Chapter 5

The Green’s functions of Hy(m) and H,

In this chapter, we study the Green’s function for Hy, that is, the integral kernel of
the resolvent of Hy.
We start, however, with the Green’s function of the Laplacian in L?(R"),

ho = —A, dom(ho) = H*(R").

The Green’s function of A, denoted by go(z; -, -), is of the form,

go(z:x,y) == (ho — ZILZ(Rn))_l(X,y)

(i/2)z71/2¢i7" 2Ix=1, n=1,zeC\{0},

. _ 2— 2

(/9 @rz 2 —y) O HD (V2 — y]). n =2,z € C\{O),
Im(z'/?) >0, x,y e R", x # y, (5.1)

andforz =0,n > 3,

1
g0(0;x,y) = ———|x—y|*™", n=3 x,yeR" x#y.
(n —2)wp—1
Here Hlfl)( -) denotes the Hankel function of the first kind with index v > 0 (cf.
[1, Section 9.1]) and w,—; = 272/ T'(n/2) ([(-) the Gamma function, cf. [1, Sec-
tion 6.1]) represents the area of the unit sphere S”~! in R”.

Asz — 0, go(z; -, -) is continuous on the off-diagonal for n > 3,
lim  go(z:x,y) = go(0:x,y) = ————|x — y[*",
220 (n —2)wn—1
zeC\{0}
x,yeER" x#y,neN, n=3, (5.2)
but blows up forn = 1 as
go(z:x,y)
= (i/2)z_1/2 —2_1|x —y|+ O(Zl/2|x — y|2), x,y €R,
z—0
zeC\{0}
and forn = 2 as
1 1/2 2
goixy) = —5-In(z2x = y1/2)[1+ O(elx - yP?)]
zeC\{0}

1
+ EW(I) +O0(lzllx—y?), x.yeR* x#y. (53)

Here ¥ (w) = I'"(w)/ T’ (w) denotes the digamma function (cf. [1, Section 6.3]).
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For reasons of subsequent comparisons with the case of the free massive Dirac
operator Hyo(m) = Ho + m B, m > 0, we now start with the latter and compute,

— -1
(H()(m) — ZI[Lz(Rn)]N) 1= (Ho(m) + ZI[Lz(]Rn)]N)(I‘I()(n’l)2 — 22][L2(]Rn)]N)
. —1
= (—ia-V+mpB+ zlp2gnyn)(ho — (22 —m*) [ 2gn)) In. (5.4)

employing
H()(Wl)z = (ho + m21L2(Rn))IN.
Assuming
m >0, z € C\(R\[-m,m]), Im (22 —mz)l/2 > 0,
x,yER" x#y,neN, n=>2, (5.5)
and exploiting (5.4), one thus obtains for the Green’s function Go(m, z; -, -) of
Ho(m),

-1
Go(m,z;x,y) := (Ho(m) — ZI[LZ(]Rn)]N) (x,y)
=i47'Qm) @2 x — 2" (m B + zIy)
(n—2)/2
<[ =m)P1x =y ")) (22 = m?) e = )
yll_”a A (x —)’)
|x =yl
(2> =m*)'?|x = y)).

_ 4_1(271)(2_”)/2|x _

n/2H(1)

x [(2 = m?)2|x = yI]"*H )

Here we employed the identity ([1, p. 361]),
[HO©)] = -H @ + v HP©), vieC.
Equations (B.9), (B.10) reveal the facts (still assuming (5.5)),

1i111 Go(m,z;x,y) = 4_17t_”/2F((n -2)/2)|x - Y2 " (m B £ mly)
zeza{:lznm}

+i2_1n_”/2F(n/2)o¢-—(x_y),
lx — y|"
m>0,x,yeR" x#y,neN, n>3, (5.6)

Go(m,zix,y) = = —(4m) ' In(z> =m?*)(m B £ m1>)
zeza{:(:nm}

—@m)'In(lx—yl)mBEtml) +iQ2n) a- x—7)

lx —y|?

+ 0((z> =m*)In(z*> —m?)), m>0, x,yeR?* x#y. (5.7)
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(Here the remainder term O((z? — m?) In(z? — m?)) depends on x, y € R2, but this
is of no concern at this point.) In particular, Go(m, z; -, -) blows up logarithmically
as z — +m in two dimensions, n = 2, just as go(z, -, -) does as z — 0.

By contrast, the massless case is quite different and assuming

z€Cq, x,yeR" x#y,neN, n>2, (5.8)
one computes in the case m = 0 for the Green’s function Gy (z; -, -) of Hy,
Go(z;x,y) := (Ho — ZI[LZ(Rn)]N)_l(X, y)

- - - n—2)/2 ., (1
=i4 1(27[)(2 ”)/2|x —y> "z [z|x - y|] " H((n)_z)/z(z|x — yI)IN

=y
|x =yl

_ _ _ 2
—4712r) @ M2 | x — y|! ”[z|x — y|]n/ Hrf})z(zpc — y|)a (5.9)

The Green’s function G (z; -, -) of Hy continuously extends to z € C . In addition,
in the massless case m = 0, the limit z — 0 exists/,

(x—)
lx =y’
x,yeER" x#y,neN, n>2, (510)

lim  Go(zix,y) := Go(0 +i0:x,y) = 2720 (n/2) -
z—0,

2eC4\{0}

and no blow up occurs foralln € N, n > 2.

Remark 5.1. (i) The observation of an absence of blow up in Go(z; -, -)asz — 0
is consistent with the sufficient condition for the Dirac operator H = Hy + V (in
dimensions n € N, n > 2), with V' an appropriate self-adjoint N x N matrix-valued
potential, having no eigenvalues, as derived in [103, Theorems 2.1 and 2.3].

(ii) The asymptotic behavior, for some d, € (0, c0),

||G0(0+i0;x,y)||cN

= dylx—y|"™, x,yeR" x#y,neN,n>2,
z—0,

zeC1 \{0}

implies the absence of zero-energy resonances (cf. Chapter 10 for a detailed discus-
sion) of H for n € N, n > 3, for sufficiently fast decaying short-range potentials V
at infinity, as | - |17 lies in L?(R") near infinity if and only if # > 3. This is consis-
tent with observations in [8], [16, Section 4.4], [17,28, 150,151, 190] for n = 3 (see
also Remark 10.8 (ii)). This should be contrasted with the behavior of Schrodinger

'0ur choice of notation 0 4 i 0 in Go(0 + i 0; x, ¥) indicates that the limit lim,_.g is
performed in the closed upper half-plane C .
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operators where

. 1 _
lim  go(z:x,y) = go(0:x,y) = ————|x — y[* ",
20 (n —2)wp—1

zeC\{0}

x,yeR" x#y,neN,n=3

implies the absence of zero-energy resonances of h = hyg + w forn € N, n > 5,
again for sufficiently fast decaying short-range potentials w at infinity, as | - [>™" lies
in L2(R") near infinity if and only if n > 5, as observed in [96]. 3

Remark 5.2. In the special case n = 3, the identities

/2 ,i¢
i) ©) = —i(%) F
1/2 it .
;) = —(;) % ¢ € C\(0},

combine in (5.9) to yield

iz|lx—y| _ _
Go(z;x,y)ze— ZIN—l—Za-(x y)—l—ia-(x y) ,
4rlx — y| lx =yl X —y[?
x,yeR3 x#£y, zeCy. o

Remark 5.3. It is possible to expand the massless Dirac Green’s function Go(z; -, -)
in powers of z in such a way that several coefficients in the expansion vanish (the
precise number of vanishing coefficients depending on the dimension n) for odd
dimensions n > 5. This observation relies on the following connection between the
modified Bessel and spherical Bessel functions (cf., e.g., [1, Section 10.1.1]):

HY @ =@ 0@), teC\(0), jeN. (.11

Moreover, by [1, Equation 10.1.16],

G it g G B! .
WD) = i~UHe 1ezkzk‘( k)'( 2i0)7%, ¢eC\{0}, j eN. (5.12)

Upon combining (5.11) and (5.12), one obtains for odd dimensions n > 3,

)
Hy)oy 1) = H{g) 30141/

(n—3)/2
— o1/2,=1/2;(1=n)/2—1/2,,i¢ ([(”_3)/2] +k) _ =3
¢ Z (CEEIRE (=2i¢)

¢ eC\{0}), (5.13)



The Green’s functions of Ho(m) and Hy 45

and

W 0
Heujn(©) = Hig_1)2141/2(©)

(n=1)/2
12,172~ (4 D)2 -1/2 i ([ —1)/2] +k)! 2ie)*,
m - kX(:) R = D72 = k) (=2i¢)

r e C\{0}. (5.14)

Thus, using the expansions (5.13) and (5.14) in (5.9), one obtains the following
expansion for the massless Dirac Green’s function in odd dimensions n > 3:

Go(Z'x y) — i(_1)(1—n)/22—(n+1)/2n,(l—n)/zeiz\x—ylIN
2/ (n —3)/2] +k)!

% Z k([ —3)/2] = k)

(— 2)_k(lZ) —k+[(n— 1)/2]|x yl—k—[(n—l)/Z]

+ l-(_1)(1—n)/22—(n+1)/27_[(1—11)/2€iz|x—y|a ) (x—y)
|x — ¥
n /2 ( —1)/2] +k)!

) Z k([(n — 1)/2] — k)!

(— 2)_k(zz)_k+[(" 1)/2]|x— |- —k—[(n— 1)/2]

x,yeR" x#y, zeC\R. (5.15)

Introducing the power series for the exponential in (5.15) and reordering the series to
combine like powers of iz, one obtains

oo
Go(z;x,y)=(=1) @227t D27 Um0 -y} d;(iz) [ —y 771D Iy
Jj=0

o0
i (=)A= D 27 A-m/2 2 g1 2y | =1 %
j=0

x,yeR" x#y, zeC\R, (5.16)

where for each j € Ny, the numerical coefficients d; and d ]’ are given by

@22 ([ =3)/2] +k)! 1

d; = —2)7k . (517
! kg k!([(n—3)/2]—k)!( ) (j +k—[(n—3)/2])! oD
k=[(n—3)/2]-j
(n=1)/2
=3 (L =Dj2] k) -27* ! (5.18)

J = k([ —-1)/2] - k)

k=[(n—1)/2]-j

(j+k—[m—1/2])
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In odd dimensions n > 5, certain of the coefficients d; and d ]’ in (5.17) and (5.18)
vanish based on the combinatorial identity in Proposition 5.4 below. Applying Propo-
sition 5.4 with m = (n — 3)/2 and m = (n — 1)/2, one infers that for n > 5 is odd,
the free massless Green’s function Gg(z, -, -) is given by (5.16)—(5.18) and

d; =0 forallodd j € N satisfying 1 < j <n—4,
di =0 forallodd j € N satisfying 1 < j <n—2. o

Proposition 5.4 ([96, Lemma 3.3]). Ifm € N and

Z (m + k)! MR )k

K\m — k)] k+j—m 1570

k>r; —Jj
thenc; =0for j =1,3,...,2m— 1.

Since Hy has no spectral gap, o(Hp) = R, but /¢ has the half-line (—oo, 0) in
its resolvent set, a comparison of /¢ with the massive free Dirac operator Hy(m) =
Hy +m B, m > 0, with spectral gap (—m, m), replacing the energy z =0 by z = £m,
is quite natural and then exhibits a similar logarithmic blowup behavior as z — 0 in
dimensions n = 2.

Returning to our analysis of the resolvent of Hyp, the asymptotic behavior (B.9)-
(B.11) implies for some ¢, € (0, 00),

||G0(0+i0;x,y)||£(cN) < cuplx —y|t,
x,yeR" x#y,neN, n>2, (5.19)

and for given R > 1,

lx — [, Ix —y|<1, x#y,
|Goz: %, )| g oy Scnr(2)e” O, 1<|x—y|<R,

lx — y|A=M/2 |x — y|= R,
zeCq, x,yeR" x#y, neN,n=>2, (520

for some ¢, r(-) € (0, 00) continuous and locally bounded on C .
For future purposes we now rewrite Go(z; -, -) as follows:

= - - (n—2)/2
Gol(zix.y)=i47' @m) @2 x —y 2z [z]x = y|]" P HLY ) o (2l =) Iy

(x—)
ey

= |x—y|1_”fn(z,x—y), zeCq, x,yeER" x#£y,neN, n>2, (521)

_ - - /2 ;01
—4 1(2].[)(2 n)/2|x_y|1 n[Z|x_y|]n Hrg/)Z
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where f;, is continuous and locally bounded on C, x R”, in addition,

”f”(Z’X)H;’B(CN)

1, 0=<|x]=1,

C. n
NS ES U

< (Z)e—lm(Z)lx\ {

for some constant ¢, () € (0, 0o) continuous and locally bounded on C . In partic-
ular, decomposing Gy (z; -, ) into

Go(z:x,y) = Go(z:x, Y) x0.11(Ix — ¥1) + Go(z: x, ¥) x11,00) (I1X — ¥1)

= G0,<(Z;x -y)+ G0,>(Z;x -¥), (5.23)
zeCy, x,yeR" x#y, neN,n>2,

where

Go,<(z;x —y) 1= Go(z:x, ¥) x10.17(1x — »1). (5.24)
Go,>(z:x —y) 1= Go(2: X, ¥) X[1,00) (Ix — ¥1). (5.25)
zea, x,yeR", x#y,neN, n>2,

one verifies that

Cplx — |~ z=0,
Cu(2)|x —y|~=D/2 2 e Cq,
x,y eR" |x—y|>1, 1<)k <N, (5.26)

Go>(z:x — y)jk| < {

for some constants C,,, C,,(-) € (0, 00), in particular,
Go>(z:+) € [LPR"NN, zeCy, (5.27)

and that
Go,>(+; -) is continuous on C4 x R". (5.28)

In the next chapter, we will use the decomposition (5.23) to derive trace ideal
properties of operators of the type Fi(-)(Hy — ZI[LZ(Rn)]N)_le( -), employing
results of [26, Section 5.4] in the case n > 3. We also derive trace ideal properties
of (-)%(Hy — ZI[LZ(]Rn)]N)_l( -)7% in the case n > 2 using a different approach
based on a combination of Sobolev’s inequality and complex interpolation.



