Chapter 7

Powers of resolvents and trace ideals

We now introduce the following considerably strengthened set of assumptions on the short-range potential V:

Hypothesis 7.1. Let $n \in \mathbb{N}$ and suppose that V satisfies for some constant $C \in (0, \infty)$ and $\rho \in (n, \infty)$,

$$V \in [L^{\infty}(\mathbb{R}^n)]^{N \times N}, \quad |V_{\ell,\ell'}(x)| \le C\langle x \rangle^{-\rho} \quad \text{for a.e. } x \in \mathbb{R}^n, \ 1 \le \ell, \ell' \le N.$$

Given Hypothesis 7.1, the principal purpose of this chapter is to prove that for $k \ge n$,

$$\left[(H - zI_{[L^2(\mathbb{R}^n)]^N})^{-k} - (H_0 - zI_{[L^2(\mathbb{R}^n)]^N})^{-k} \right] \in \mathcal{B}_1\left([L^2(\mathbb{R}^n)]^N \right),$$

$$z \in \mathbb{C} \setminus \mathbb{R}. \tag{7.1}$$

Here $H = H_0 + V$ is defined according to (3.4), but we do not assume self-adjointness of the $N \times N$ matrix V in this chapter.

The following arguments are straightforward generalizations of the arguments in [185] in the three-dimensional context n = 3. We start with a study of H_0 :

Lemma 7.2. *Let* $r \in (0, \infty)$, $k \in \mathbb{N}$, and define $p(r, k) := n/\min\{r, k\}$. If p > p(r, k), $p \ge 1$, then

$$\langle \cdot \rangle^{-r} (H_0 - z I_{[L^2(\mathbb{R}^n)]^N})^{-k} \in \mathcal{B}_p \big([L^2(\mathbb{R}^n)]^N \big), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

In particular, choosing $r = n + \varepsilon$ for some $\varepsilon > 0$, k = n + 1, then $p(n + \varepsilon, n + 1) < 1$, and hence

$$\langle \cdot \rangle^{-n-\varepsilon} (H_0 - z I_{[L^2(\mathbb{R}^n)]^N})^{-n-1} \in \mathcal{B}_1([L^2(\mathbb{R}^n)]^N), \quad z \in \mathbb{C} \setminus \mathbb{R}. \tag{7.2}$$

Proof. Since

$$(H_0 - zI_{[L_2(\mathbb{R}^n)]^N})^{-k}$$

$$= (H_0 + zI_{[L_2(\mathbb{R}^n)]^N})^k (H_0^2 - z^2 I_{[L_2(\mathbb{R}^n)]^N})^{-k}$$

$$= (h_0 - z^2 I_{L^2(\mathbb{R}^n)})^{-k/2} I_N (H_0 + zI_{[L_2(\mathbb{R}^n)]^N})^k (H_0^2 - z^2 I_{[L_2(\mathbb{R}^n)]^N})^{-k/2},$$

$$z \in \mathbb{C} \setminus \mathbb{R},$$

and the operator $(H_0 + zI_{[L_2(\mathbb{R}^n)]^N})^k (H_0^2 - z^2I_{[L_2(\mathbb{R}^n)]^N})^{-k/2}$ is bounded, it is sufficient to prove the assertion for the operator $\langle \cdot \rangle^{-r} (h_0 - z^2I_{L^2(\mathbb{R}^n)})^{-k/2}$. The latter follows from [186, p. 145, Lemma 4.3].

Turning from H_0 to $H = H_0 + V$ then yields the following result.

Lemma 7.3. Assume that $V \in [L^{\infty}(\mathbb{R}^n)]^{N \times N}$, let $r \in (0, \infty)$, $k \in \mathbb{N}$, and define $p(r,k) := n/\min\{r,k\}$. If p > p(r,k), p > 1, then

$$\langle \cdot \rangle^{-r} (H - z I_{[L^2(\mathbb{R}^n)]^N})^{-k} \in \mathcal{B}_p ([L^2(\mathbb{R}^n)]^N), \quad z \in \mathbb{C} \setminus \mathbb{R}. \tag{7.3}$$

In particular, choosing $r = n + \varepsilon$ for some $\varepsilon > 0$, k = n + 1, then $p(n + \varepsilon, n + 1) < 1$, and hence

$$\langle \cdot \rangle^{-n-\varepsilon} (H - zI_{[L^2(\mathbb{R}^n)]^N})^{-n-1} \in \mathcal{B}_1([L^2(\mathbb{R}^n)]^N), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

Proof. Let $z \in \mathbb{C} \setminus \mathbb{R}$ and $r \in (0, \infty)$. The proof employs induction on $k \in \mathbb{N}$. In the base case, k = 1, one writes

$$\langle \cdot \rangle^{-r} (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} = \left[\langle \cdot \rangle^{-r} (H_{0} - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \right] \left[(H_{0} - z I_{[L^{2}(\mathbb{R}^{n})]^{N}}) (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \right].$$
 (7.4)

The first factor on the right-hand side in (7.4) belongs to $\mathcal{B}_p([L^2(\mathbb{R}^n)]^N)$ for $p > \infty$ $p(r, 1), p \ge 1$ by Lemma 7.2. Since the second factor on the right-hand side in (7.4) is a bounded operator, (7.3) holds with k=1.

Suppose that (7.3) holds for $k \in \mathbb{N}$. Multiplying throughout the commutator identity

$$(H - zI_{[L^2(\mathbb{R}^n)]^N})\langle \cdot \rangle^{-r} - \langle \cdot \rangle^{-r}(H - zI_{[L^2(\mathbb{R}^n)]^N}) = [H_0, \langle \cdot \rangle^{-r}]$$

from the left by $(H - zI_{[L^2(\mathbb{R}^n)]^N})^{-1}$ and right by $(H - zI_{[L^2(\mathbb{R}^n)]^N})^{-k-1}$, one obtains

$$\langle \cdot \rangle^{-r} (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k-1}$$

$$= (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \langle \cdot \rangle^{-r} (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k}$$

$$+ (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} [H_{0}, \langle \cdot \rangle^{-r}] (H - z I_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k-1}. \tag{7.5}$$

One has

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \langle \cdot \rangle^{-r} (H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k}$$

$$= \left[(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \langle \cdot \rangle^{-r(k+1)^{-1}} \right] \left[\langle \cdot \rangle^{-kr(k+1)^{-1}} (H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k} \right]. \quad (7.6)$$

Now, by the base case,

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} \langle \cdot \rangle^{-r(k+1)^{-1}} \in \mathcal{B}_{p}([L^{2}(\mathbb{R}^{n})]^{N}),$$

$$p > p(r(k+1)^{-1}, 1),$$

and by the induction step

$$\langle \cdot \rangle^{-kr(k+1)^{-1}} (H - zI_{[L^2(\mathbb{R}^n)]^N})^{-k} \in \mathcal{B}_p([L^2(\mathbb{R}^n)]^N),$$

 $p > p(kr(k+1)^{-1}, k).$

Therefore, the product on the right-hand side in (7.6) belongs to the trace ideal $\mathcal{B}_p([L^2(\mathbb{R}^n)]^N)$ for $p \geq 1$, with

$$p^{-1} < p(r(k+1)^{-1}, 1)^{-1} + p(kr(k+1)^{-1}, k)^{-1}.$$
(7.7)

To compute the right-hand side of (7.7), one distinguishes the two possible cases: (i) $r(k+1)^{-1} < 1$ or (ii) $r(k+1)^{-1} \ge 1$.

In case (i), r < k + 1, and

$$p(kr(k+1)^{-1},k) = n(k+1)r^{-1},$$

$$p(kr(k+1)^{-1},k)^{-1} = n(k+1)r^{-1}k^{-1}.$$

Hence, the right-hand side of (7.7) equals

$$n^{-1}(k+1)^{-1}r + n^{-1}(k+1)^{-1}kr$$

= $n^{-1}r = n^{-1}\min\{r, k+1\} = p(r, k+1)^{-1},$

so the right-hand side in (7.6) belongs to $\mathcal{B}_p([L^2(\mathbb{R}^n)]^N)$ for all indices p > p(r, k+1).

In case (ii), r > k + 1, and

$$p(kr(k+1)^{-1},k) = n, \quad p(kr(k+1)^{-1},k)^{-1} = nk^{-1}.$$

Hence the right-hand side of (7.7) equals

$$n^{-1}(k+1) = p(r,k+1)^{-1},$$

so the right-hand side of (7.6), and hence the first term on the right-hand side in (7.5), belongs to $\mathcal{B}_p([L^2(\mathbb{R}^n)]^N)$ for all indices p > p(r, k+1). To treat the second term in (7.5), one uses

$$\left[H_0, \langle \cdot \rangle^{-r}\right] = V_0, \tag{7.8}$$

where

$$V_0(x) = -r\langle x \rangle^{-(r+2)}(\alpha \cdot x), \quad x \in \mathbb{R}^n,$$

so that

$$||V_0(x)||_{\mathcal{B}(\mathbb{C}^N)} \le C\langle x \rangle^{-(r+1)}, \quad x \in \mathbb{R}^n,$$
 (7.9)

for an x-independent constant C > 0. Thus, the second term on the right-hand side in (7.5) belongs to $\mathcal{B}_p([L^2(\mathbb{R}^n)]^N)$ for all indices p > p(r, k+1) by the same argument used to treat the first term.

Given these preparations, the principal result of this chapter reads as follows.

Theorem 7.4. Let $k \in \mathbb{N}$ with $k \ge n$ and suppose that V satisfies Hypothesis 7.1. Then

$$[(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k} - (H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k}] \in \mathcal{B}_{1}([L^{2}(\mathbb{R}^{n})]^{N}),$$

$$z \in \mathbb{C} \setminus \mathbb{R}.$$
 (7.10)

Proof. Let $k \ge n$. By the second resolvent equation,

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1} - (H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1}$$

$$= -(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1}V(H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}. \quad (7.11)$$

Differentiation of (7.11) with respect to z yields

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k} - (H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-k}$$

$$= -\sum_{j=1}^{k} (H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-j} V(H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{j-k-1}, \quad z \in \mathbb{C} \setminus \mathbb{R}. \quad (7.12)$$

From this point on, let $z \in \mathbb{C} \setminus \mathbb{R}$ be fixed and write

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-j}V(H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{j-k-1}$$

$$= \left[(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-j}\langle x \rangle^{-j\rho(k+1)^{-1}} \right] \left[\langle x \rangle^{\rho}V \right]$$

$$\times \left[\langle x \rangle^{-(k+1-j)\rho(k+1)^{-1}} (H_{0} - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{j-k-1} \right],$$

$$j \in \mathbb{N}, 1 < j < k. \tag{7.13}$$

By Lemma 7.3, for a fixed $j \in \mathbb{N}$, $1 \le j \le k$,

$$(H - zI_{[L^{2}(\mathbb{R}^{n})]^{N}})^{-j} \langle x \rangle^{-j\rho(k+1)^{-1}} \in \mathcal{B}_{p}([L^{2}(\mathbb{R}^{n})]^{N}),$$

$$p > p(j\rho(k+1)^{-1}, j),$$

and by Lemma 7.2,

$$\langle x \rangle^{-(k+1-j)\rho(k+1)^{-1}} (H_0 - z I_{[L^2(\mathbb{R}^n)]^N})^{j-k-1} \in \mathcal{B}_p([L^2(\mathbb{R}^n)]^N),$$

$$p > p((k+1-j)\rho(k+1)^{-1}, k+1-j).$$

One distinguishes the two possible cases: (i) $\rho(k+1)^{-1} < 1$, or (ii) $\rho(k+1)^{-1} \ge 1$. In case (i) with $\rho(k+1)^{-1} < 1$, one computes

$$p((k+1-j)\rho(k+1)^{-1}, k+1-j) = \frac{n}{(k+1-j)\rho(k+1)^{-1}},$$
$$p(j\rho(k+1)^{-1}, j) = \frac{n}{j\rho(k+1)^{-1}},$$

so that

$$p((k+1-j)\rho(k+1)^{-1}, k+1-j)^{-1} + p(j\rho(k+1)^{-1}, j)^{-1} = \rho/n > 1.$$

Hence, the right-hand side of (7.13) belongs to $\mathcal{B}_1([L^2(\mathbb{R}^n)]^N)$.

In case (ii) with $\rho(k+1)^{-1} \ge 1$, one computes

$$p((k+1-j)\rho(k+1)^{-1}, k+1-j) = n/(k+1-j),$$

$$p(j\rho(k+1)^{-1}, j) = n/j,$$

so that

$$p((k+1-j)\rho(k+1)^{-1}, k+1-j)^{-1} + p(j\rho(k+1)^{-1}, j)^{-1}$$

= $(k+1)/n = (k/n) + (1/n) \ge 1 + (1/n) > 1$.

Hence, the right-hand side of (7.13) belongs to $\mathcal{B}_1([L^2(\mathbb{R}^n)]^N)$.

In either case, the right-hand side of (7.13) belongs to $\mathcal{B}_1([L^2(\mathbb{R}^n)]^N)$. Since $j \in \mathbb{N}, 1 \le j \le k$, was arbitrary, it follows that every term in the summation on the right-hand side in (7.12) belongs to $\mathcal{B}_1([L^2(\mathbb{R}^n)]^N)$, and then (7.10) follows from the vector space properties of the trace class.

We conclude this chapter by recalling a well-known result:

Lemma 7.5. Suppose $p > n/\min(\tau, 2\kappa)$, $p \ge 1$, with $\tau > 0$, $\kappa > 0$. Then

$$\langle \cdot \rangle^{-\tau} (h_0 + I_{L^2(\mathbb{R}^n)})^{-\kappa} \in \mathcal{B}_p(L^2(\mathbb{R}^n)). \tag{7.14}$$

In particular, if V satisfies Hypothesis 7.1 and $\kappa > n/2$,

$$V(H_0^2 + I_{[L^2(\mathbb{R}^n)]^N})^{-\kappa} \in \mathcal{B}_1([L^2(\mathbb{R}^n)]^N). \tag{7.15}$$

Proof. While (7.14) is a special case of [186, Proposition 3.1.5 and Lemma 3.4.3] (see also [83], [159, Chapter 4]), (7.15) follows from combining (3.5) and (7.14). ■