Chapter 5

The Green's functions of $H_0(m)$ and H_0

In this chapter, we study the Green's function for H_0 , that is, the integral kernel of the resolvent of H_0 .

We start, however, with the Green's function of the Laplacian in $L^2(\mathbb{R}^n)$,

$$h_0 = -\Delta$$
, $dom(h_0) = H^2(\mathbb{R}^n)$.

The Green's function of h_0 , denoted by $g_0(z; \cdot, \cdot)$, is of the form,

$$g_{0}(z; x, y) := (h_{0} - zI_{L^{2}(\mathbb{R}^{n})})^{-1}(x, y)$$

$$= \begin{cases} (i/2)z^{-1/2}e^{iz^{1/2}|x-y|}, & n = 1, \ z \in \mathbb{C}\setminus\{0\}, \\ (i/4)(2\pi z^{-1/2}|x-y|)^{(2-n)/2}H_{(n-2)/2}^{(1)}(z^{1/2}|x-y|), & n \geq 2, \ z \in \mathbb{C}\setminus\{0\}, \end{cases}$$

$$Im(z^{1/2}) > 0, \ x, y \in \mathbb{R}^{n}, \ x \neq y, \quad (5.1)$$

and for $z = 0, n \ge 3$,

$$g_0(0; x, y) = \frac{1}{(n-2)\omega_{n-1}} |x-y|^{2-n}, \quad n \ge 3, \ x, y \in \mathbb{R}^n, \ x \ne y.$$

Here $H_{\nu}^{(1)}(\cdot)$ denotes the Hankel function of the first kind with index $\nu \geq 0$ (cf. [1, Section 9.1]) and $\omega_{n-1} = 2\pi^{n/2}/\Gamma(n/2)$ ($\Gamma(\cdot)$) the Gamma function, cf. [1, Section 6.1]) represents the area of the unit sphere S^{n-1} in \mathbb{R}^n .

As $z \to 0$, $g_0(z; \cdot, \cdot)$ is continuous on the off-diagonal for $n \ge 3$,

$$\lim_{\substack{z \to 0 \\ z \in \mathbb{C} \setminus \{0\}}} g_0(z; x, y) = g_0(0; x, y) = \frac{1}{(n-2)\omega_{n-1}} |x - y|^{2-n},$$

$$x, y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geqslant 3, \tag{5.2}$$

but blows up for n = 1 as

$$g_0(z; x, y) = \underset{\substack{z \to 0 \\ z \in \mathbb{C} \setminus \{0\}}}{=} (i/2)z^{-1/2} - 2^{-1}|x - y| + O(z^{1/2}|x - y|^2), \quad x, y \in \mathbb{R},$$

and for n = 2 as

$$g_{0}(z; x, y) = \int_{\substack{z \to 0 \\ z \in \mathbb{C} \setminus \{0\}}} -\frac{1}{2\pi} \ln (z^{1/2}|x - y|/2) [1 + O(z|x - y|^{2})] + \frac{1}{2\pi} \psi(1) + O(|z||x - y|^{2}), \quad x, y \in \mathbb{R}^{2}, x \neq y.$$
 (5.3)

Here $\psi(w) = \Gamma'(w)/\Gamma(w)$ denotes the digamma function (cf. [1, Section 6.3]).

For reasons of subsequent comparisons with the case of the free massive Dirac operator $H_0(m) = H_0 + m \beta$, m > 0, we now start with the latter and compute,

$$(H_0(m) - zI_{[L^2(\mathbb{R}^n)]^N})^{-1} = (H_0(m) + zI_{[L^2(\mathbb{R}^n)]^N}) (H_0(m)^2 - z^2 I_{[L^2(\mathbb{R}^n)]^N})^{-1}$$

$$= (-i\alpha \cdot \nabla + m\beta + zI_{[L^2(\mathbb{R}^n)]^N}) (h_0 - (z^2 - m^2)I_{L^2(\mathbb{R}^n)})^{-1} I_N, \quad (5.4)$$

employing

$$H_0(m)^2 = (h_0 + m^2 I_{L^2(\mathbb{R}^n)}) I_N.$$

Assuming

$$m > 0, z \in \mathbb{C} \setminus (\mathbb{R} \setminus [-m, m]), \operatorname{Im} (z^2 - m^2)^{1/2} > 0,$$

 $x, y \in \mathbb{R}^n, x \neq y, n \in \mathbb{N}, n \geq 2,$ (5.5)

and exploiting (5.4), one thus obtains for the Green's function $G_0(m, z; \cdot, \cdot)$ of $H_0(m)$,

$$G_{0}(m, z; x, y) := (H_{0}(m) - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1}(x, y)$$

$$= i4^{-1}(2\pi)^{(2-n)/2}|x - y|^{2-n}(m\beta + zI_{N})$$

$$\times \left[(z^{2} - m^{2})^{1/2}|x - y| \right]^{(n-2)/2} H_{(n-2)/2}^{(1)}((z^{2} - m^{2})^{1/2}|x - y|)$$

$$- 4^{-1}(2\pi)^{(2-n)/2}|x - y|^{1-n} \alpha \cdot \frac{(x - y)}{|x - y|}$$

$$\times \left[(z^{2} - m^{2})^{1/2}|x - y| \right]^{n/2} H_{n/2}^{(1)}((z^{2} - m^{2})^{1/2}|x - y|).$$

Here we employed the identity ([1, p. 361]),

$$[H_{\nu}^{(1)}(\zeta)]' = -H_{\nu+1}^{(1)}(\zeta) + \nu \, \zeta^{-1} H_{\nu}^{(1)}(\zeta), \quad \nu, \zeta \in \mathbb{C}.$$

Equations (B.9), (B.10) reveal the facts (still assuming (5.5)),

$$\lim_{\substack{z \to \pm m \\ z \in \mathbb{C} \setminus \{\pm m\}}} G_0(m, z; x, y) = 4^{-1} \pi^{-n/2} \Gamma((n-2)/2) |x-y|^{2-n} (m \beta \pm m I_N)$$

$$+ i 2^{-1} \pi^{-n/2} \Gamma(n/2) \alpha \cdot \frac{(x-y)}{|x-y|^n},$$

$$m > 0, \ x, y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 3,$$

$$G_0(m, z; x, y) = -(4\pi)^{-1} \ln(z^2 - m^2) (m \beta \pm m I_2)$$

$$= \frac{z \to \pm m}{z \in \mathbb{C} \setminus \{\pm m\}}$$

$$- (2\pi)^{-1} \ln(|x-y|) (m \beta \pm m I_2) + i(2\pi)^{-1} \alpha \cdot \frac{(x-y)}{|x-y|^2}$$

$$+ O((z^2 - m^2) \ln(z^2 - m^2)), \quad m > 0, \ x, y \in \mathbb{R}^2, \ x \neq y.$$
 (5.7)

(Here the remainder term $O((z^2 - m^2) \ln(z^2 - m^2))$ depends on $x, y \in \mathbb{R}^2$, but this is of no concern at this point.) In particular, $G_0(m, z; \cdot, \cdot)$ blows up logarithmically as $z \to \pm m$ in two dimensions, n = 2, just as $g_0(z, \cdot, \cdot)$ does as $z \to 0$.

By contrast, the massless case is quite different and assuming

$$z \in \mathbb{C}_+, x, y \in \mathbb{R}^n, x \neq y, n \in \mathbb{N}, n \ge 2,$$
 (5.8)

one computes in the case m=0 for the Green's function $G_0(z;\cdot,\cdot)$ of H_0 ,

$$G_{0}(z;x,y) := (H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1}(x,y)$$

$$= i4^{-1}(2\pi)^{(2-n)/2}|x-y|^{2-n}z\left[z|x-y|\right]^{(n-2)/2}H_{(n-2)/2}^{(1)}(z|x-y|)I_{N}$$

$$-4^{-1}(2\pi)^{(2-n)/2}|x-y|^{1-n}[z|x-y|]^{n/2}H_{n/2}^{(1)}(z|x-y|)\alpha \cdot \frac{(x-y)}{|x-y|}. (5.9)$$

The Green's function $G_0(z; \cdot, \cdot)$ of H_0 continuously extends to $z \in \overline{\mathbb{C}_+}$. In addition, in the massless case m = 0, the limit $z \to 0$ exists¹,

$$\lim_{\substack{z \to 0, \\ z \in \overline{\mathbb{C}_+} \setminus \{0\}}} G_0(z; x, y) := G_0(0 + i \ 0; x, y) = i 2^{-1} \pi^{-n/2} \Gamma(n/2) \alpha \cdot \frac{(x - y)}{|x - y|^n},$$

$$x, y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 2, \quad (5.10)$$

and no blow up occurs for all $n \in \mathbb{N}$, $n \ge 2$.

Remark 5.1. (i) The observation of an absence of blow up in $G_0(z; \cdot, \cdot)$ as $z \to 0$ is consistent with the sufficient condition for the Dirac operator $H = H_0 + V$ (in dimensions $n \in \mathbb{N}$, $n \ge 2$), with V an appropriate self-adjoint $N \times N$ matrix-valued potential, having no eigenvalues, as derived in [103, Theorems 2.1 and 2.3].

(ii) The asymptotic behavior, for some $d_n \in (0, \infty)$,

$$\begin{aligned} & \|G_0(0+i\ 0; x, y)\|_{\mathbb{C}^N} \\ & \underset{z \to 0, \\ z \in \overline{\mathbb{C}_+} \setminus \{0\}}{=} d_n |x-y|^{1-n}, \quad x, y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 2, \end{aligned}$$

implies the absence of zero-energy resonances (cf. Chapter 10 for a detailed discussion) of H for $n \in \mathbb{N}$, $n \geq 3$, for sufficiently fast decaying short-range potentials V at infinity, as $|\cdot|^{1-n}$ lies in $L^2(\mathbb{R}^n)$ near infinity if and only if $n \geq 3$. This is consistent with observations in [8], [16, Section 4.4], [17, 28, 150, 151, 190] for n = 3 (see also Remark 10.8 (ii)). This should be contrasted with the behavior of Schrödinger

¹Our choice of notation 0 + i 0 in $G_0(0 + i$ 0; x, y) indicates that the limit $\lim_{z\to 0}$ is performed in the closed upper half-plane $\overline{\mathbb{C}_+}$.

operators where

$$\lim_{\substack{z \to 0 \\ z \in \mathbb{C} \setminus \{0\}}} g_0(z; x, y) = g_0(0; x, y) = \frac{1}{(n-2)\omega_{n-1}} |x - y|^{2-n},$$

$$x, y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 3,$$

implies the absence of zero-energy resonances of $h = h_0 + w$ for $n \in \mathbb{N}$, $n \ge 5$, again for sufficiently fast decaying short-range potentials w at infinity, as $|\cdot|^{2-n}$ lies in $L^2(\mathbb{R}^n)$ near infinity if and only if $n \ge 5$, as observed in [96].

Remark 5.2. In the special case n = 3, the identities

$$\begin{split} H_{1/2}^{(1)}(\zeta) &= -i \left(\frac{2}{\pi}\right)^{1/2} \frac{e^{i\zeta}}{\zeta^{1/2}}, \\ H_{3/2}^{(1)}(\zeta) &= -\left(\frac{2}{\pi}\right)^{1/2} \frac{e^{i\zeta}(\zeta+i)}{\zeta^{3/2}}, \quad \zeta \in \mathbb{C} \backslash \{0\}, \end{split}$$

combine in (5.9) to yield

$$G_0(z;x,y) = \frac{e^{iz|x-y|}}{4\pi|x-y|} \left[z I_N + z \alpha \cdot \frac{(x-y)}{|x-y|} + i \alpha \cdot \frac{(x-y)}{|x-y|^2} \right],$$

$$x, y \in \mathbb{R}^3, \ x \neq y, \ z \in \mathbb{C}_+.$$

Remark 5.3. It is possible to expand the massless Dirac Green's function $G_0(z; \cdot, \cdot)$ in powers of z in such a way that several coefficients in the expansion vanish (the precise number of vanishing coefficients depending on the dimension n) for odd dimensions $n \ge 5$. This observation relies on the following connection between the modified Bessel and spherical Bessel functions (cf., e.g., [1, Section 10.1.1]):

$$H_{j+(1/2)}^{(1)}(\zeta) = (2\pi^{-1}\zeta)^{1/2}h_j^{(1)}(\zeta), \quad \zeta \in \mathbb{C} \setminus \{0\}, \ j \in \mathbb{N}.$$
 (5.11)

Moreover, by [1, Equation 10.1.16],

$$h_j^{(1)}(\zeta) = i^{-(j+1)} \zeta^{-1} e^{i\zeta} \sum_{k=0}^{j} \frac{(j+k)!}{k!(j-k)!} (-2i\zeta)^{-k}, \quad \zeta \in \mathbb{C} \setminus \{0\}, \ j \in \mathbb{N}. \quad (5.12)$$

Upon combining (5.11) and (5.12), one obtains for odd dimensions $n \ge 3$,

$$H_{(n/2)-1}^{(1)}(\zeta) = H_{[(n-3)/2]+(1/2)}^{(1)}(\zeta)$$

$$= 2^{1/2} \pi^{-1/2} i^{(1-n)/2} \zeta^{-1/2} e^{i\zeta} \sum_{k=0}^{(n-3)/2} \frac{([(n-3)/2]+k)!}{k!([(n-3)/2]-k)!} (-2i\zeta)^{-k},$$

$$\zeta \in \mathbb{C} \setminus \{0\}, \quad (5.13)$$

and

$$H_{(n/2)}^{(1)}(\zeta) = H_{[(n-1)/2]+(1/2)}^{(1)}(\zeta)$$

$$= 2^{1/2} \pi^{-1/2} i^{-(n+1)/2} \zeta^{-1/2} e^{i\zeta} \sum_{k=0}^{(n-1)/2} \frac{\left(\left[(n-1)/2\right]+k\right)!}{k! \left(\left[(n-1)/2\right]-k\right)!} (-2i\zeta)^{-k},$$

$$\zeta \in \mathbb{C} \setminus \{0\}. \quad (5.14)$$

Thus, using the expansions (5.13) and (5.14) in (5.9), one obtains the following expansion for the massless Dirac Green's function in odd dimensions $n \ge 3$:

$$G_{0}(z; x, y) = i(-1)^{(1-n)/2} 2^{-(n+1)/2} \pi^{(1-n)/2} e^{iz|x-y|} I_{N}$$

$$\times \sum_{k=0}^{(n-3)/2} \frac{\left(\left[(n-3)/2\right] + k\right)!}{k! \left(\left[(n-3)/2\right] - k\right)!} (-2)^{-k} (iz)^{-k+\left[(n-1)/2\right]} |x-y|^{-k-\left[(n-1)/2\right]}$$

$$+ i(-1)^{(1-n)/2} 2^{-(n+1)/2} \pi^{(1-n)/2} e^{iz|x-y|} \alpha \cdot \frac{(x-y)}{|x-y|}$$

$$\times \sum_{k=0}^{(n-1)/2} \frac{\left(\left[(n-1)/2\right] + k\right)!}{k! \left(\left[(n-1)/2\right] - k\right)!} (-2)^{-k} (iz)^{-k+\left[(n-1)/2\right]} |x-y|^{-k-\left[(n-1)/2\right]},$$

$$x, y \in \mathbb{R}^{n}, x \neq y, z \in \mathbb{C} \setminus \mathbb{R}. \quad (5.15)$$

Introducing the power series for the exponential in (5.15) and reordering the series to combine like powers of iz, one obtains

$$G_{0}(z;x,y) = (-1)^{(3-n)/2} 2^{-(n+1)/2} \pi^{(1-n)/2} z |x-y| \sum_{j=0}^{\infty} d_{j}(iz)^{j} |x-y|^{-(n-1-j)} I_{N}$$

$$+ i(-1)^{(1-n)/2} 2^{-(n+1)/2} \pi^{(1-n)/2} \sum_{j=0}^{\infty} d'_{j}(iz)^{j} |x-y|^{-(n-1-j)} \alpha \cdot \frac{(x-y)}{|x-y|},$$

$$x, y \in \mathbb{R}^{n}, x \neq y, z \in \mathbb{C} \setminus \mathbb{R}, \quad (5.16)$$

where for each $j \in \mathbb{N}_0$, the numerical coefficients d_j and d'_j are given by

$$d_{j} = \sum_{\substack{k=0\\k\geq \lfloor (n-3)/2\rfloor-j}}^{(n-3)/2} \frac{\left(\lfloor (n-3)/2\rfloor+k\right)!}{k!\left(\lfloor (n-3)/2\rfloor-k\right)!} (-2)^{-k} \frac{1}{\left(j+k-\lfloor (n-3)/2\rfloor\right)!}, \quad (5.17)$$

$$d'_{j} = \sum_{\substack{k=0\\k\geq \lfloor (n-1)/2\rfloor-j}}^{(n-1)/2} \frac{\left(\left[(n-1)/2\right]+k\right)!}{k!\left(\left[(n-1)/2\right]-k\right)!} (-2)^{-k} \frac{1}{\left(j+k-\left[(n-1)/2\right]\right)!}.$$
 (5.18)

In odd dimensions $n \ge 5$, certain of the coefficients d_j and d'_j in (5.17) and (5.18) vanish based on the combinatorial identity in Proposition 5.4 below. Applying Proposition 5.4 with m = (n-3)/2 and m = (n-1)/2, one infers that for $n \ge 5$ is odd, the free massless Green's function $G_0(z, \cdot, \cdot)$ is given by (5.16)–(5.18) and

$$d_j = 0$$
 for all odd $j \in \mathbb{N}$ satisfying $1 \le j \le n - 4$, $d'_j = 0$ for all odd $j \in \mathbb{N}$ satisfying $1 \le j \le n - 2$.

Proposition 5.4 ([96, Lemma 3.3]). *If* $m \in \mathbb{N}$ *and*

$$c_j := \sum_{\substack{k=0\\k>m-j}}^m \frac{(m+k)!}{k!(m-k)!} (-2)^{-k} \frac{1}{(k+j-m)!}, \quad j \in \mathbb{N}_0,$$

then $c_i = 0$ for j = 1, 3, ..., 2m - 1.

Since H_0 has no spectral gap, $\sigma(H_0) = \mathbb{R}$, but h_0 has the half-line $(-\infty, 0)$ in its resolvent set, a comparison of h_0 with the massive free Dirac operator $H_0(m) = H_0 + m \beta$, m > 0, with spectral gap (-m, m), replacing the energy z = 0 by $z = \pm m$, is quite natural and then exhibits a similar logarithmic blowup behavior as $z \to 0$ in dimensions n = 2.

Returning to our analysis of the resolvent of H_0 , the asymptotic behavior (B.9)–(B.11) implies for some $c_n \in (0, \infty)$,

$$\|G_0(0+i\ 0;x,y)\|_{\mathcal{B}(\mathbb{C}^N)} \le c_n |x-y|^{1-n},$$

$$x,y \in \mathbb{R}^n, \ x \ne y, \ n \in \mathbb{N}, \ n \ge 2,$$
(5.19)

and for given $R \geq 1$,

$$||G_{0}(z;x,y)||_{\mathcal{B}(\mathbb{C}^{N})} \leq c_{n,R}(z)e^{-\operatorname{Im}(z)|x-y|} \begin{cases} |x-y|^{1-n}, & |x-y| \leq 1, \ x \neq y, \\ 1, & 1 \leq |x-y| \leq R, \\ |x-y|^{(1-n)/2}, & |x-y| \geq R, \end{cases}$$

$$z \in \overline{\mathbb{C}_{+}}, \ x, y \in \mathbb{R}^{n}, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 2, \quad (5.20)$$

for some $c_{n,R}(\cdot) \in (0,\infty)$ continuous and locally bounded on $\overline{\mathbb{C}_+}$. For future purposes we now rewrite $G_0(z;\cdot,\cdot)$ as follows:

$$G_{0}(z;x,y) = i4^{-1}(2\pi)^{(2-n)/2}|x-y|^{2-n}z\left[z|x-y|\right]^{(n-2)/2}H_{(n-2)/2}^{(1)}(z|x-y|)I_{N}$$

$$-4^{-1}(2\pi)^{(2-n)/2}|x-y|^{1-n}\left[z|x-y|\right]^{n/2}H_{n/2}^{(1)}(z|x-y|)\alpha\cdot\frac{(x-y)}{|x-y|}$$

$$= |x-y|^{1-n}f_{n}(z,x-y), \quad z \in \overline{\mathbb{C}_{+}}, \ x,y \in \mathbb{R}^{n}, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 2, \quad (5.21)$$

where f_n is continuous and locally bounded on $\overline{\mathbb{C}_+} \times \mathbb{R}^n$, in addition,

$$||f_{n}(z,x)||_{\mathcal{B}(\mathbb{C}^{N})} \le c_{n}(z)e^{-\operatorname{Im}(z)|x|} \begin{cases} 1, & 0 \le |x| \le 1, \\ |x|^{(n-1)/2}, & |x| \ge 1, \end{cases} \quad z \in \overline{\mathbb{C}_{+}}, \ x, y \in \mathbb{R}^{n}, \quad (5.22)$$

for some constant $c_n(\cdot) \in (0, \infty)$ continuous and locally bounded on $\overline{\mathbb{C}_+}$. In particular, decomposing $G_0(z;\cdot,\cdot)$ into

$$G_{0}(z; x, y) = G_{0}(z; x, y) \chi_{[0,1]}(|x - y|) + G_{0}(z; x, y) \chi_{[1,\infty)}(|x - y|)$$

$$= G_{0,<}(z; x - y) + G_{0,>}(z; x - y),$$

$$z \in \overline{\mathbb{C}_{+}}, x, y \in \mathbb{R}^{n}, x \neq y, n \in \mathbb{N}, n \geq 2,$$

$$(5.23)$$

where

$$G_{0,<}(z;x-y) := G_0(z;x,y)\chi_{[0,1]}(|x-y|), \tag{5.24}$$

$$G_{0,>}(z;x-y) := G_0(z;x,y)\chi_{[1,\infty)}(|x-y|),$$

$$z \in \overline{\mathbb{C}_+}, \ x,y \in \mathbb{R}^n, \ x \neq y, \ n \in \mathbb{N}, \ n \geq 2,$$

$$(5.25)$$

one verifies that

$$\begin{aligned}
|G_{0,>}(z;x-y)_{j,k}| &\leq \begin{cases} C_n|x-y|^{-(n-1)}, & z=0, \\ C_n(z)|x-y|^{-(n-1)/2}, & z\in\overline{\mathbb{C}_+}, \end{cases} \\
x, y &\in \mathbb{R}^n, |x-y| \geq 1, 1 \leq j, k \leq N, \tag{5.26}$$

for some constants $C_n, C_n(\cdot) \in (0, \infty)$, in particular,

$$G_{0,>}(z;\cdot) \in [L^{\infty}(\mathbb{R}^n)]^{N \times N}, \quad z \in \overline{\mathbb{C}_+},$$
 (5.27)

and that

$$G_{0,>}(\cdot;\cdot)$$
 is continuous on $\overline{\mathbb{C}_+} \times \mathbb{R}^n$. (5.28)

In the next chapter, we will use the decomposition (5.23) to derive trace ideal properties of operators of the type $F_1(\cdot)(H_0-zI_{[L^2(\mathbb{R}^n)]^N})^{-1}F_2(\cdot)$, employing results of [26, Section 5.4] in the case $n \geq 3$. We also derive trace ideal properties of $\langle \cdot \rangle^{-\delta}(H_0-zI_{[L^2(\mathbb{R}^n)]^N})^{-1}\langle \cdot \rangle^{-\delta}$ in the case $n \geq 2$ using a different approach based on a combination of Sobolev's inequality and complex interpolation.