
Chapter 6

Trace ideal properties of F1. � /.H0 � zIŒL2.Rn/�N /�1F2. � /

and h � i�ı.H0 � zIŒL2.Rn/�N /�1h � i�ı

In the first part of this chapter we derive trace ideal properties of operators of the
type F1. � /.H0 � zIŒL2.Rn/�N /

�1F2. � /, employing results of [26, Section 5.4] in
the case n � 3. In the second part of this chapter we derive trace ideal proper-
ties of h � i�ı.H0 � zIŒL2.Rn/�N /

�1h � i�ı in the case n � 2 by a different approach
based on a combination of Sobolev’s inequality and complex interpolation. These two
approaches are independent and complement each other.

The considerations (5.21)–(5.27) readily imply the following facts:

Lemma 6.1. Let n 2 N, n � 2, and F;H 2 ŒL2.Rn/�N�N . Introducing

R0;>;F;H .zI x; y/ D F.x/G0;>.zI x � y/H.y/; z 2 CC; x; y 2 Rn; (6.1)

the integral operatorR0;>;F;H.z/ in ŒL2.Rn/�N with integral kernelR0;>;F;H.zI � ; � /
satisfies

R0;>;F;H .z/ 2 B2

�
ŒL2.Rn/�N

�
; z 2 CC; (6.2)

and R0;>;F;H . � / is continuous on CC with respect to the k � kB2.ŒL2.Rn/�N /-norm.
In particular, this applies to F;H satisfying for some constant C 2 .0;1/,

jFj;kj; jHj;kj � C h � i
�ı ; ı > n=2; 1 � j; k � N:

Proof. We apply Theorem A.2 (iii) and Lemma A.4.
Let F;H 2 ŒL2.Rn/�N�N and z 2 CC be fixed. To prove (6.2), it suffices to show

R0;>;F;H .zI � ; � /

B2.CN /

2 L2.R2nI dnx dny/ (6.3)

and apply [27, Theorem 11.6] (in the special case L2.Rn � RnIdnx dny/). To prove
(6.3) we recall

kDkB2.Cn/ � N 1=2
kDkB.CN /; D 2 CN�N : (6.4)

Then by (5.27) and (6.3),

R0;>;F;H .zI x; y/

B2.CN /

� N 1=2


F.x/



B.CN /



G0;>.zI x � y/




B.CN /



H.y/


B.CN /

� C.z/


F.x/



B.CN /



H.y/


B.CN /

; x; y 2 Rn; (6.5)
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for an appropriate constant C.z/ > 0. Since by hypothesis F; H 2 ŒL2.Rn/�N�N ,
and hence,



F. � /

2
B.CN /

�


F. � /

2

B2.CN /
D

NX
j;kD1

ˇ̌
Fj;k. � /

ˇ̌2
2 L1.Rn/;

and analogously for H , the estimate in (6.5) implies (6.3).
To prove the continuity claim, let z; z0 2 CC. One computes (cf. [27, Theo-

rem 11.6])

R0;>;F;H .z/ �R0;>;F;H .z0/

2B2.ŒL2.Rn/�N /

D

Z
Rn�Rn

dnx dny


R0;>;F;H .zI x; y/ �R0;>;F;H .z0I x; y/

2B2.CN /

� N

Z
Rn�Rn

dnx dny


F.x/

2

B.CN /



G0;>.zI x � y/ �G0;>.z
0
I x � y/



2
B.CN /

�


H.y/

2

B.CN /
: (6.6)

An application of Lebesgue’s dominated convergence theorem, making use of (5.27),
F;H 2 ŒL2.Rn/�N�N , and the continuity ofG0;>.zIx � y/with respect to .z;x � y/
in B.CN / (see (5.28)), then yields

lim
z!z0

z;z02CC



R0;>;F;H .z/ �R0;>;F;H .z0/

B2.ŒL2.Rn/�N /
D 0:

To improve upon Lemma 6.1, we now recall the following version of Sobolev’s
inequality (see, e.g., [157, Corollary I.14]).

Theorem 6.2. Let n 2 N, � 2 .0; n/, r; s 2 .1;1/, r�1 C s�1 C �n�1 D 2, f 2

Lr.Rn/, h 2 Ls.Rn/. Then, there exists Cr;s;�;n 2 .0;1/ such thatZ
Rn�Rn

dnx dny
jf .x/jjh.y/j

jx � yj�
� Cr;s;�;nkf kLr .Rn/khkLs.Rn/: (6.7)

For subsequent purposes, we also recall some basic facts on Lp-properties of
Riesz potentials (see, e.g., [160, Section V.1]):

Theorem 6.3. Let n 2 N, ˛ 2 .0;n/, and introduce the Riesz potential operator R˛;n

as follows:

.R˛;nf /.x/ D
�
.��/�˛=2f

�
.x/ D 
.˛; n/�1

Z
Rn

dny jx � yj˛�nf .y/;


.˛; n/ D �n=22˛�.˛=2/=�
�
.n � ˛/=2

�
; (6.8)

for appropriate functions f .see below/.
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(i) Let p 2 Œ1;1/ and f 2 Lp.Rn/. Then the integral .R˛;nf /.x/ converges for
(Lebesgue) a.e. x 2 Rn.

(ii) Let 1 < p < q <1, q�1 D p�1 � ˛n�1, and f 2 Lp.Rn/. Then there exists
Cp;q;˛;n 2 .0;1/ such that

kR˛;nf kLq.Rn/ � Cp;q;˛;nkf kLp.Rn/: (6.9)

We also note the ˇ function-type integral (cf. [160, p. 118]),Z
Rn

dny jek � yj
˛�n

jyjˇ�n D 
.˛; n/
.ˇ; n/=
.˛ C ˇ; n/;

0 < ˛ < n; 0 < ˇ < n; ˛ C ˇ < n;

ek D .0; : : : ; 1„ƒ‚…
k

; : : : ; 0/; 1 � k � n: (6.10)

and the Riesz composition formula (see [53, Sections 3.1 and 3.2]),Z
Rn

dny jx1 � yj
˛�n

jy � x2j
ˇ�n

D
�

.˛; n/
.ˇ; n/=
.˛ C ˇ; n/

�
jx1 � x2j

˛Cˇ�n;

0 < ˛ < n; 0 < ˇ < n; ˛ C ˇ < n; x1; x2 2 Rn: (6.11)

For later use in Chapter 10, we recall the following estimate taken from [63,
Lemma 6.3].

Lemma 6.4. Let n 2 N and x1; x2 2 Rn. If ˛;ˇ 2 .0; n�, "; 
 2 .0;1/, with nC 
 �

˛ C ˇ, and ˛ C ˇ ¤ n, thenZ
Rn

dny jx1 � yj
˛�n

hyi�
�"jy � x2j
ˇ�n

� Cn;˛;ˇ;
;"

´
jx1 � x2j

�max¹0;n�˛�ˇº; jx1 � x2j � 1;

jx1 � x2j
�min¹n�˛;n�ˇ;nC
�˛�ˇº; jx1 � x2j � 1;

where Cn;˛;ˇ;
;" 2 .0;1/ is an x1; x2-independent constant.

Returning to G0;>.zI � /, we next combine the estimate (5.26) with Theorem 6.2,
rather than just using the L1-bound (5.27) on G0;>.zI � / in Lemma 6.1, yielding a
considerable improvement of Lemma 6.1.

Theorem 6.5. Let n 2 N, n � 2.
(i) Let z D 0 and F;H 2 ŒL4n=.nC"/.Rn/�N�N for some " > 0. Introducing the

integral operator R0;>;F;H .0/ in ŒL2.Rn/�N with integral kernel R0;>;F;H .0I � ; � /
as in (6.1), then

R0;>;F;H .0/ 2 B2

�
ŒL2.Rn/�N

�
: (6.12)
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In particular, this applies to F;H satisfying for some constant C 2 .0;1/,

jFj;kj; jHj;kj � C h � i
�ı ; ı > n=4; 1 � j; k � N:

(ii) Let z 2 CC and F;H 2 ŒL4n=.nC1/.Rn/�N�N . Introducing the integral oper-
ator R0;>;F;H .z/ in ŒL2.Rn/�N with integral kernel R0;>;F;H .zI � ; � / as in (6.1),
then

R0;>;F;H .z/ 2 B2

�
ŒL2.Rn/�N

�
; z 2 CC; (6.13)

and R0;>;F;H . � / is continuous on CC with respect to the k � kB2.ŒL2.Rn/�N /-norm.
In particular, this applies to F;H satisfying for some constant C 2 .0;1/,

jFj;kj; jHj;kj � C h � i
�ı ; ı > .nC 1/=4; 1 � j; k � N:

Proof. Again, we apply Theorem A.2 (iii) and Lemma A.4.
If z D 0, then R0;>;F;H .0I � ; � / generates a Hilbert–Schmidt operator in L2.Rn/

upon applying the following modified z D 0 part in estimate (5.26),ˇ̌
G0;>.zI x � y/j;k

ˇ̌
� cn;"jx � yj�.n�"/=2;

x; y 2 Rn; jx � yj � 1; 1 � j; k � N;

for some constants cn;" 2 .0;1/, combined with Sobolev’s inequality in the formZ
Rn�Rn

dnxdny

ˇ̌
f .x/

ˇ̌2ˇ̌
h.y/

ˇ̌2
jx � yjn�"

�Œ1;1/
�
jx � yj

�
� Cn;"kf

2
kL2n=.nC"/.Rn/kh

2
kL2n=.nC"/.Rn/;

identifying r D s D 2n=.nC "/, � D n � " in (6.7). One verifies that

h � i
�ı

2 L4n=.nC"/.Rn/

if ı > .nC "/=4, and, since " > 0 can be chosen arbitrarily small, if ı > n=4.
The general case z 2 CC follows along the same lines using the modified estimate

(5.26), ˇ̌
G0;>.zI x � y/j;k

ˇ̌
� cnjx � yj�.n�1/=2;

x; y 2 Rn; jx � yj � 1; 1 � j; k � N;

for some constant cn 2 .0;1/, again combined with Sobolev’s inequality in the formZ
Rn�Rn

dnxdny

ˇ̌
f .x/

ˇ̌2ˇ̌
h.y/

ˇ̌2
jx � yjn�1

�Œ1;1/
�
jx � yj

�
� Cnkf

2
kL2n=.nC1/.Rn/kh

2
kL2n=.nC1/.Rn/; (6.14)

identifying r D s D 2n=.n C 1/, � D n � 1 in (6.7). One verifies that h � i�ı 2

L4n=.nC1/.Rn/ if ı > .nC 1/=4.
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Finally, continuity of R0;>;F;H . � / on CC with respect to the k � kB2.ŒL2.Rn/�N /-
norm follows again by applying Lebesgue’s dominated convergence theorem as in the
proof of Lemma 6.1.

We recall the following interesting results of McOwen [120] and Nirenberg–
Walker [125], which provide necessary and sufficient conditions for the boundedness
of certain classes of integral operators in Lp.Rn/:

Theorem 6.6. Let n 2 N, c; d 2 R, c C d > 0, p 2 .1;1/, and p0 D p=.p � 1/.
Then the following items (i) and (ii) hold.

(i) Consider

Kc;d .x; y/ D jxj�cjx � yj.cCd/�njyj�d ; x; y 2 Rn; x ¤ x0; (6.15)

then the integral operator Kc;d in Lp.Rn/ with integral kernel Kc;d . � ; � / in (6.15)
is bounded if and only if c < n=p and d < n=p0.

(ii) Consider

zKc;d .x; y/D
�
1C jxj

��c
jx � yj.cCd/�n

�
1C jyj

��d
; x; y 2 Rn; x ¤ x0; (6.16)

then the integral operator zKc;d in Lp.Rn/ with integral kernel zKc;d . � ; � / in (6.16)
is bounded if and only if c < n=p and d < n=p0.

This result implies the following fact.

Theorem 6.7. Let n 2 N, n � 2.
(i) Then the integral operator R0;ı in ŒL2.Rn/�N with associated integral kernel

R0;ı. � ; � / bounded entrywise byˇ̌
R0;ı. � ; � /j;k

ˇ̌
� C h � i

�ı
ˇ̌
G0.0I � ; � /j;k

ˇ̌
h � i

�ı ; ı � 1=2; 1 � j; k � N;

for some C 2 .0;1/, is bounded,

R0;ı 2 B
�
ŒL2.Rn/�N

�
: (6.17)

(ii) The integral operator R0;ı.z/ in ŒL2.Rn/�N , with associated integral kernel
R0;ı.zI � ; � / bounded entrywise byˇ̌

R0;ı.zI � ; � /j;k
ˇ̌
� C h � i

�ı
jG0.zI � ; � /j;kjh � i

�ı ;

ı � .nC 1/=4; z 2 CC; 1 � j; k � N;

for some C 2 .0;1/, is bounded,

R0;ı.z/ 2 B
�
ŒL2.Rn/�N

�
; z 2 CC: (6.18)
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(iii) The integral operator R0;˛;ˇ .z/ in ŒL2.Rn/�N , with associated integral ker-
nel R0;˛;ˇ .zI � ; � / bounded entrywise byˇ̌

R0;˛;ˇ .zI � ; � /j;k
ˇ̌
� C h � i

�˛
ˇ̌
G0.zI � ; � /j;k

ˇ̌
h � i

�ˇ ;

˛ � .n � 1/=2; ˇ � 1; z 2 CC; 1 � j; k � N;

for some C 2 .0;1/, is bounded,

R0;˛;ˇ .z/ 2 B
�
ŒL2.Rn/�N

�
; z 2 CC: (6.19)

Proof. (i) The inclusion (6.17) is then an immediate consequence of (5.10) and hence
the estimate jG0.0Ix;y/j;kj �C jx� yj1�n, x;y 2Rn, x¤ y, 1� j;k�N , Theorem
6.6, choosing c D d D 1=2 in (6.15), and an application of Theorem A.2 (i) and
Lemma A.4.

(ii) To prove the inclusion (6.18) we employ the estimates (B.9)–(B.11) (cf. also
(5.20)) to obtainˇ̌
G0.zI x; y/j;k

ˇ̌
� C.z/jx � yj1�n�Œ0;1�

�
jx � yj

�
CD.z/jx � yj.1�n/=2�Œ1;1/

�
jx � yj

�
;

z 2 CC; x; y 2 Rn; x ¤ y; 1 � j; k � N; (6.20)

for some C; D.z/ 2 .0;1/, and apply Theorems 6.6 (parts (i) or (ii)) and A.2 (i)
(cf. also Lemma A.4) to both terms on the right-hand sides of (6.20). The part 0 �

jx � yj � 1 in (6.20) leads to ı � 1=2, whereas the part jx � yj � 1 in (6.20) yields
ı � .nC 1/=4, implying (6.18).

(iii) Again we employ the estimate (6.20) and argue as in item (ii) for the part
where jx � yj � 1. For the part jx � yj � 1 in (6.20) one employs Theorem 6.6 with
c D ˛ � .n � 1/=2 and d D ˇ � 1.

Given the fact (6.13), we will now focus on G0;<.zI � /, z 2 CC. We begin by
recalling that a.�ir/ is a convolution-type operator of the form,�

a.�ir/'
�
.x/ WD

��
F �1a

�
� '

�
.x/

D .2�/�n=2
Z

Rn

dny a_.x � y/'.y/; ' 2 �.Rn/; (6.21)

given a 2 � 0.Rn/, n 2 N. We are particularly interested in operators of the type

b.Q/a.�ir/;

with Q abbreviating the operator of multiplication by the independent variable x,
such that b.Q/a.�ir/ extends to a bounded, actually, compact operator in L2.Rn/,
in fact, we will focus on its membership in certain Schatten–von Neumann classes.
The prime result we will employ from [26, Section 5.4] in this context can be formu-
lated as follows:
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Theorem 6.8 ([26, p. 103, Section 5.4]). Let 2 < r < s, and suppose that a;  2

Lrweak.R
n/,  > 0, k kLr

weak.R
n/ � 1, and let b be a measurable function such that

b= 2 Lsweak

�
RnI rdnx

�
. Then

b.Q/a.�ir/ 2 Bs

�
L2.Rn/

�
;

and for some constant C.r; s/ 2 .0;1/,

b.Q/a.�ir/


Bs.L2.Rn//

� C.r; s/kakLr
weak.R

n/

�Z
Rn

dnx b.x/s .x/r�s
�1=s

:

.See, e.g., [26, Section 1] for the notion of Lrweak. � /./

Next, we recall (with n 2 N, n � 2) that

j � j

�n

2 L
n=.n�
/
weak .Rn/; 0 < 
 < n;��

j � j

�n

�^�
.�/ D cnj�j

�
 ;
�
j � j


�n
�^

2 L
n=

weak.R

n/; 0 < 
 < n;

G0;<.zI � /j;k D j � j
1�nfn.z; � /j;k�Œ0;1�

�
j � j

�
2 L

n=.n�1/
weak .Rn/ � Lp.Rn/;

1 � j; k � N; p 2
�
0; n=.n � 1/

�
;

where fn.z; � / and G0;<.zI � / are defined by (5.22) and (5.24), respectively. In addi-
tion, we recall the Hausdorff–Young inequality and its weak analog (cf., e.g., [139,
p. 32]), 

f ^




Lp=.p�1/.Rn/

� Dp;nkf kLp.Rn/; p 2 Œ1; 2�; (6.22)

f ^



L

p=.p�1/
weak .Rn/

� Cp;nkf kLp
weak.R

n/; p 2 .1; 2/; (6.23)

noting that p=.p� 1/2 .2;1/ if p 2 .1;2/. In particular, since pD n=.n� 1/2 .1;2/

for n � 3,�
G0;<.zI � /j;k

�^
D
�
j � j

1�nfn.z; � /j;k�Œ0;1�
�
j � j

��^
2 Lnweak.R

n/;

1 � j; k � N; n 2 N; n � 3: (6.24)

Thus, an application of Theorem 6.8 and yields the following result.

Theorem 6.9. Let n 2 N, n � 3, " > 0, and assume that for some q 2 .n;1/, F 2

ŒLq.RnI .1C jxj/.q�n/.1C"/dnx/�N�N . Then,

F.Q/G0;<.zI �ir/
^
2 Bq

�
ŒL2.Rn/�N

�
; z 2 CC; (6.25)
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and

F.Q/j;`�G0;<.zI �ir/`;k�^

Bq.L2.Rn//

�C`;k.n;q/


�G0;<.z; � /`;k�^

Ln

weak.R
n/

�Z
Rn

�
1Cjxj

�.q�n/.1C"/
dnx

ˇ̌
F.x/j;`

ˇ̌q�1=q
;

1 � j; k; ` � N: (6.26)

In addition, the operator F.Q/G0;<.zI �ir/^ is continuous with respect to z 2 CC

in the Bq

�
ŒL2.Rn/�N

�
-norm.

Proof. Pick k; ` 2 ¹1; : : : ; N º. Introducing  .x/ D c.1 C jxj/�1�", x 2 Rn,
c > 0, one infers that 2Ln.Rn/ and choosing c D k.1C j � j/�1�"k�1

Ln
weak.R

n/
yields

k kLn
weak.R

n/ � 1. Identifying a_ in Theorem 6.8 and

G0;<.zI � /`;k 2 L
n=.n�1/
weak .Rn/ � Lp.Rn/; p 2

�
0; n=.n � 1/

�
;

the inclusion (6.24) yields

a D .a_/^ D
�
G0;<.zI � /`;k

�^
2 Lnweak.R

n/:

Identifying b in Theorem 6.8 with Fj;` 2 Lq.RnI .1 C jxj/.q�n/.1C"/dnx/, r with
n� 3, and s with q >n, one verifies thatFj;`= 2Ln.RnI ndnx/ and all hypotheses
of Theorem 6.8 are satisfied. Hence, the inclusion (6.25) and the estimate (6.26) hold.

Continuity ofF.Q/G0;<.zI�ir/^ with respect to z2CC in the Bq.ŒL
2.Rn/�N /-

norm follows from the estimate (6.26) (replacing G0;<.zI �ir/ by G0;<.zI �ir/ �
G0;<.z

0I �ir/), the explicit structure of G0;<.zI � / in (5.21), (5.23), and the con-
tinuity of fn. � ; � /, combined with the weak Hausdorff–Young inequality (6.23)
and the fact that Lq.RnI d�/ � L

q
weak.R

nI d�/ with kgkLq
weak.R

nId�/ � kgkLq.RnId�/,
g 2 Lq.RnI d�/, q 2 .0;1/. Indeed, with Cn 2 .0;1/ some universal constant,

�G0;<.zI � /`;k�^ � ŒG0;<.z

0
I � /`;k�

^



Ln

weak.R
n/

� CnkG0;<.zI � /`;k �G0;<.z
0
I � /`;kkLn=.n�1/

weak .Rn/

� CnkG0;<.zI � /`;k �G0;<.z
0
I � /`;kkLn=.n�1/.Rn/ �!

z!z0

z;z02CC

0;

applying the dominated convergence theorem.

A combination of Theorems 6.5 and 6.9 then yields the first principal result of
this chapter, which strengthens a part of Theorem 3.4 (see (3.27)) and shows that
the Birman–Schwinger operators V2.H0 � zIŒL2.Rn/�N /

�1V �
1 are continuous in the

closed upper half-plane in an appropriate Schatten norm, provided that Vj , j D 1; 2,
satisfy appropriate boundedness and decay hypotheses.
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Theorem 6.10. Let n 2 N, n � 3, " > 0, and suppose that

F1 2
�
Lq
�
RnI

�
1C jxj

�.q�n/.1C"/
dnx

��N�N for some q 2 .n;1/;

and
F` 2 ŒL

4n=.nC1/.Rn/�N�N
\ ŒL1.Rn/�N�N ; ` D 1; 2:

Introducing

R0;F1;F2
.z; x; y/ D F1.x/G0.zIx; y/F2.y/; z 2 CC; x; y 2 Rn; x ¤ y; (6.27)

the integral operatorR0;F1;F2
.z/ in ŒL2.Rn/�N with integral kernelR0;F1;F2

.z; � ; � /

satisfies
R0;F1;F2

.z/ 2 Bq

�
ŒL2.Rn/�N

�
; z 2 CC; (6.28)

and R0;F1;F2
. � / is continuous on CC with respect to the k � kBq.ŒL2.Rn/�N /-norm.

In particular, this applies to F`, `D 1;2, satisfying for some constant C 2 .0;1/,

jF`;j;kj � C h � i
�ı ; ı > .nC 1/=4; 1 � j; k � N; ` D 1; 2:

Proof. Recalling the decomposition (5.23),

G0.zI x; y/ D G0;<.zI x � y/CG0;>.zI x � y/; x; y 2 Rn; x ¤ y; (6.29)

(now employed for n 2 N, n � 3), one applies Theorem 6.5 to G0;>.zI � / and Theo-
rem 6.9 to G0;<.zI � /.

One readily verifies that if ı > .nC 1/=4, then h � i�ıIN satisfies the conditions
assumed on F`, ` D 1; 2,

This handles the case n � 3. Due to the condition s > r > 2 (in the underlying
concrete case, r D n) in Theorem 6.8, the special case n D 2 in connection with
G0;<.zI � / does not subordinate to these techniques and hence will be treated using
an alternative approach next (which actually applies to all dimensions n � 2). While
Theorem 6.10 only handles the case n� 3, it has the advantage that it yields continuity
ofR0;F1;F2

. � / on CC (and hence, particularly along the real axis) in a straightforward
manner.

To describe an alternative approach to this circle of ideas, we start with some
preparatory material on the following trace ideal interpolation result, see, for instance,
[85, Theorem III.13.1], [186, Theorem 0.2.6] (see also [80], [86, Theorem III.5.1]).

Theorem 6.11. Let pj 2 Œ1;1/ [ ¹1º, † D ¹� 2 C j Re.�/ 2 .�1; �2/º, �j 2 R,
�1 < �2, j D 1; 2. Suppose that A.�/ 2 B.H /, � 2 † and that A. � / is analytic on†,
continuous up to @†, and that kA. � /kB.H/ is bounded on †. Assume that for some
Cj 2 .0;1/,

sup
�2R



A.�j C i�/




Bpj
.H/

� Cj ; j D 1; 2: (6.30)
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Then

A.�/2Bp.Re.�//.H /;
1

p
�

Re.�/
�D 1

p1
C

Re.�/ � �1
�2 � �1

�
1

p2
�
1

p1

�
; �2†; (6.31)

and 

A.�/


Bp.Re.�//.H/

� C
.�2�Re.�//=.�2��1/
1 C

.Re.�/��1/=.�2��1/
2 ; � 2 †: (6.32)

In case pj D 1, B1.H / can be replaced by B.H /.

A combination of Theorems 6.6, 6.2 and 6.11 then yields the following fact (cf.
[83]).

Theorem 6.12. Let n 2 N, n � 2, 0 < 2
 < n, ı > 
 , and suppose that T
;ı is an
integral operator in L2.Rn/ whose integral kernel T
;ı. � ; � / satisfies the estimateˇ̌

T
;ı.x; y/
ˇ̌
� C hxi�ı jx � yj2
�nhyi�ı ; x; y 2 Rn; x ¤ y

for some C 2 .0;1/. Then,

T
;ı 2 Bp
�
L2.Rn/

�
; p > n=.2
/; p � 2; (6.33)

and

kT
;ıkBn=.2
�"/.L
2.Rn//

� sup
�2R

�

T
;ı.�2
 C "C i�/




B.L2.Rn//

�2Œ�2
C.n=2/C"�=n
� sup
�2R

�

T
;ı.�2
 C .n=2/C "C i�/




B2.L2.Rn//

�2.2
�"/=n (6.34)

for 0 < " sufficiently small.

Proof. Following the idea behind Yafaev’s proof of [186, Lemma 0.13.4], we intro-
duce the analytic family of integral operators T
;ı. � / in L2.Rn/ generated by the
integral kernel

T
;ı.�I x; y/ D T
;ı.x; y/ hxi
�.�=2/

jx � yj� hyi�.�=2/; x; y 2 Rn; x ¤ y;

noting T
;ı.0/ D T
;ı .
By Theorems 6.6 (ii) and A.2 (i) (for N D 1),

T
;ı.�/ 2 B
�
L2.Rn/

�
; 0 < Re.�/C 2
 < n; ı � 
:

To check the Hilbert–Schmidt property of T
;ı. � / one estimates for the square of
jT
;ı. � I � ; � /j,ˇ̌

T
;ı.�I x; y/
ˇ̌2

� hxi�2ı�Re.�/
jx � yj2Re.�/C4
�2n

hyi�2ı�Re.�/;

x; y 2 Rn; x ¤ y;
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and hence one can apply Theorem 6.2 upon identifying � D 2n � 4
 � 2 Re.z/,
r D s D n=ŒRe.�/ C 2
�, and f D h D h � i�Œ2ıCRe.�/�, to verify that 0 < � < n

translates into n=2 < Re.�/C 2
 < n, and f 2Lr.Rn/ holds with r 2 .1; 2/ if ı > 
 .
Hence,

T
;ı.�/ 2 B2

�
L2.Rn/

�
; n=2 < Re.�/C 2
 < n; ı > 
:

It remains to interpolate between the B
�
L2.Rn/

�
and B2

�
L2.Rn/

�
property, employ-

ing Theorem 6.11 as follows. Choosing 0 < " sufficiently small, one identifies �1 D
�2
 C ", �2 D �2
 C .n=2/C ", p1 D 1, p2 D 2, and hence obtains

p
�

Re.�/
�
D n=

�
Re.�/C 2
 � "

�
; (6.35)

in particular, p.0/ > n=.2
/ (and of course, p.0/� 2). Since "may be taken arbitrar-
ily small, (6.33) follows from (6.35) and (6.34) is a direct consequence of (6.32).

One notes that while subordination in general only applies to Bp-ideals with p
even (see the discussion in [159, p. 24 and Addendum E]), the use of complex inter-
polation in Theorem 6.12 (and the focus on bounded and Hilbert–Schmidt operators)
permits one to avoid this restriction.

Combining Theorems 6.2, 6.6 (ii), 6.11, and 6.12 then yields the second principal
result of this chapter.

Theorem 6.13. Let n 2 N, n� 2. Then the integral operatorR0;ı in ŒL2.Rn/�N with
integral kernel R0;ı. � ; � / permitting the entrywise boundˇ̌
R0;ı. � ; � /j;k

ˇ̌
� C h � i

�ı
ˇ̌
G0.0C i 0I � ; � /j;k

ˇ̌
h � i

�ı ; ı > 1=2; 1 � j; k � N;

for some C 2 .0;1/, satisfies

R0;ı 2 Bp
�
ŒL2.Rn/�N

�
; p > n: (6.36)

In a similar fashion, the integral operator R0;ı.z/ in ŒL2.Rn/�N with integral kernel
R0;ı.zI � ; � / permitting the entrywise boundˇ̌

R0;ı.zI � ; � /j;k
ˇ̌
� C h � i

�ı
ˇ̌
G0.zI � ; � /j;k

ˇ̌
h � i

�ı ;

z 2 CC; ı > .nC 1/=4; 1 � j; k � N;

for some C 2 .0;1/, satisfies

R0;ı.z/ 2 Bp
�
ŒL2.Rn/�N

�
; p > n; z 2 CC: (6.37)

Proof. We will apply the fact (A.5).
The inclusion (6.36) is immediate from (5.10) (employing the elementary esti-

mate jG0.0Ix;y/j;kj � C jx � yj1�n, x;y 2 Rn, x ¤ y, 1 � j; k � N ) and Theorem
6.12 (with 
 D 1=2).
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To prove the inclusion (6.37) we again employ the estimate (6.20). An application
of Theorem 6.12 to both terms in (6.20), then yields for the part where 0� jx � yj � 1

that 
 D 1=2 and hence ı > 1=2 and p > n. Similarly, for the part where jx � yj � 1

one infers 
 D .nC 1/=4 and hence ı > .nC 1/=4 and p > 2n=.nC 1/, p � 2, and
thus one concludes ı > .nC 1/=4 and p > n.

Remark 6.14. Continuity of R0;ı. � / on CC with respect to the k � kBp.ŒL2.Rn/�N /-
norm, p > n, appears to be more difficult to prove within this complex interpolation
approach. In this context the first approach described in this chapter is by far simpler
to apply, but in turn it is restricted to the case n � 3. In fact, as recorded in Theorem
6.10, if ı > .nC 1/=4, then h � i�ıIN satisfies the conditions assumed on F`, `D 1; 2,
in Theorem 6.10, implying the fact,

For n � 3, ı > .nC 1/=4, R0;ı. � / is continuous on CC

with respect to the k � kBp.ŒL2.Rn/�N /-norm, p > n:

Fortunately, the remaining case n D 2 can easily be handled directly as we demon-
strate next. ˘

Corollary 6.15. Let n D 2, ı > 3=4, and z0 2 CC. Then R0;ı. � /, as introduced in
Theorem 6.13, satisfies�

R0;ı.z1/ �R0;ı.z2/
�
2 B2

�
ŒL2.R2/�N

�
; zj 2 CC; j D 1; 2; (6.38)

and
lim
z!z0

z2CCn¹z0º



R0;ı.z/ �R0;ı.z0/

B2.ŒL2.R2/�N /
D 0:

Proof. Once more we will apply the fact (A.5) (for p D 2).
By Theorem 6.5 (ii) it suffices to focus on G0;<.zI � /. The explicit formula (see

(C.23), (C.24)),

G0.zI x; y/ D i4�1z H
.1/
0

�
zjx � yj

�
IN

� 4�1jx � yj�1
�
zjx � yj

�
H
.1/
1

�
zjx � yj

�
˛ �
.x � y/

jx � yj
;

z 2 CC; x; y 2 R2; x ¤ y; (6.39)

together with the z ! 0; z 2 CCn¹0º limit (C.25), then permit the following conclu-
sions: Only if z ! 0 (z 2 CCn¹0º) and/or if jx � yj ! 0, can G0.zI x; y/ develop
a singularity which then is of the form ln.zjx � yj/ and jx � yj�1. (In all other cir-
cumstancesG0 is continuous on CC � R2 � R2.) However, the jx � yj�1-singularity
is z-independent and hence drops out in differences of the form R0;ı.z1/�R0;ı.z2/,
zj 2 CC, j D 1; 2. Thus one can safely ignore the jx � yj�1-singularity. Conse-
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quently, this only leaves the ln.zj jx � yj/-singularity, j D 1; 2, when considering
G0;<.z1I x; y/ � G0;<.z2I x; y/. This then yields the estimate (see also (5.21) and
(5.22)),ˇ̌
G0;<.zI x; y/j;k �G0;<.z0I x; y/j;k

ˇ̌
�

´
C
�
jzj C jz0j

�ˇ̌
ln
�
jx � yj

�ˇ̌
CD.z; z0/; z; z0 2 CC

�
¹0º;

C jzj
ˇ̌
ln
�
jx � yj

�ˇ̌
CD.z/; z2CC

�
¹0º; z0D0;

x; y 2 R2; 0 < jx � yj � 1; 1 � j; k � N; (6.40)

with C 2 .0;1/, and D. � ; z0/; D. � / 2 .0;1/ continuous and locally bounded on
CC. The logarithmic-type integral kernel in (6.39) can now be handled as in [186,
Proposition 7.1.17] (upon multiplying R0.z/ by a factor of z if z0 D 0, and choosing
jzj D 1 in equation (7.1.25) in [186, p. 272]) if z0 2 CC

�
¹0º, implying the asserted

Hilbert–Schmidt property. Alternatively, one can use the very rough estimate (for
some c0 2 .0;1/)ˇ̌

ln
�
jx � yj

�ˇ̌2
� c0jx � yj�1; 0 < jx � yj � 1;

and apply the Sobolev inequality in the form of (6.7) with nD 2, �D 1, r D s D 4=3,
recalling that h � i�2ı 2 L4=3.R2/ if ı > 3=4.

Combining Theorems 6.10, 6.13, Remark 6.14, and Corollary 6.15, we finally
summarize the principal results of this chapter as follows:

Theorem 6.16. Let n 2 N, n � 2 and consider the integral operator R0;ı.z/ in
ŒL2.Rn/�N with integral kernel R0;ı.zI � ; � / permitting the entrywise boundˇ̌

R0;ı.zI � ; � /j;k
ˇ̌
� C h � i

�ı
ˇ̌
G0.zI � ; � /j;k

ˇ̌
h � i

�ı ;

z 2 CC; ı > .nC 1/=4; 1 � j; k � N;

for some C 2 .0;1/. Then R0;ı.z/ satisfies

R0;ı.z/ 2 Bp
�
ŒL2.Rn/�N

�
; p > n; z 2 CC: (6.41)

Moreover, if n � 3, ı > .nC 1/=4, then R0;ı. � / is continuous on CC with respect to
the k � kBp.ŒL2.Rn/�N /-norm for p > n. Finally, if n D 2, ı > 3=4, then�

R0;ı.z1/ �R0;ı.z2/
�
2 B2

�
ŒL2.R2/�N

�
; zj 2 CC; j D 1; 2; (6.42)

and
lim
z!z0

z2CCn¹z0º



R0;ı.z/ �R0;ı.z0/

B2.ŒL2.R2/�N /
D 0: (6.43)


