
Chapter 3

A limiting absorption principle for interacting, massless
Dirac operators

In this chapter, following [186, Sections 1.11, 2.1, and 2.2], we apply the abstract
framework of strongly smooth operators of the preceding chapter to the concrete case
of massless Dirac operators with electromagnetic potentials.

To rigorously define the free massless n-dimensional Dirac operators to be studied
in the sequel, we now introduce the following set of basic hypotheses assumed for the
remainder of this manuscript (these hypotheses will have to be strengthened later on).

Hypothesis 3.1. Let n 2 N, n � 2.
(i) Set N D 2b.nC1/=2c and let j̨ , 1 � j � n, ˛nC1 WD ˇ, denote n C 1 anti-

commuting Hermitian N �N matrices with squares equal to IN , that is,

˛�j D j̨ ; j̨˛k C ˛k j̨ D 2ıj;kIN ; 1 � j; k � nC 1: (3.1)

(ii) Introduce in ŒL2.Rn/�N the free massless Dirac operator

H0 D ˛ � .�ir/ D

nX
jD1

j̨ .�i@j /; dom.H0/ D ŒW 1;2.Rn/�N ; (3.2)

where @j D @=@xj , 1 � j � n.
(iii) Next, consider the self-adjoint matrix-valued potential V D ¹V`;`0º1�`;`0�N

satisfying for some fixed � 2 .1;1/, C 2 .0;1/,

V 2 ŒL1.Rn/�N�N ;ˇ̌
V`;`0.x/

ˇ̌
� C hxi�� for a.e. x 2 Rn; 1 � `; `0 � N: (3.3)

Under these assumptions on V , the massless Dirac operator H in ŒL2.Rn/�N is
defined via

H D H0 C V; dom.H/ D dom.H0/ D ŒW 1;2.Rn/�N : (3.4)

Then H0 and H are self-adjoint in ŒL2.Rn/�N , with essential spectrum covering
the entire real line,

�ess.H/ D �ess.H0/ D �.H0/ D R;

a consequence of relative compactness of V with respect to H0. In addition,

�ac.H0/ D R; �p.H0/ D �sc.H0/ D ;:
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On occasion (cf. Chapter 7) we will drop the self-adjointness hypothesis on the
N �N matrix V and still define a closed operator H in ŒL2.Rn/�N as in (3.4).

For completeness we also recall that the massive free Dirac operator in ŒL2.Rn/�N

associated with the mass parameter m > 0 then would be of the form

H0.m/ D H0 Cmˇ; dom
�
H0.m/

�
D ŒW 1;2.Rn/�N ; m > 0; ˇ D ˛nC1;

but we will primarily study the massless case m D 0 in this manuscript.
In the special one-dimensional case n D 1, one can choose for ˛1 either a real

constant or one of the three Pauli matrices. Similarly, in the massive case, ˇ would
typically be a second Pauli matrix (different from ˛1). For simplicity we confine
ourselves to n 2 N, n � 2, in the following.

Let �.Rn/ denote the Schwartz space of rapidly decreasing functions on Rn and
� 0.Rn/ the space of tempered distributions. In addition, for any n 2 N, we also intro-
duce the scale of weighted L2-spaces,

L2s .R
n/ D

®
f 2 � 0.Rn/ j kf kL2

s .Rn/ WD
hxisf 

L2.Rn/
<1

¯
; s 2 R:

Defining Qj as the operator of multiplication by xj , 1 � j � n, in L2.Rn/, and
introducing Q D .Q1; : : : ;Qn/, one notes that

dom
�
hQi

s
�
D L2s .R

n/; s 2 R:

Employing the relations (3.1), one observes that

H0.m/
2
D IN Œ��Cm2IL2.Rn/�; dom

�
H0.m/

2
�
D ŒW 2;2.Rn/�N ; m � 0: (3.5)

Remark 3.2. Since we permit a (sufficiently decaying) matrix-valued potential V in
H , this includes, in particular, the case of electromagnetic interactions introduced via
minimal coupling, that is, V describes also special cases of the form,

H.q;A/ WD ˛ � .�ir � A/C qIN D H0 C ŒqIN � ˛ � A�;

dom
�
H.q;A/

�
D ŒW 1;2.Rn/�N ;

where .q; A/ represent the electromagnetic potentials on Rn, with q W Rn ! R, q 2

L1.Rn/, AD .A1; : : : ;An/, Aj W Rn ! R, Aj 2 L1.Rn/, 1 � j � n, and for some
fixed � > 1, C 2 .0;1/,ˇ̌

q.x/
ˇ̌
C
ˇ̌
Aj .x/

ˇ̌
� C hxi��; x 2 Rn; 1 � j � n: (3.6)

˘

To analyze the spectral properties ofH we first turn to the spectral representation
ofH0D ˛ � .�ir/ (see also Thaller [165, Section 5.6] and Yafaev [186, Section 2.4]).
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Introducing the unitary Fourier transform in L2.Rn/ via

F W

8<:L
2.RnI dnx/! L2.RnI dnp/;

f 7!.F f /.p/ WDf ^.p/D s-lim
R!1

.2�/�n=2
Z
jxj�R

dnx e�ip�xf .x/;
(3.7)

with s-lim abbreviating the limit in the topology of L2.Rn/, one obtains

H0 D F �1
jpj.˛ � !/F ; (3.8)

employing polar coordinates in Fourier space, p D jpj!, ! 2 Sn�1. Since by (3.1)
(see also (3.5))

.˛ � !/2 D IN ; ! 2 Sn�1;

the self-adjoint matrix ˛ � ! has eigenvalues ˙1 of multiplicity N=2 with associated
spectral projection matrices of rank N=2 denoted by …˙.!/,

˛ � ! D …C.!/ �…�.!/; ! 2 Sn�1:

Introducing

T .!/ D 2�1=2.˛nC1 C ˛ � !/; ! 2 Sn�1; (3.9)

one infers that T .!/ 2CN�N is Hermitian symmetric for each ! 2 Sn�1. In addition,
the anti-commutation property in (3.1) implies

T .!/T .!/� D 2�1
�
˛2nC1 C .˛ � !/˛nC1 C ˛nC1.˛ � !/C .˛ � !/2

�
D IN ; ! 2 Sn�1;

so that T .!/ is actually unitary for each ! 2 Sn�1. The reason for introducing the
unitary matrix T .!/, ! 2 Sn�1, is that it can be used to diagonalize the matrix ˛ � p.
Indeed, writing p 2 Rn in polar coordinates as p D jpj! with ! 2 Sn�1, one obtains

T .!/jpj˛nC1T .!/
�
D 2�1jpj

�
˛nC1 C 2˛ � ! � .˛ � !/2˛nC1

�
D jpj.˛ � !/

D ˛ � p; (3.10)

so that ˛ � p is unitarily equivalent to jpj˛nC1 in CN . Of course, ˛nC1 is Hermitian
symmetric, so it may be diagonalized by conjugating with a fixed (i.e., p-indepen-
dent) unitary matrix U 2 CN�N . We may assume without loss that the columns of U
are arranged so that

˛nC1 D U

 
�IN=2 0N=2

0N=2 IN=2

!
U �; (3.11)
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where 0N=2 denotes the zero matrix in C.N=2/�.N=2/. The facts (3.10) and (3.11)
combine to yield

˛ � p D zT .!/jpj

 
�IN=2 0N=2

0N=2 IN=2

!
zT .!/�; p D jpj! 2 Rn; (3.12)

where
zT .!/ WD T .!/U; ! 2 Sn�1;

and then (3.8) implies

H0 D F �1 zT .!/jpj

 
�IN=2 0N=2

0N=2 IN=2

!
zT .!/�F : (3.13)

A simple manipulation in (3.13) yields

zT .!/�FH0 D jpj

 
�IN=2 0N=2

0N=2 IN=2

!
zT .!/�F : (3.14)

To “diagonalize” H0, we introduce the notation

P� WD

 
IN=2 0N=2

0N=2 0N=2

!
; PC WD

 
0N=2 0N=2

0N=2 IN=2

!
;

and define the transformation

FH0
W ŒL2.Rn/�N ! L2

�
RI d�I ŒL2.Sn�1/�N

�
according to

.FH0
f /.�; !/

D

´
j�j.n�1/=2P�

zT .!/�f ^.j�j!/; �<0;

j�j.n�1/=2PC
zT .!/�f ^.j�j!/; ��0;

!2Sn�1; f 2 ŒL2.Rn/�N :

The transformation FH0
is unitary. In fact,

kFH0
f k2

L2.RId�IŒL2.Sn�1/�N /

D

Z 1

0

d� j�jn�1
Z
Sn�1

dn�1!
°P�

zT .!/�f ^
�
j�j!

�2
CN

C
PC

zT .!/�f ^.j�j!/
2

CN

±
; f 2 ŒL2.Rn/�N : (3.15)
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Since .P��; PC�/CN D 0 for all �; � 2 CN , an application of the Pythagorean theo-
rem in (3.15) yields

kFH0
f k2

L2.RId�IŒL2.Sn�1/�N /

D

Z 1

0

d� j�jn�1
Z
Sn�1

dn�1!
 zT .!/�f ^

�
j�j!

�2
CN

D
f ^

2
ŒL2.Rn/�N

D
f 2

ŒL2.Rn/�N
; f 2 ŒL2.Rn/�N :

To check that FH0
correctly diagonalizes H0 in the sense that

.FH0
H0f /.�; � / D �.FH0

f /.�; � / for a.e. � 2 R; f 2 ŒW 1;2.Rn/�N ; (3.16)

one considers separately the cases � < 0 and � � 0. Indeed, for a fixed f 2

ŒW 1;2.Rn/�N , one applies (3.14) to obtain

.FH0
H0f /.�; !/ D j�j.n�1/=2P�

zT .!/�.H0f /
^
�
j�j!

�
D �j�jP�

zT .!/�f ^
�
j�j!

�
D �.FH0

f /.�; !/; � < 0; ! 2 Sn�1; (3.17)

and, similarly,

.FH0
H0f /.�; !/ D j�j.n�1/=2PC

zT .!/�.H0f /
^
�
j�j!

�
D j�jPC

zT .!/�f ^
�
j�j!

�
D �.FH0

f /.�; !/; � � 0; ! 2 Sn�1: (3.18)

Equations (3.17) and (3.18) combine to yield (3.16). Of course, (3.16) generalizes to�
FH0

 .H0/f
�
.�; � /D .�/.FH0

f /.�; � / for a.e. �2R; f 2dom
�
 .H0/

�
; (3.19)

for any measurable function  on R.
Consequently, [186, Proposition 2.4.1] applies to H0, resulting in the following

facts:

Proposition 3.3. Suppose Hypothesis 3.1 .i/, .i i/ and let  > 1=2. Then hQi� is
strongly H0-smooth on compact subintervals of Rn¹0º with exponent � > 0 given by

� D

8̂̂<̂
:̂
 � .1=2/;  2

�
.1=2/; .3=2/

�
;

1 � ";  D 3=2; " 2 .0; 1/;

1;  � 3=2:

We note that for � > 1=2, z 2 CnR,

h � i
�� .H0 � zIŒL2.Rn/�N /

�1
h � i

��
2 B1

�
ŒL2.Rn/�N

�
;
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a special case of the well-known general fact (cf., e.g., [184, p. 41]),

f .Q/g.�ir/ 2 B1

�
L2.Rn/

�
for any f; g 2 L1.Rn/

with lim
jxj!1

f .x/ D 0 D lim
jpj!1

g.p/:

To make the connection with the results collected in Chapter 2, we identify S0 and
H0 and S with H D H0 C V , and we factorize V according to

V D V �
1 V2; V1 D V �

1 D h � i
��IN ; V2 D h � i

�V; (3.20)

with V satisfying the conditions in (3.3) for some fixed � > 1, and hence, with � 2

.1=2; �/, V2. � /B.CN /
� C h � i

�.���/: (3.21)

In addition,

h � i
��
�
H � zIŒL2.Rn/�N

��1
h � i

��
D h � i

��
�
H0 � zIŒL2.Rn/�N

��1
h � i

��

�
�
IŒL2.Rn/�N C h � i

�V
�
H0 � zIŒL2.Rn/�N

��1
h � i

��
��1

; z 2 CnR;

to mention just a few analogs of the abstract facts collected in (2.5)–(2.9), which all
apply in this concrete setting of massless Dirac operators.

Thus, temporarily assuming �>3=2 in (3.3), Theorem 2.5 applies to S DH0CV

with
�1 D � � .1=2/ > 1=2; necessitating � > 1; (3.22)

and
�2 D .� � �/ � .1=2/ > 0; requiring � > 3=2: (3.23)

Actually, as shown in [186, pp. 98–99] in the context of the Laplacian h0 in
L2.Rn/,

h0 D ��; dom.h0/ D H 2.Rn/

it suffices to assume just � > 1 in (3.3) (even though this cannot be inferred directly
from abstract results, the latter require � > 3=2 as outlined in (3.22), (3.23)) and
� 2 .1=2; � � 1=2/. A closer examination of [186, pp. 98–99] (see also [186, p. 118])
reveals that there is nothing special about h0 and precisely the same results apply to
H0 D ˛ � .�ir/ as we discuss next.

Applying Theorems 2.4–2.6, to the pair .H;H0/ and to a union of compact inter-
vals exhausting .�1; 0/ [ .0;1/, combined with the approach in [186, pp. 98, 99,
and 118], thus yield the following result:

Theorem 3.4. Assume Hypothesis 3.1 and consider H as defined in (3.4). Then

�ess.H/ D �ac.H/ D R; (3.24)
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�sc.H/ D ;; (3.25)

�s.H/ \
�
Rn¹0º

�
D �p.H/ \

�
Rn¹0º

�
; (3.26)

with the only possible accumulation points of �p.H/ being 0 and ˙1. If

N0 WD �p.H/ \
�
Rn¹0º

�
D �d.H/ \

�
Rn¹0º

�
;

then the operators

V2
�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
V �
1 ; V1

�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
V �
1�

resp., V1
�
H � .�˙ i0/IŒL2.Rn/�N

��1
V �
1

�
(3.27)

are Hölder continuous in B
�
ŒL2.Rn/�N

�
-norm with respect to � varying in compact

subintervals of Rn¹0º .resp., Rn.¹0º [ N0//. In particular, with N˙ defined in anal-
ogy to (2.11) by

N˙ D
®
� 2 Rn¹0º j there exists 0 ¤ f 2 ŒL2.Rn/�N s.t.

� f D V2
�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
V �
1 f

¯
; (3.28)

one obtains
NC D N� D N0;

and the .geometric/ multiplicities of the eigenvalue �0 2 Rn¹0º of H and the eigen-
value �1 of V2.H0 � .�0 ˙ i0/IŒL2.Rn/�N /

�1V �
1 coincide and are finite. Finally, the

global wave operators

W˙.H;H0/ D s-lim
t!˙1

eitH e�itH0 ; (3.29)

exist and are complete, that is,

ker
�
W˙.H;H0/

�
D ¹0º; ran

�
W˙.H;H0/

�
D EH;acH ; (3.30)

with EH;ac the projection onto the absolutely continuous subspace of H .

Proof. As discussed above, Theorems 2.5 and 2.6 apply to S0 D H0 and S D H

and a union of closed intervalsƒ0 exhausting .�1; 0/[ .0;1/ under the additional
assumption that � > 3=2 (and � 2 .1;�� 1=2/). Hence, Theorem 3.4 is proved subject
to � > 3=2.

To improve this to � > 1 (and � 2 .1=2; � � 1=2/) we now follow [186, pp. 98,
99, and 118]. First, one notes that if � 2 Rn¹0º is an eigenvalue of H with a corre-
sponding eigenvector  2 ŒL2.Rn/�N , then.FH0

 /.�; � /

ŒL2.Sn�1/�N

� C1j� � �j��.3=2/; � 2 R; (3.31)
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for some C1 2 .0;1/. In fact, by (3.3), g WD �V 2 ŒL2�.R
n/�N , and since hQi��

is strongly H0-continuous with exponent � � .1=2/ > .1=2/ by Proposition 3.3, the
function Qg WD FH0

g is Hölder continuous: Qg.�; � / � Qg.�; � /

ŒL2.Sn�1/�N

� C j� � �j��.1=2/; � 2 R; (3.32)

for some constant C 2 .0;1/, which is independent of � and � 2 R. In addition,
since g D H0 � � , the spectral representation in (3.19) yields

Qg.�; � / D .� � �/.FH0
 /.�; � /; � 2 R; (3.33)

which implies Qg.�; � / D 0. Therefore, (3.32) reduces to Qg.�; � /
ŒL2.Sn�1/�N

� C j� � �j��.1=2/; � 2 R;

and then (3.33) yields (3.31) with C1 D C . In addition, one also notes that the equa-
tion .H0 � �IŒL2.Rn/�N / D �V implies

g D �V
�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
g; (3.34)

since  D .H0 � .�˙ i0/IŒL2.Rn/�N /
�1g and  D 0 if g D 0.

To prove that non-zero eigenvalues of H have finite multiplicity and may only
accumulate at 0 and ˙1, one may follow the proof of [186, Proposition 1.9.2] essen-
tially verbatim; one only needs to replace RC by Rn¹0º.

Next, one proves that for any � 2 .0; 1=2� and p < 2.1 � 2�/�1, and for any
compact set X � R,Z
X

d�
.FH0

f /.�; � /
2
ŒL2.Sn�1/�N

� C2kf k
p

ŒL2
� .Rn/�N

; f 2 ŒL2� .R
n/�N ; (3.35)

for some C2 D C2.˛; p; X/ 2 .0;1/. To prove (3.35), one can follow, with minor
modifications, the proof of [186, Proposition 1.9.3]. Indeed, for an arbitrary compact
set X � R, one introduces the family of spaces

Lp
�
X I d�I ŒL2.Sn�1/�N

�
; p 2 Œ1;1/ [ ¹1º;

and observes that by [186, Theorem 1.1.4],

FH0
f 2 L1

�
X I d�I ŒL2.Sn�1/�N

�
; f 2 ŒL2� .R

n/�N ; � > 1=2:

The formula�
T .f1; f2/

�
.�/ D

�
.FH0

f1/.�; � /; .FH0
f2/.�; � /

�
ŒL2.Sn�1/�N

for a.e. � 2 X and .f1; f2/ 2 ŒL2� .R
n/�N � ŒL2� .R

n/�N ;
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defines a bilinear map for each q � 1 and � � 0:

T W ŒL2� .R
n/�N � ŒL2� .R

n/�N ! Lq.X; d�/:

The map T is continuous for �0 D 0, q0 D 1 and �1 > 1=2, q1 D1, so by Calderón’s
complex bilinear interpolation theorem (cf., e.g., [171, Section 1.19.5], [37]), for any
s 2 Œ0; 1� the map T is continuous for

� D �.s/ D s�0 C .1 � s/�1; q�1 D q.s/�1 D sq�10 C .1 � s/q�11 ;

and T .f1; f2/

Lq.X;d�/

� C.�;X/kf1kŒL2
� .Rn/�N kf2kŒL2

� .Rn/�N ; f1; f2 2 ŒL
2
� .R

n/�N : (3.36)

Taking f1 D f2 D f 2 ŒL2� .R
n/�N and q D p=2 in (3.36) yields (3.35).

In analogy with [186, Lemma 1.9.4], if h 2 ŒL2� .R
n/�N for some � 2 .1=2; 1� and

.FH0
h/.�; � / D 0 for some � 2 Rn¹0º, then�

H0 � .�˙ i0/IŒL2.Rn/�N

��1
h 2 ŒL2

�z� .R
n/�N ; z� > 1 � �: (3.37)

To prove (3.37), it suffices to showˇ̌��
H0 � .�˙ i0/IŒL2.Rn/N �

��1
h; g

�
ŒL2.Rn/�N

ˇ̌
� C3khkŒL2

� .Rn/�N kgkŒL2
z�
.Rn/�N ; g 2 Œ�.Rn/�N ;

for some C3 D C3.�/ 2 .0;1/. Using the spectral representation for H0, one infers
that��

H0 � .�˙ i0/IŒL2.Rn/�N

��1
h; g

�
ŒL2.Rn/�N

D

Z
R
d� .� � �� i0/�1

�
Qh.�; � /; Qg.�; � /

�
ŒL2.Sn�1/�N

; g 2 Œ�.Rn/�N : (3.38)

Since

Qh; Qg 2 L2
�
Œ0;1/I d�IL2.Sn�1/N=2

�
˚ L2

�
.�1; 0�I d�IL2.Sn�1/N=2

�
;

it suffices to estimate the integral in (3.38) over a compact neighborhood, say X�, of
the point �. By Proposition 3.3, Qh.�; � /

ŒL2.Sn�1/�N
D
 Qh.�; � / � Qh.�; � /


ŒL2.Sn�1/�N

� C0j� � �j��.1=2/khkŒL2
� .Rn/�N ;
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for some C0 2 .0;1/, and consequently,ˇ̌̌̌ Z
X�

d� .� � �� i0/�1
�
Qh.�; � /; Qg.�; � /

�
ŒL2.Sn�1/�N

ˇ̌̌̌
� C0khkŒL2

� .Rn/�N

Z
X�

d� j� � �j��.3=2/
 Qg.�; � /

ŒL2.Sn�1/�N
;

g 2 Œ�.Rn/�N : (3.39)

An application of Hölder’s inequality yields for any conjugate pair p�1 C q�1 D 1

the estimateZ
X�

d� j� � �j��.3=2/
 Qg.�; � /

ŒL2.Sn�1/�N

�

�Z
X�

d� j� � �j�q..3=2/��/
�q�1�Z

X�

d�
 Qg.�; � /p

ŒL2.Sn�1/�N

�p�1

: (3.40)

By (3.35) with C2 D C2.˛; p;X�/,Z
X�

d�
 Qg.�; � /p

ŒL2.Sn�1/�N
� C2kgk

p

ŒL2
z�
.Rn/�N

; (3.41)

where p < 2.1� 2z�/�1. Therefore, the conjugate exponent satisfies q > 2.1C 2z�/�1,
and consequently q..3=2/ � �/ > .3 � 2�/.1C 2z�/�1. Thus, if z� > 1 � � , that is, if
� Cz� > 1, then .3� 2�/.1C 2z�/�1 < 1, so q..3=2/� �/may be chosen to be smaller
than 1, rendering the first integral on the right-hand side in (3.40) finite. In conclusion,
(3.39), (3.40), and (3.41) combine to yield the desired estimate.

Finally, we turn to the issue of absence of singular continuous spectrum for H .
Introducing the set N WD NC [ N�, so that

�s.H/n¹0º � N ;

to prove that �sc.H/ D ;, it suffices to show that any � 2 N must be an eigenvalue
of H . To this end, let � 2 N , so that there exists an f 2 ŒL2.Rn/�N n¹0º such that

�f D V2
�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
V �
1 f; (3.42)

with V1 and V2 taken as in (3.20) with � 2 .1=2; � � .1=2//. Introducing

g D h � i
��f 2 ŒL2� .R

n/�N ; (3.43)

the equations for f in (3.42) may be recast as (3.34). In view of (3.43) and the fact
that Qg.�/ D 0, the estimate in (3.37) applies to h D g:�

H0 � .�˙ i0/IŒL2.Rn/�N

��1
g 2 ŒL2

�z� .R
n/�N ; z� > 1 � �:
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Then the condition in (3.3) and the identity in (3.34) combine to yield

g D �V
�
H0 � .�˙ i0/IŒL2.Rn/�N

��1
g 2 ŒL2�.R

n/�N ; � < � C � � 1:

Iterating the same argument ` 2 N times yields

g 2 ŒL2�.R
n/�N ; � < � C `.� � 1/: (3.44)

If ` is chosen so that ` > .1 � �/=.� � 1/, then � C `.� � 1/ > 1. Therefore, (3.44)
implies, in particular, that g 2 ŒL2

z�
.Rn/�N for some z� 2 .1; 3=2/. Consequently, by

Proposition 3.3, Qg is Hölder continuous of order z� � .1=2/. Next, the function  WD

.H0 � .� ˙ i0/IŒL2.Rn/�N /
�1g belongs to dom.H/ D dom.H0/ D ŒW 1;2.Rn/�N

since z .�/ D Qg.�/.� � �/�1, Qg.�/ D 0, and z� � .1=2/ > 1=2. By (3.34),  sat-
isfies the Dirac equation H D � . Moreover,  is a nontrivial solution. Indeed, if
 D 0, then g D �V D 0. Of course, one then obtains f D h � i�g D 0, which con-
tradicts the assumption f 2 ŒL2.Rn/�N n¹0º. Therefore,  is an eigenfunction and �
is a corresponding eigenvalue. As a result, N � �p.H/ and �sc.H/ D ;.

Remark 3.5. The fact that kV2.H0 � .�˙ i0/IŒL2.R3/�4/
�1V �

1 kB.L2.R3// does not
decay as � ! ˙1 shows that in principle one cannot rule out eigenvalues of H
running off to 1 and/or �1. In fact, it has been shown in [104] that for all � > 1=2,
there exists a constant C� 2 .0;1/ such that

sup
z2CnR

h � i���H0 � zIŒL2.R3/�4

��1
h � i

��


B.ŒL2.R3/�4/
� C� (3.45)

and that h � i���H0 � .�˙ i0/IŒL2.R3/�4

��1
h � i

��


B.ŒL2.R3/�4/

does not decay as j�j ! 1 for any � > 1=2: (3.46)

In the case of massive Dirac operators (i.e., with H0 replaced by H0.m/), the con-
dition � > 1=2 needs to be replaced by � � 1. For results in this direction we also
refer to [131–133,189]. This contrasts sharply with the case of Schrödinger operators
where a Riemann–Lebesgue-type argument yields decay of the underlying Birman–
Schwinger operator (see, e.g., [157, Theorem III.13]). ˘

Remark 3.6. The transformation in (3.9) employed to diagonalize ˛ � p is similar
to the celebrated Foldy–Wouthuysen transformation (see, e.g., [46, 162], [165, Sec-
tion 5.6]). The latter is well known to diagonalizeH0. In fact, introducing the unitary
N �N block operator matrix UN in ŒL2.Rn/�N , n 2 N, n � 2, via

UN D 2�1=2
�
IN C ˇ

�
˛ � .�ir/

�
j � irj

�1
�
;

U�1
N D 2�1=2

�
IN � ˇ

�
˛ � .�ir/

�
j � irj

�1
�
;
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one infers that

zH0 D UNH0U
�1
N D

 
IN=2.��/

1=2 0N=2

0N=2 �IN=2.��/
1=2

!
;

dom
�
zH0
�
D ŒW 1;2.Rn/�N : (3.47)

It is worth pointing out that every result in this chapter has a verbatim analog for
operators of the type

zH0 C V; and IN .��Cm2IL2.Rn//
1=2

C V; m � 0;

in ŒL2.Rn/�N , with V satisfying (3.3). More generally, .��/1=2 can be replaced by
general fractional powers .��/ ,  > 0, and even by more general functions h.��/
(cf. [22]). This comment is of some significance as a large body of work went into
studying IN .��/1=2 C V (especially, in the scalar case N D 1) over the past two
decades. We refer, for instance, to [22, 32, 93, 109, 110, 117, 143, 147], [158, p. 124],
[172–177, 182]. ˘

In the following chapter we will recall conditions on V that yield the absence of
eigenvalues of H (implying unitary equivalence of H and H0 via the wave operators
W˙.H;H0/ in Theorem 3.4, see Remark 4.3).

We conclude this chapter with some hints at additional literature (beyond [186,
Sections 1.11, 2.1, and 2.2]) concerning the absence of singular continuous spectrum
and proofs of limiting absorption principles for operators of the form H0 C V .

In the case of three-dimensional massless Dirac operators, the absence of singular
continuous spectrum of H with scalar potentials (i.e., V D v IN ), including the case
of long-range interactions v, was proved in [47]. The limiting absorption principle for
H0 in three dimensions was derived in [151]. For the proof of existence of absolutely
continuous spectrum of massless Dirac operators for nD 3, where V D v ˇ, see [49].
To the best of our knowledge, these references in the special case n D 3 comprise all
explicit statements about the absence of the singular continuous spectrum ofH and/or
the limiting absorption principle forH0. So Theorem 3.4 is new for n 2Nn¹3º, n� 2,
which is particularly interesting in the case nD 2 as the latter is related to applications
involving graphene. On the other hand, we emphasize that Theorem 3.4 is a direct
consequence of the material presented by Yafaev in [186, Section 2.4]. In the context
of massless Dirac operators in dimension n D 2 we also refer to [60] (see also [59]).
We also note that a global limiting absorption principle for H0 on R for all n 2 N,
n � 2, was proved in [23, 39, 104].

For the case of massive Dirac operators H.m/ D H Cmˇ, m > 0, we also refer
to [18,33,35,65–67,74,94,95,121,127,133,134,149,167,180], [186, Section 1.12],
[187–189].
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Finally, for scattering theory for Dirac operators we refer, for instance, to [47,54,
74,89,95,115,123,133,134,136,148,158,161,163,164], [165, Chapter 8], [166,167,
178], [186, Section 1.12].


