
Chapter 2

Some background on (locally) smooth operators

In this chapter, we first recall a few basic facts on the notion of (local) Kato-smooth-
ness (see, e.g., [140, Section XIII.7], [184, Chapter 4], and [186, Chapters 0–2]) and
then recall a variant, strong (local) Kato-smoothness (see, e.g., [184, Chapter 4], [186,
Chapters 0–2]), as these concepts will be useful in subsequent chapters.

Definition 2.1. Let S be self-adjoint in H and T 2C.H ;K/with dom.S/� dom.T /
and fix "0 > 0. Then T is called S -Kato-smooth (in short, S -smooth in the following)
if for each f 2 H ,
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It suffices to require (2.1) for a dense set of f 2 H as T is closed. If T is S -
smooth, then T is infinitesimally bounded with respect to S .

In terms of unitary groups, T is S -smooth if and only if for all f 2 H , e�itSf 2

dom.T / for a.e. t 2 R and
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for some constant C0 2 .0;1/ (C0 can be chosen to be kT k2S , but not smaller).
An immediate consequence regarding the absence of singular spectrum derives

from the fact that if T is S -smooth then

ran.T �/ � Hac.S/:

In particular,

if, in addition, ker.T / D ¹0º; then Hac.S/ D H ;

and hence the spectrum of S is purely absolutely continuous,

�.S/ D �ac.S/; �p.S/ D �sc.S/ D ;:

Here Hac.S/ denotes the absolutely continuous subspace associated with S .
Moreover, as long as B 2 B.K;L/ (with L another complex, separable Hilbert

space), BT is S -smooth whenever T is S -smooth.
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Finally, if T 2 C.H ;K/ and for all z 2 CnR, T .S � zIH /
�1T � has a bounded

closure in H satisfying for some fixed "0 > 0,

C1 D sup
�2R; "2.0;"0/



T .S � .�C i"/IH /�1T �




B.H/
<1; (2.2)

then T is S -smooth with kT kS � C1=� .
While Definition 2.1 describes a global condition, a local version can be intro-

duced as follows:

Definition 2.2. Let S be self-adjoint in H and T 2C.H ;K/with dom.S/�dom.T /.
T is called S -Kato-smooth on a Borel set ƒ � R (in short, S -smooth on ƒ in the
following) if TES .ƒ/ is S -smooth.

Again, if B 2 B.K;L/, then BT is S -smooth on ƒ0 whenever T is.
For TES .ƒ/ to be well defined it suffices that ES .ƒ/H \ dom.S/ � dom.T /.
If T is S -smooth on ƒ then

ran
��
TES .ƒ/

���
� Hac.S/;

in particular,

if, in addition, ker.T / D ¹0º; then

�.S/ \ƒ D �ac.S/ \ƒ; �p.S/ \ƒ D �sc.S/ \ƒ D ;:

If T 2 C.H ;K/ and for all z 2 CnR, T .S � zIH /
�1T � has a bounded closure

in H satisfying for some fixed "0 > 0,

sup
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or
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then T is S -smooth on ƒ.
Next, following [186, Section 4.4], we turn to the concept of strongly smooth

operators on a compact interval ƒ0 D Œ�1; �2�, �j 2 R, j D 1; 2, �1 < �2 (tailored
toward certain applications to differential operators). This requires some prepara-
tions: Given a separable complex Hilbert space H0, one considers the (nonseparable)
Banach space of H0-valued Hölder continuous functions of order � 2 .0; 1�, denoted
by C � .ƒ0IH0/, with norm

kf kC� .ƒ0IH0/

D sup
�;�02ƒ0

�

f .�/


H0

C



f .�/ � f .�0/


H0

j� � �0j�

�
; f 2 C � .ƒ0IH0/:



Some background on (locally) smooth operators 17

Suppose the self-adjoint operator S in H has purely absolutely continuous spectrum
on ƒ0, that is,

�.S/ \ƒ0 D �ac.S/ \ƒ0; �p.S/ \ƒ0 D �sc.S/ \ƒ0 D ;;

of constant multiplicity m0 2 N [ ¹1º on ƒ0, with dim.H0/ D m0. In addition, let

F0 W

´
ES .ƒ0/H ! L2.ƒ0I d�IH0/;

f 7! F0f WD Qf ;
be unitary;

and “diagonalizing” S , that is, turning SES .ƒ0/ into a multiplication operator. More
precisely, F0 generates a spectral representation of S via,

.F0ES .�/f /.�/ D ��\ƒ0
.�/ Qf .�/; f 2 ES .ƒ0/H :

With these preparations in place, we are now in position to define the notion of
strongly smooth operators (cf. [184, Section 4.4], where a more general concept is
introduced):

Definition 2.3. Let S be self-adjoint in H with purely absolutely continuous spec-
trum of constant (possibly, infinite) multiplicity onƒ0 and suppose that T 2C.H ;K/

with dom.S/ � dom.T /. Then T is called strongly S -Kato-smooth on ƒ0 (in short,
strongly S -smooth onƒ0 in the following), with exponent �2.0;1�, if F0.TES .ƒ//

� W

K ! C � .ƒ0IH0/ is continuous, that is, for f D .TES .ƒ0//
�� , � 2 K ,
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 Qf .�/ � Qf .�0/




H0
� C j� � �0j�k�kK ;

with C 2 .0;1/ independent of �; �0 2 ƒ0 and � 2 K .

Not surprisingly, the terminology chosen is consistent with the fact that

if T is strongly S -smooth on ƒ0, then it is S -smooth on ƒ0.

Moreover, as long as B 2 B.K;L/ (with L another complex, separable Hilbert
space) and T is strongly S -smooth with exponent � 2 .0; 1� on ƒ0, then BT is
strongly S -smooth on ƒ0 with the same exponent � 2 .0; 1�.

Next, we recall a perturbation approach in which S corresponds to the “sum” of
an unperturbed self-adjoint operator S0 in H and a perturbation V in H that can be
factorized into a product V �

1 V2 as follows: Suppose Vj 2 C.H ;K/, j D 1; 2, with

Vj
�
jS0j C IH

��1=2
2 B.H ;K/; j D 1; 2; (2.5)

and the symmetry condition,

.V1f; V2g/K D .V2f; V1g/K ; f; g 2 dom
�
jS0j

1=2
�
:
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In addition, suppose that for some (and hence for all) z 2 �.S0/, V2.S0 � zIH /
�1V �

1

has a bounded extension in K , which is then given by its closure

V2.S0 � zIH /�1V
�
1 D V2.S0 � zIH /

�1=2
�
V1.S0 � zIH /

�1=2
��
: (2.6)

Here the operator V2.S0 � zIH /�1V
�
1 represents an abstract Birman–Schwinger-type

operator.
Finally, we assume that�

IK C V2.S0 � z0IH /�1V
�
1

��1
2 B.K/ for some z0 2 �.S0/:

Then the equation

R.z/ D .S0 � zIH /
�1

�
�
V1.S0 � zIH /

�1
���
IH C V2.S0 � zIH /�1V

�
1

��1
V2.S0 � zIH /

�1;

z 2 CnR; (2.7)

defines the resolvent of a self-adjoint operator S in H , that is,

R.z/ D .S � zIH /
�1; z 2 CnR; (2.8)

with S � S0 C V �
1 V2 (the latter defined on dom.S0/\ dom.V �

1 V2/, which may con-
sist of ¹0º only); for details we refer to [107] (see also [79], [184, Section 1.9]).

One also has
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��
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��1
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�1;

z 2 CnR;

as well as,

V1.S � zIH /�1V
�
1 D V1.S0 � zIH /�1V

�
1

�
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�
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implying

V1.S � zIH /�1V
�
1
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�
1

�
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�
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��1
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Similarly,

V2.S � zIH /�1V
�
1 D IH �

�
IK C V2.S0 � zIH /�1V

�
1

��1
; z 2 CnR: (2.10)

The remaining results in this chapter are all taken from [186, Sections 4.4–4.7].

Theorem 2.4. Assuming the hypotheses on S0, Vj , j D 1; 2, employed in (2.5)–(2.9),
suppose the following additional conditions (i)–(iii) hold:

(i) V2 is S0-smooth on ƒ0 D Œ�1; �2�, �j 2 R, j D 1; 2, �1 < �2.
(ii) The analytic, operator-valued functions

V2.S0 � zIH /�1V
�
1 ; V1.S0 � zIH /�1V

�
1 on Re.z/ 2 .�1; �2/; Im.z/ ¤ 0;

are continuous in B.K/-norm up to and including the two rims of the “cut” along
.�1; �2/.

(iii) For some k 2 N,
�
V2.S0 � zIH /�1V

�
1

�k
2 B1.K/, Im.z/ ¤ 0.

Define

N˙ D
®
� 2 ƒ0 j there exists 0¤f 2K s.t. � f DV2.S0 � .�˙ i0/IH /�1V

�
1 f

¯
;

N D N� [ NC: (2.11)

Then N˙, N are closed and of Lebesgue measure zero. Moreover, the analytic, opera-
tor-valued function V1.S � zIH /�1V

�
1 on Re.z/ 2 .�1;�2/, Im.z/¤ 0, is continuous

in B.K/-norm up to and including the two rims of the “cut” along .�1; �2/nN . If, in
addition, ker.V1/D¹0º, then S has purely absolutely continuous spectrum onƒ0nN ,
that is,

�.S/\ .ƒ0nN /D �ac.S/\ .ƒ0nN /; �p.S/\ .ƒ0nN /D �sc.S/\ .ƒ0nN /D;:

As detailed in [184, Remark 4.6.3], condition (iii) in Theorem 2.4 can be replaced
by the following one:

(iii0) Suppose there exist z˙ 2 �.S0/, ˙ Im.z˙/ > 0, such that�
IK C V2.S0 � z˙IH /�1V

�
1

��1
2 B.K/;

and

V2.S0 � zIH /�1V
�
1 � V2.S0 � z0IH /�1V

�
1

D .z � z0/V2.S0 � zIH /�1.S0 � z0IH /�1V
�
1 2 B1.K/; z; z0 2 �.S0/:

Next we strengthen the hypotheses in Theorem 2.4 by invoking the notion of
strong S0-smoothness:

Theorem 2.5. Assuming the hypotheses on S0, Vj , j D 1; 2, employed in (2.5)–(2.9),
suppose in addition the following conditions (i)–(iii) hold:



Some background on (locally) smooth operators 20

(i) S0 has purely absolutely continuous spectrum of constant multiplicity m0 2

N [ ¹1º on ƒ0 D Œ�1; �2�, �j 2 R, j D 1; 2, �1 < �2.
(ii) Vj are strongly S0-smooth on any compact subinterval of ƒ0 with exponents

�j > 0, j D 1; 2.
(iii) For some k 2 N, ŒV2.S0 � zIH /�1V

�
1 �
k 2 B1.K/, Im.z/ ¤ 0.

Then the analytic, operator-valued functions

V1.S0 � zIH /�1V
�
1 ; V2.S � zIH /�1V

�
1 ; .resp., V1.S � zIH /�1V

�
1 /

on Re.z/ 2 .�1; �2/, Im.z/ ¤ 0, are Hölder continuous in B.K/-norm with expo-
nent min¹�1; �2º up to and including the two rims of the “cut” along .�1; �2/ (resp.,
.�1; �2/nN ).

Moreover, the local wave operators

W˙.S; S0Iƒ0/ D s-lim
t!˙1

eitSe�itS0PS0;ac.ƒ0/;

withPS0;ac.ƒ0/DES0
.ƒ0/ES0;ac, andES0;ac the projection onto the absolutely con-

tinuous subspace of S0, exist and are complete, that is,

ker
�
W˙.S; S0Iƒ0/

�
D H 	ES0;ac.ƒ0/H ; ran

�
W˙.S; S0Iƒ0/

�
D PS;ac.ƒ0/H ;

with PS;ac.ƒ0/D ES .ƒ0/ES;ac, and ES;ac the projection onto the absolutely contin-
uous subspace of S .

For the remainder of this theorem suppose in addition that �1 > 1=2. Then

N˙ D N D �p.S/ \ƒ0

and the .geometric/ multiplicities of the eigenvalue �0 2 ƒ0 of S and the eigenvalue
�1 of V2.S0 � .�0 ˙ i0/IH /�1V

�
1 coincide. If in addition, ker.V1/ D ¹0º, then S

has no singularly continuous spectrum on ƒ0, that is,

�.S/ \ƒ0 D �ac.S/ \ƒ0; �sc.S/ \ƒ0 D ;;

and the singular spectrum of S on the interior, .�1; �2/, ofƒ0 consists only of eigen-
values of finite multiplicity with no accumulation point in .�1; �2/, in particular,

�s.S/ \ .�1; �2/ D �p.S/ \ .�1; �2/:

Again, condition (iii) in Theorem 2.5 can be replaced by condition (iii0) above.
To make the transition from local to global wave operators we also recall the

following result.

Theorem 2.6. Assuming the hypotheses on S0, Vj , j D 1; 2, employed in (2.5)–(2.9),
suppose in addition the following conditions (i)–(iii) hold:
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(i) S0 has purely absolutely continuous spectrum of constant multiplicity m0;` 2
N [ ¹1º on a system of intervalsƒ0;` D Œ�1;`; �2;`�, �j;` 2 R, j D 1; 2, �1;` < �2;`,
` 2 	 , 	 � N an appropriate index set, such that

�.S0/
�[
`2	

ƒ0;` has Lebesgue measure zero:

(ii) Vj are strongly S0-smooth on any compact subinterval ofƒ0;` with exponents
�j;` > 0, j D 1; 2, ` 2 	 .

(iii) For some k 2 N, ŒV2.S0 � zIH /�1V
�
1 �
k 2 B1.K/, Im.z/ ¤ 0.

Then the .global/ wave operators

W˙.S; S0/ D s-lim
t!˙1

eitSe�itS0 ;

exist and are complete, that is,

ker
�
W˙.S; S0/

�
D ¹0º; ran

�
W˙.S; S0/

�
D ES;acH ;

with ES;ac the projection onto the absolutely continuous subspace of S .

For additional references in the context of smooth operator theory, limiting ab-
sorption principles, and completeness of wave operators, see, for instance, [6, 11,
34], [19, Chapter 17], [21, 75, 87, 107, 112, 118], [140, Section XIII.7], [142], [184,
Chapter 4], [186, Chapters 0–2].


