
1

2

Z
R

�.�IAC;`; A�/ d�

.�2 � z/3=2
; ` 2 N; z 2 CnŒ0;1/;

(1.60)
which in turn implies

�.�IH2;`;H1;`/ D

´
1
�

R �1=2

��1=2

�.�IAC;`;A�/ d�

.���2/1=2 ; for a.e. � > 0;

0; � < 0;
` 2 N; (1.61)

via a Stieltjes inversion argument.
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Given hypothesis (1.20), we will prove in Theorem 7.4 that�
.AC� zIŒL2.Rn/�N /

�r0 � .A�� zIŒL2.Rn/�N /
�r0
�
2B1

�
ŒL2.Rn/�N

�
;

r02N; r0�2bn=2cC1; z2CnR: (1.62)

Since 2bn=2cC 1 is always odd, [185, Theorem 2.2] yields the existence of a spectral
shift function �. � IAC; A�/ for the pair .AC; A�/ satisfying

�. � IAC; A�/ 2 L
1
�
RI .1C j�j/�r0�1d�

�
: (1.63)

While (1.63) does not determine �. � IAC; A�/ uniquely, one can show (following
[40, Theorem 4.7]) that there exists a unique spectral shift function �. � IAC; A�/

given by the limiting relation

lim
`!1

�. � IAC;`; A�/ D �. � IAC; A�/ in L1
�
RI .1C j�j/�r0�1d�

�
; (1.64)

and hence we will always choose this particular spectral shift function in (1.64) for
the pair .AC; A�/ in the following.

At this point one can entertain the limit `! 1 in (1.61): Indeed, (1.61) yieldsZ
Œ0;1/

�.�IH2;`;H1;`/d� f
0.�/

D
1

�

Z
Œ0;1/

d�f 0.�/

Z �1=2

��1=2

�.�IAC;`; A�/ d�

.� � �2/1=2

D
1

�

Z
R
�.�IAC;`; A�/d� F

0.�/; ` 2 N; (1.65)

where F 0 is defined by

F 0.�/ D

Z 1

�2

d�f 0.�/.� � �2/�1=2; � 2 R: (1.66)

The limit `! 1 on left-hand side of (1.65) is controlled via (1.56), and, since F 0 2

C1
0 .R/, the right-hand side of (1.65) is controlled via (1.64), implyingZ

Œ0;1/

�.�IH2;H1/d� f
0.�/ D

1

�

Z
R
�.�IAC; A�/d� F

0.�/

D
1

�

Z
R
d�f 0.�/

Z �1=2

��1=2

�.�IAC; A�/ d�

.� � �2/1=2
�Œ0;1/.�/; f 2 C1

0 .R/;

and hence

�.�IH2;H1/ D
1

�

Z �1=2

��1=2

�.�IAC; A�/ d�

.� � �2/1=2
for a.e. � > 0; (1.67)
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due to our normalization in (1.57). This establishes the limiting relation ` ! 1 of
(1.61).

Having established (1.67), we turn to the resolvent regularized Witten index of
the operator D

A
. Since �.A˙/D R, in particular, 0 … �.AC/\ �.A�/, D

A
is a non-

Fredholm operator. Even though D
A

is a non-Fredholm operator, its Witten index is
well defined and expressible in terms of the spectral shift functions for the pair of
operators .H2;H1/ and .AC; A�/ as will be shown below.

To introduce an appropriately (resolvent regularized) Witten index of D
A

, we
consider a densely defined, closed operator T in the complex, separable Hilbert space
K and assume that for some k 2 N, and all � < 0�

.T �T � �IK/
�k

� .T T �
� �IK/

�k
�
2 B1.K/:

Then the kth resolvent regularized Witten index of T is defined by

Wk;r.T / D lim
�"0
.��/k trK

�
.T �T � �IK/

�k
� .T T �

� �IK/
�k
�
; (1.68)

whenever the limit exists. The analogous semigroup regularized definition reads,

Ws.T / D lim
t"1

trK.e
�tT �T

� e�tT T
�

/;

but in this manuscript it suffices to employ (1.68).
The second main result of Chapter 12, and at the same time the main result of this

manuscript, the characterization of the Witten index of D
A

in terms of spectral shift
functions, can thus be summarized as follows:

Theorem 1.1. Assume hypotheses (1.8), (1.9), (1.36), and (1.54). Then 0 is a right
Lebesgue point of �. � IH2;H1/, denoted by �L.0CIH2;H1/, and

�L.0CIH2;H1/ D
�
�.0CIAC; A�/C �.0�IAC; A�/

�ı
2:

In addition, the resolvent regularized Witten index Wk;r.DA
/ of D

A
exists for all

k 2 N, k � dn=2e, and equals

Wk;r.DA/ D �L.0CIH2;H1/ D
�
�.0CIAC; A�/C �.0�IAC; A�/

�ı
2

D
�
�.0CIH;H0/C �.0�IH;H0/

�ı
2: (1.69)

This is the first result of this kind applicable to non-Fredholm operators in a partial
differential operator setting involving multi-dimensional massless Dirac operators. In
a sense, a project that started with Pushnitski in 2008, was considerably extended in
scope in [78], and further developed with the help of [38,41–44,82,83], finally comes
full circle.

Appendix A collects some useful results on block matrix operators, Appendix B is
devoted to asymptotic results for Hankel functions, Appendix C presents low-energy
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expansions and estimates for the free Dirac Green’s function in the massless case,
Appendix D recalls a product formula for modified (regularized) Fredholm deter-
minants, and finally, Appendix E collects some of the notational conventions used
throughout this manuscript.


