Chapter 2

Some background on (locally) smooth operators

In this chapter, we first recall a few basic facts on the notion of (local) Kato-smoothness (see, e.g., [140, Section XIII.7], [184, Chapter 4], and [186, Chapters 0–2]) and then recall a variant, strong (local) Kato-smoothness (see, e.g., [184, Chapter 4], [186, Chapters 0–2]), as these concepts will be useful in subsequent chapters.

Definition 2.1. Let *S* be self-adjoint in \mathcal{H} and $T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ with dom(*S*) \subseteq dom(*T*) and fix $\varepsilon_0 > 0$. Then *T* is called *S*-Kato-smooth (in short, *S*-smooth in the following) if for each $f \in \mathcal{H}$,

$$\|T\|_{S}^{2} = \sup_{\varepsilon \in (0,\varepsilon_{0}), \|f\|_{\mathcal{H}}=1} \frac{1}{4\pi^{2}} \int_{\mathbb{R}} d\lambda \left[\|T(S - (\lambda + i\varepsilon)I_{\mathcal{H}})^{-1}f\|_{\mathcal{H}}^{2} + \|T(S - (\lambda - i\varepsilon)I_{\mathcal{H}})^{-1}f\|_{\mathcal{H}}^{2} \right] < \infty.$$
(2.1)

It suffices to require (2.1) for a dense set of $f \in \mathcal{H}$ as T is closed. If T is S-smooth, then T is infinitesimally bounded with respect to S.

In terms of unitary groups, *T* is *S*-smooth if and only if for all $f \in \mathcal{H}$, $e^{-itS} f \in dom(T)$ for a.e. $t \in \mathbb{R}$ and

$$\frac{1}{2\pi} \int_{\mathbb{R}} dt \, \left\| T e^{-itS} f \right\|_{\mathcal{H}}^2 \le C_0 \| f \|_{\mathcal{H}}^2$$

for some constant $C_0 \in (0, \infty)$ (C_0 can be chosen to be $||T||_S^2$, but not smaller).

An immediate consequence regarding the absence of singular spectrum derives from the fact that if T is S-smooth then

$$\operatorname{ran}(T^*) \subseteq \mathcal{H}_{\operatorname{ac}}(S).$$

In particular,

if, in addition, $\ker(T) = \{0\}$, then $\mathcal{H}_{ac}(S) = \mathcal{H}$,

and hence the spectrum of S is purely absolutely continuous,

$$\sigma(S) = \sigma_{\rm ac}(S), \quad \sigma_{\rm p}(S) = \sigma_{\rm sc}(S) = \emptyset.$$

Here $\mathcal{H}_{ac}(S)$ denotes the absolutely continuous subspace associated with S.

Moreover, as long as $B \in \mathcal{B}(\mathcal{K}, \mathcal{L})$ (with \mathcal{L} another complex, separable Hilbert space), BT is S-smooth whenever T is S-smooth.

Finally, if $T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ and for all $z \in \mathbb{C} \setminus \mathbb{R}$, $T(S - zI_{\mathcal{H}})^{-1}T^*$ has a bounded closure in \mathcal{H} satisfying for some fixed $\varepsilon_0 > 0$,

$$C_1 = \sup_{\lambda \in \mathbb{R}, \, \varepsilon \in (0, \varepsilon_0)} \left\| \overline{T(S - (\lambda + i\varepsilon)I_{\mathscr{H}})^{-1}T^*} \right\|_{\mathscr{B}(\mathscr{H})} < \infty,$$
(2.2)

then T is S-smooth with $||T||_S \leq C_1/\pi$.

While Definition 2.1 describes a global condition, a local version can be introduced as follows:

Definition 2.2. Let *S* be self-adjoint in \mathcal{H} and $T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ with dom $(S) \subseteq$ dom(T). *T* is called *S*-Kato-smooth on a Borel set $\Lambda \subseteq \mathbb{R}$ (in short, *S*-smooth on Λ in the following) if $TE_S(\Lambda)$ is *S*-smooth.

Again, if $B \in \mathcal{B}(\mathcal{K}, \mathcal{L})$, then *BT* is *S*-smooth on Λ_0 whenever *T* is. For $TE_S(\Lambda)$ to be well defined it suffices that $E_S(\Lambda)\mathcal{H} \cap \operatorname{dom}(S) \subseteq \operatorname{dom}(T)$. If *T* is *S*-smooth on Λ then

$$\operatorname{ran}\left(\left(TE_{S}(\Lambda)\right)^{*}\right) \subseteq \mathcal{H}_{\operatorname{ac}}(S),$$

in particular,

if, in addition, $\ker(T) = \{0\}$, then $\sigma(S) \cap \Lambda = \sigma_{ac}(S) \cap \Lambda$, $\sigma_{p}(S) \cap \Lambda = \sigma_{sc}(S) \cap \Lambda = \emptyset$.

If $T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ and for all $z \in \mathbb{C} \setminus \mathbb{R}$, $T(S - zI_{\mathcal{H}})^{-1}T^*$ has a bounded closure in \mathcal{H} satisfying for some fixed $\varepsilon_0 > 0$,

$$\sup_{\lambda \in \Lambda, \, \varepsilon \in (0, \varepsilon_0)} \left\| \overline{T(S - (\lambda + i\varepsilon)I_{\mathcal{H}})^{-1}T^*} \right\|_{\mathcal{B}(\mathcal{H})} < \infty,$$
(2.3)

or

$$\sup_{\lambda \in \Lambda, \, \varepsilon \in (0, \varepsilon_0)} \varepsilon \left\| \overline{T(S - (\lambda \pm i \varepsilon) I_{\mathcal{H}})^{-1}} \right\|_{\mathcal{B}(\mathcal{H})} < \infty, \tag{2.4}$$

then T is S-smooth on $\overline{\Lambda}$.

Next, following [186, Section 4.4], we turn to the concept of strongly smooth operators on a compact interval $\Lambda_0 = [\lambda_1, \lambda_2], \lambda_j \in \mathbb{R}, j = 1, 2, \lambda_1 < \lambda_2$ (tailored toward certain applications to differential operators). This requires some preparations: Given a separable complex Hilbert space \mathcal{H}_0 , one considers the (nonseparable) Banach space of \mathcal{H}_0 -valued Hölder continuous functions of order $\tau \in (0, 1]$, denoted by $C^{\tau}(\Lambda_0; \mathcal{H}_0)$, with norm

$$\begin{split} \|f\|_{C^{\tau}(\Lambda_{0};\mathcal{H}_{0})} \\ &= \sup_{\lambda,\lambda'\in\Lambda_{0}} \left(\left\|f(\lambda)\right\|_{\mathcal{H}_{0}} + \frac{\left\|f(\lambda) - f(\lambda')\right\|_{\mathcal{H}_{0}}}{|\lambda - \lambda'|^{\tau}} \right), \quad f \in C^{\tau}(\Lambda_{0};\mathcal{H}_{0}). \end{split}$$

Suppose the self-adjoint operator S in \mathcal{H} has purely absolutely continuous spectrum on Λ_0 , that is,

$$\sigma(S) \cap \Lambda_0 = \sigma_{\rm ac}(S) \cap \Lambda_0, \quad \sigma_{\rm p}(S) \cap \Lambda_0 = \sigma_{\rm sc}(S) \cap \Lambda_0 = \emptyset,$$

of constant multiplicity $m_0 \in \mathbb{N} \cup \{\infty\}$ on Λ_0 , with dim $(\mathcal{H}_0) = m_0$. In addition, let

$$\mathcal{F}_0: \begin{cases} E_S(\Lambda_0)\mathcal{H} \to L^2(\Lambda_0; d\lambda; \mathcal{H}_0), \\ f \mapsto \mathcal{F}_0 f := \tilde{f}, \end{cases} \text{ be unitary,} \end{cases}$$

and "diagonalizing" S, that is, turning $SE_S(\Lambda_0)$ into a multiplication operator. More precisely, \mathcal{F}_0 generates a spectral representation of S via,

$$(\mathcal{F}_0 E_{\mathcal{S}}(\Omega) f)(\lambda) = \chi_{\Omega \cap \Lambda_0}(\lambda) \tilde{f}(\lambda), \quad f \in E_{\mathcal{S}}(\Lambda_0) \mathcal{H}.$$

With these preparations in place, we are now in position to define the notion of strongly smooth operators (cf. [184, Section 4.4], where a more general concept is introduced):

Definition 2.3. Let *S* be self-adjoint in \mathcal{H} with purely absolutely continuous spectrum of constant (possibly, infinite) multiplicity on Λ_0 and suppose that $T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ with dom(*S*) \subseteq dom(*T*). Then *T* is called strongly *S*-Kato-smooth on Λ_0 (in short, strongly *S*-smooth on Λ_0 in the following), with exponent $\tau \in (0, 1]$, if $\mathcal{F}_0(TE_S(\Lambda))^*$: $\mathcal{K} \to C^{\tau}(\Lambda_0; \mathcal{H}_0)$ is continuous, that is, for $f = (TE_S(\Lambda_0))^* \xi, \xi \in \mathcal{K}$,

$$\begin{split} \left\| \tilde{f}(\lambda) \right\|_{\mathcal{H}_{0}} &= \left\| \left(\mathcal{F}_{0} \left(T E_{\mathcal{S}}(\Lambda_{0}) \right)^{*} \xi \right)(\lambda) \right\|_{\mathcal{H}_{0}} \leq C \left\| \xi \right\|_{\mathcal{K}}, \\ \left\| \tilde{f}(\lambda) - \tilde{f}(\lambda') \right\|_{\mathcal{H}_{0}} &\leq C \left| \lambda - \lambda' \right|^{\tau} \left\| \xi \right\|_{\mathcal{K}}, \end{split}$$

with $C \in (0, \infty)$ independent of $\lambda, \lambda' \in \Lambda_0$ and $\xi \in \mathcal{K}$.

Not surprisingly, the terminology chosen is consistent with the fact that

if T is strongly S-smooth on Λ_0 , then it is S-smooth on Λ_0 .

Moreover, as long as $B \in \mathcal{B}(\mathcal{K}, \mathcal{L})$ (with \mathcal{L} another complex, separable Hilbert space) and T is strongly *S*-smooth with exponent $\tau \in (0, 1]$ on Λ_0 , then BT is strongly *S*-smooth on Λ_0 with the same exponent $\tau \in (0, 1]$.

Next, we recall a perturbation approach in which *S* corresponds to the "sum" of an unperturbed self-adjoint operator S_0 in \mathcal{H} and a perturbation *V* in \mathcal{H} that can be factorized into a product $V_1^*V_2$ as follows: Suppose $V_j \in \mathcal{C}(\mathcal{H}, \mathcal{K}), j = 1, 2$, with

$$V_j \left(|S_0| + I_{\mathcal{H}} \right)^{-1/2} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), \quad j = 1, 2,$$
(2.5)

and the symmetry condition,

$$(V_1 f, V_2 g)_{\mathcal{K}} = (V_2 f, V_1 g)_{\mathcal{K}}, \quad f, g \in \mathrm{dom}(|S_0|^{1/2}).$$

In addition, suppose that for some (and hence for all) $z \in \rho(S_0)$, $V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*$ has a bounded extension in \mathcal{K} , which is then given by its closure

$$\overline{V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*} = V_2(S_0 - zI_{\mathcal{H}})^{-1/2} \left[V_1(S_0 - \overline{z}I_{\mathcal{H}})^{-1/2} \right]^*.$$
 (2.6)

Here the operator $\overline{V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*}$ represents an abstract Birman–Schwinger-type operator.

Finally, we assume that

$$\left[I_{\mathcal{K}} + \overline{V_2(S_0 - z_0 I_{\mathcal{H}})^{-1} V_1^*}\right]^{-1} \in \mathcal{B}(\mathcal{K}) \quad \text{for some } z_0 \in \rho(S_0).$$

Then the equation

$$R(z) = (S_0 - zI_{\mathscr{H}})^{-1} - [V_1(S_0 - \overline{z}I_{\mathscr{H}})^{-1}]^* [I_{\mathscr{H}} + \overline{V_2(S_0 - zI_{\mathscr{H}})^{-1}V_1^*}]^{-1} V_2(S_0 - zI_{\mathscr{H}})^{-1}, z \in \mathbb{C} \setminus \mathbb{R}, \quad (2.7)$$

defines the resolvent of a self-adjoint operator S in \mathcal{H} , that is,

$$R(z) = (S - zI_{\mathcal{H}})^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$
(2.8)

with $S \supseteq S_0 + V_1^* V_2$ (the latter defined on dom $(S_0) \cap \text{dom}(V_1^* V_2)$, which may consist of {0} only); for details we refer to [107] (see also [79], [184, Section 1.9]).

One also has

$$(S - zI_{\mathscr{H}})^{-1} - (S_0 - zI_{\mathscr{H}})^{-1} = -\left[V_1(S - \overline{z}I_{\mathscr{H}})^{-1}\right]^* V_2(S_0 - zI_{\mathscr{H}})^{-1}$$
$$= -\left[V_1(S_0 - \overline{z}I_{\mathscr{H}})^{-1}\right]^* V_2(S - zI_{\mathscr{H}})^{-1},$$
$$z \in \mathbb{C} \setminus \mathbb{R},$$

and

$$(S_0 - zI_{\mathscr{H}})^{-1} = (S - zI_{\mathscr{H}})^{-1}$$
$$- \left[V_1(S - \overline{z}I_{\mathscr{H}})^{-1}\right]^* \left[I_{\mathscr{H}} - \overline{V_2(S - zI_{\mathscr{H}})^{-1}V_1^*}\right]^{-1} V_2(S - zI_{\mathscr{H}})^{-1},$$
$$z \in \mathbb{C} \setminus \mathbb{R},$$

as well as,

$$\overline{V_1(S-zI_{\mathscr{H}})^{-1}V_1^*} = \overline{V_1(S_0-zI_{\mathscr{H}})^{-1}V_1^*} - [\overline{V_1(S-zI_{\mathscr{H}})^{-1}V_1^*}][\overline{V_2(S_0-zI_{\mathscr{H}})^{-1}V_1^*}], \quad z \in \mathbb{C} \setminus \mathbb{R},$$

implying

$$\overline{V_1(S-zI_{\mathscr{H}})^{-1}V_1^*} = \overline{V_1(S_0-zI_{\mathscr{H}})^{-1}V_1^*} [I_{\mathscr{K}} + \overline{V_2(S_0-zI_{\mathscr{H}})^{-1}V_1^*}]^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}.$$
 (2.9)

Similarly,

$$\overline{V_2(S-zI_{\mathscr{H}})^{-1}V_1^*} = I_{\mathscr{H}} - \left[I_{\mathscr{K}} + \overline{V_2(S_0-zI_{\mathscr{H}})^{-1}V_1^*}\right]^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}.$$
(2.10)

The remaining results in this chapter are all taken from [186, Sections 4.4–4.7].

Theorem 2.4. Assuming the hypotheses on S_0 , V_j , j = 1, 2, employed in (2.5)–(2.9), suppose the following additional conditions (i)–(iii) hold:

(i) V_2 is S_0 -smooth on $\Lambda_0 = [\lambda_1, \lambda_2], \lambda_j \in \mathbb{R}, j = 1, 2, \lambda_1 < \lambda_2$.

(ii) The analytic, operator-valued functions

$$\overline{V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*}, \quad \overline{V_1(S_0 - zI_{\mathcal{H}})^{-1}V_1^*} \quad on \ \text{Re}(z) \in (\lambda_1, \lambda_2), \ \text{Im}(z) \neq 0,$$

are continuous in $\mathcal{B}(\mathcal{K})$ -norm up to and including the two rims of the "cut" along (λ_1, λ_2) .

(iii) For some $k \in \mathbb{N}$, $\left[\overline{V_2(S_0 - zI_{\mathscr{H}})^{-1}V_1^*}\right]^k \in \mathscr{B}_{\infty}(\mathscr{K})$, $\operatorname{Im}(z) \neq 0$. Define

$$\mathcal{N}_{\pm} = \left\{ \lambda \in \Lambda_0 \mid \text{there exists } 0 \neq f \in \mathcal{K} \text{ s.t. } - f = V_2 (S_0 - (\lambda \pm i0) I_{\mathcal{H}})^{-1} V_1^* f \right\},$$

$$\mathcal{N} = \mathcal{N}_- \cup \mathcal{N}_+. \tag{2.11}$$

Then \mathcal{N}_{\pm} , \mathcal{N} are closed and of Lebesgue measure zero. Moreover, the analytic, operator-valued function $\overline{V_1(S-zI_{\mathscr{H}})^{-1}V_1^*}$ on $\operatorname{Re}(z) \in (\lambda_1, \lambda_2)$, $\operatorname{Im}(z) \neq 0$, is continuous in $\mathcal{B}(\mathcal{K})$ -norm up to and including the two rims of the "cut" along $(\lambda_1, \lambda_2) \setminus \mathcal{N}$. If, in addition, $\operatorname{ker}(V_1) = \{0\}$, then S has purely absolutely continuous spectrum on $\Lambda_0 \setminus \mathcal{N}$, that is,

$$\sigma(S) \cap (\Lambda_0 \setminus \mathcal{N}) = \sigma_{\rm ac}(S) \cap (\Lambda_0 \setminus \mathcal{N}), \quad \sigma_{\rm p}(S) \cap (\Lambda_0 \setminus \mathcal{N}) = \sigma_{\rm sc}(S) \cap (\Lambda_0 \setminus \mathcal{N}) = \emptyset.$$

As detailed in [184, Remark 4.6.3], condition (iii) in Theorem 2.4 can be replaced by the following one:

(iii') Suppose there exist $z_{\pm} \in \rho(S_0), \pm \operatorname{Im}(z_{\pm}) > 0$, such that

$$\left[I_{\mathcal{K}} + \overline{V_2(S_0 - z_{\pm}I_{\mathcal{H}})^{-1}V_1^*}\right]^{-1} \in \mathcal{B}(\mathcal{K}),$$

and

$$\overline{V_2(S_0 - zI_{\mathscr{H}})^{-1}V_1^*} - \overline{V_2(S_0 - z'I_{\mathscr{H}})^{-1}V_1^*} = (z - z')\overline{V_2(S_0 - zI_{\mathscr{H}})^{-1}(S_0 - z'I_{\mathscr{H}})^{-1}V_1^*} \in \mathcal{B}_{\infty}(\mathcal{K}), \quad z, z' \in \rho(S_0).$$

Next we strengthen the hypotheses in Theorem 2.4 by invoking the notion of strong S_0 -smoothness:

Theorem 2.5. Assuming the hypotheses on S_0 , V_j , j = 1, 2, employed in (2.5)–(2.9), suppose in addition the following conditions (i)–(iii) hold:

(i) S_0 has purely absolutely continuous spectrum of constant multiplicity $m_0 \in \mathbb{N} \cup \{\infty\}$ on $\Lambda_0 = [\lambda_1, \lambda_2], \lambda_j \in \mathbb{R}, j = 1, 2, \lambda_1 < \lambda_2.$

(ii) V_j are strongly S_0 -smooth on any compact subinterval of Λ_0 with exponents $\tau_i > 0, j = 1, 2$.

(iii) For some $k \in \mathbb{N}$, $[\overline{V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*}]^k \in \mathcal{B}_{\infty}(\mathcal{K})$, $\operatorname{Im}(z) \neq 0$. Then the analytic, operator-valued functions

$$\overline{V_1(S_0 - zI_{\mathcal{H}})^{-1}V_1^*}, \quad \overline{V_2(S - zI_{\mathcal{H}})^{-1}V_1^*}, \quad (resp., \ \overline{V_1(S - zI_{\mathcal{H}})^{-1}V_1^*})$$

on $\operatorname{Re}(z) \in (\lambda_1, \lambda_2)$, $\operatorname{Im}(z) \neq 0$, are Hölder continuous in $\mathcal{B}(\mathcal{K})$ -norm with exponent $\min\{\tau_1, \tau_2\}$ up to and including the two rims of the "cut" along (λ_1, λ_2) (resp., $(\lambda_1, \lambda_2) \setminus \mathcal{N}$).

Moreover, the local wave operators

$$W_{\pm}(S, S_0; \Lambda_0) = \operatorname{s-lim}_{t \to \pm \infty} e^{itS} e^{-itS_0} P_{S_{0,\mathrm{ac}}}(\Lambda_0),$$

with $P_{S_{0,ac}}(\Lambda_0) = E_{S_0}(\Lambda_0)E_{S_{0,ac}}$, and $E_{S_{0,ac}}$ the projection onto the absolutely continuous subspace of S_0 , exist and are complete, that is,

 $\ker \left(W_{\pm}(S, S_0; \Lambda_0) \right) = \mathcal{H} \ominus E_{S_0, \mathrm{ac}}(\Lambda_0) \mathcal{H}, \quad \operatorname{ran} \left(W_{\pm}(S, S_0; \Lambda_0) \right) = P_{S, \mathrm{ac}}(\Lambda_0) \mathcal{H},$

with $P_{S,ac}(\Lambda_0) = E_S(\Lambda_0)E_{S,ac}$, and $E_{S,ac}$ the projection onto the absolutely continuous subspace of S.

For the remainder of this theorem suppose in addition that $\tau_1 > 1/2$. Then

$$\mathcal{N}_{\pm} = \mathcal{N} = \sigma_{\mathrm{p}}(S) \cap \Lambda_{\mathbf{0}}$$

and the (geometric) multiplicities of the eigenvalue $\lambda_0 \in \Lambda_0$ of S and the eigenvalue -1 of $\overline{V_2(S_0 - (\lambda_0 \pm i0)I_{\mathcal{H}})^{-1}V_1^*}$ coincide. If in addition, ker $(V_1) = \{0\}$, then S has no singularly continuous spectrum on Λ_0 , that is,

$$\sigma(S) \cap \Lambda_0 = \sigma_{\rm ac}(S) \cap \Lambda_0, \quad \sigma_{\rm sc}(S) \cap \Lambda_0 = \emptyset,$$

and the singular spectrum of S on the interior, (λ_1, λ_2) , of Λ_0 consists only of eigenvalues of finite multiplicity with no accumulation point in (λ_1, λ_2) , in particular,

$$\sigma_{\rm s}(S) \cap (\lambda_1, \lambda_2) = \sigma_{\rm p}(S) \cap (\lambda_1, \lambda_2).$$

Again, condition (iii) in Theorem 2.5 can be replaced by condition (iii') above.

To make the transition from local to global wave operators we also recall the following result.

Theorem 2.6. Assuming the hypotheses on S_0 , V_j , j = 1, 2, employed in (2.5)–(2.9), suppose in addition the following conditions (i)–(iii) hold:

(i) S_0 has purely absolutely continuous spectrum of constant multiplicity $m_{0,\ell} \in \mathbb{N} \cup \{\infty\}$ on a system of intervals $\Lambda_{0,\ell} = [\lambda_{1,\ell}, \lambda_{2,\ell}], \lambda_{j,\ell} \in \mathbb{R}, j = 1, 2, \lambda_{1,\ell} < \lambda_{2,\ell}, \ell \in \mathcal{I}, \mathcal{I} \subseteq \mathbb{N}$ an appropriate index set, such that

$$\sigma(S_0) \setminus \bigcup_{\ell \in \mathcal{I}} \Lambda_{0,\ell}$$
 has Lebesgue measure zero.

(ii) V_j are strongly S_0 -smooth on any compact subinterval of $\Lambda_{0,\ell}$ with exponents $\tau_{j,\ell} > 0, \ j = 1, 2, \ \ell \in \mathcal{I}$.

(iii) For some $k \in \mathbb{N}$, $[\overline{V_2(S_0 - zI_{\mathcal{H}})^{-1}V_1^*}]^k \in \mathcal{B}_{\infty}(\mathcal{K})$, $\operatorname{Im}(z) \neq 0$. Then the (global) wave operators

$$W_{\pm}(S, S_0) = \operatorname{s-lim}_{t \to \pm \infty} e^{itS} e^{-itS_0},$$

exist and are complete, that is,

$$\ker \left(W_{\pm}(S, S_0) \right) = \{0\}, \quad \operatorname{ran} \left(W_{\pm}(S, S_0) \right) = E_{S, \operatorname{ac}} \mathcal{H},$$

with $E_{S,ac}$ the projection onto the absolutely continuous subspace of S.

For additional references in the context of smooth operator theory, limiting absorption principles, and completeness of wave operators, see, for instance, [6, 11, 34], [19, Chapter 17], [21, 75, 87, 107, 112, 118], [140, Section XIII.7], [142], [184, Chapter 4], [186, Chapters 0–2].