Chapter 8

The spectral shift function: Abstract facts

The significance of Theorem 7.4 is that the trace class condition (7.10) permits one
to define a spectral shift function for the pair (H, Hy). To make this precise, we
introduce the class of functions &, (R), r € N, by

Fr(R):={f € C*(R) | f© € L®°(R); there exists e > 0 and fo = fo(f) € C

such that (d*/dA)[ f(A) — for™"] s O(AT57%), £=0,1,2). (8.1)

(Itis implied that fo = fo(f) is the same as A — £00.) One observes that C5°(R) C
&r(R), r € N.

In [111], M. Krein established the existence of a spectral shift function corre-
sponding to any pair of resolvent comparable self-adjoint operators. Specifically,
Krein proved that if Sy and S are self-adjoint and satisfy

[(S—zI3)™" — (So—zI%) '] € B1(H) (8.2)
for some (and, hence, for all) z € C\R, then

[f(S) = f(S0)] € B1(H), [ €F(R),
and there exists a real-valued spectral shift function
£(-:5,80) € L'(R, (1 + |A]) > da)
so that

trge (/(S) = £(So)) =/RE(A;S, So)dA f'M),  feF®). (83

One limitation to Krein’s theory is that the condition (8.2) generally does not hold
for Schrodinger operators in dimensions n > 4. Similar difficulties are encountered
for the polyharmonic operator (cf. [ 186, Section 3.4]) and the Dirac operator (cf. [186,
Section 3.5.3] and Theorem 7.4). In these cases, only the difference of higher powers
of the resolvents belongs to the trace class (cf. [186, Remark 3.3.3]). Using the theory
of double operator integrals, Yafaev [185] proved the existence of a spectral shift
function under the weaker assumption that the difference of an odd power of the
resolvents belongs to the trace class.

Theorem 8.1 ([185, Theorem 2.2]). Let r € N, r odd, and suppose that Sy and S
are self-adjoint operators in K with

[(S—zI)™ —(So—zl)™"] € B1(H), zeC\R. (8.4)
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Then
[f(S)— f(So)] € Bi(H), fe€FR),

and there exists a function
£(-:S.S0) € L'(R: (1 + [A) " dA) (8.5)

such that the following trace formula holds,
e (£5) = S(S0) = [ 035002 £/ ). f € (R

In particular, one has

[ E0sS.S0)dA

trge (S —zI3) ™ — (So—zI%)™") = G

z e C\R. (8.6)
Remark 8.2. The above theorem, together with Theorem 7.4 guarantees that for
Dirac operators H and Hy in [L?(R")]V the spectral shift function £(-; H, Hp)
exists. However, for the representation of the spectral shift function in terms of a reg-
ularized perturbation determinant it is desirable to take the regularized determinant
dety ,((H — z13)(Ho — z1%)~!) with p equal to n + 1. Theorem 8.1 permits this
in odd space dimensions n. In even space dimensions Theorem 8.1 does not guar-
antee the appropriate integrability of the spectral shift function &(-; H, Hy) and so
one would be forced to consider a regularized determinant with p = n + 2. To avoid
this drawback, we prove that under a certain stronger condition (satisfied for Dirac
operators H and Hj considered in Chapter 3) an analogue of Theorem 8.1 holds for
any r € N. 3

Hypothesis 8.3. Let r € N and assume that S and Sy are self-adjoint operators in
JC with a common dense domain, such that

(S = So) € B(H),
and for some 0 < & < 1/2,
(S — So)(SZ + I3)~ /2= € B, (H). (8.7)
Remark 8.4. (i) Assuming Hypothesis 8.3, it follows that
(S — So0)(So — z15) " € By (J).
Since (S — So) € B(HK), it follows from the three line theorem that

(S — So0)(So —zIg) ™ € By41y)j(H), jeN, 1<j<r+1. (8.8)
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Furthermore, another application of the three line theorem implies
(So —215e) ™1 (S = S0)(So — 2130) ™" € B(r+1)/(jy +j) (H) (8.9)

forall j;, jo e N,with1 < j1 + jo <r + 1.

(i) For the proof of Theorem 8.12 we will only need (8.7) and (8.8). We assumed
boundedness of S — Sy only to get (8.8) as a consequence of (8.7). It is possible to
go beyond this boundedness assumption, but we omit further details at this point.

(iii) The inclusion (7.15) shows that assumption (8.7) holds with r = n for the
pair of Dirac operators (H, Hy) as long as V satisfies Hypothesis 7.1. 3

The following result appeared in [44, Theorem 2.7].

Theorem 8.5. Assume Hypothesis 8.3. Forany j = 1,...,r, one has
(S —zlx) = (So—z1) ™ € Brr1y/(j+1)(H).
Lemma 8.6. Assume Hypothesis 8.3. Forany j = 1,...,r, and z € C\R, one has
[(S—zl3)™ = (So—zI3) 7 |(So + z13) "7 € By (H).

Proof. We prove the claim by induction on j. Let j = 1. Using the resolvent identity
twice one writes

[(S—zIg) ™" —(So—zlg) ' ]|(So + z15) " !
=—(S —zI3) " (S — S0)(So — zI3) " (So + z1z) "t
= (S —zlp) (S — So0)(So — zL3) "' (S — So)(So — z13) " (So + z15) "+
—(So—z13) (S — S0)(So — z15) " (So + z1g) " . (8.10)
By (8.9) one obtains
(So —z13) 71 (S — So)(So — zI3)™" € By(H),

and therefore the second term on the right-hand side of (8.10) is a trace-class operator.
By (8.8),
(S = S0)(So — z13) 7" € Bry1(J),

(S —S0)(So—zl3)™" € By, (H),

guaranteeing that the first term on the right-hand side of (8.10) is also a trace-class
operator. Thus, one concludes that

[(S—zl3)™" = (So— z13) " ]|(So + z15) "' € By(H).

proving the first induction step.
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Next, suppose that
[(S—zl3)™7 —(So—z13) ™7 ](So + z15) 7" € B1(H)
forsome j = 1,...r — 1. Writing
[(S —z130)™7 7" = (So — 215) ™~ |(So + z15e) "+ !
= [(S —zLp)™ — (So — z130) T |(S — z13) ™" (So + zL5) " /!
+ (So—213e) 7 [(S = zL3)™" = (So — 215) ™ ](So + zL5) !
=)+ 1), (8.11)

we will treat the terms (/) and (/) separately in the following.
For (1) on the right-hand side of (8.11) one gets

[(S—zl3)™ —(So—zL3) /(S — zI3) " (So + zlg) "/ H1
=[(S—zlp)~ —(So—zI3)77]

x [(S = zI3)™" = (So — zI3) " |(So + zI5) " T/ !

+ [(S = zLe)™ — (So — 2L3) /(S0 — zL3) " (So + z15e) "7 H!
=—[(S—zlg) ™ —(So—zI5) 7 |(S — zI)”"

X (S — So)(So — z13) ™" (So + zL5) " T/

+ [(S = zI3) ™ — (So — 213) ™/ ](So — 213) " (So + z130) T/ H1.

By the induction hypothesis one concludes that
[(S —zI5)™ = (So —zI3) 7 ](So + zL3) "7 € B1(H),
and therefore also
[(S—213)™ —(So—z13) 7/ ](So—z130) " (So+213) "' € By (H).
By Theorem 8.5 one obtains
(S = z03)™ = (So = z13) ] € Bir41y/j+1)(H).
and by (8.8),
(S — S0)(So + z13) 7" € Bry1y/(r—j)(H).

Therefore,

(S —z15)™7 = (So — 215)7](S = z15) ™ (S = S0)(So — z13¢)”"

x (So +zlz) "t H € Bir+1)/G+1) () - Birt1)/6—j) (H) T B1(JH),

I1<j=<r-—-1

Thus, (1) € B1(H).
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To show that also (/) on the right-hand side of (8.11) is a trace-class operator,
one writes

(So—z13e) 7 [(S —z3) ™" = (So — z43e) "' ] (So + zLe) "+ H!
= —(So—z13) (S — zI3) ™" (S — S0)(So — z130) " (So + zLe) "/ *!
= —(So — Z],}e)_j (So — Zlgf)_l(S — So)(S — ZI%)—I

X (S — So)(So — z13) ™" (So + zL5) "/ H!

+ (So — 213) 7/ (So — zI3¢)"1(S — So)(So — z13) 1 (So + 2L )" T/ H1L,

By (8.8) one infers

(So—z13) 7S = So) € Ber41)/(i+1)(H).
(S — S0)(So + z13) " H € Bri1))r—i) (H).

and hence,

(So—z130) ™ (So — z13) " (S — So)(S — zI3) " (S — So)(So — z15) "
X (So + zIg) 7T € By (H).

Furthermore, by (8.9),
(So+ z13) " 71(S — So)(So + zL3) T € By(H), 1<j<r—1.

Thus, also (/1) is a trace-class operator. Combining this with the fact that (/) €
B1(H) and referring to (8.11), one concludes that

(S —zl5) 7 = (So —zL3) /7 |(So + z3e) T H € Bu(H).  m

From this point on we assume Hypothesis 8.3 for even r = 2k for the remainder
of this chapter. Introducing the function

(1) =t(1+ )T V2 =11 + WD eR, (8.12)
we aim at proving that
[(B(S) +ilwe) ™ — (¢(So) +ilse) '] € Bi(J), (8.13)
guaranteeing that the spectral shift function £(-; ¢ (S), ¥ (Sp)) is well defined. Since
') =1+ I2(1 4 7% > 1>0,

it follows that ¢ is a strictly monotone increasing function on R. Therefore, one can
use the invariance principle for the spectral shift function (see [184, Section 8.11]) to
introduce £(-; S, Sp) by setting

E(: S, So) = E(p(A): #(S), $(Sp)) forae. A € R.
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The choice of ¢ and integrability properties of £(-; ¢ (S), ¢(Sp)) will imply an appro-
priate integrability condition for £(-; S, Sp).

A crucial result in the proof of the inclusion (8.13) is the following result. We
recall that the Holder space C1%([0, 1]), 0 < a < 1, is the class of functions f on
[0, 1] such that

f(t) — f(12)
I fllcreqoiy = 1f lerqopy +  sup | - | < 0.
t1,t2€[0,1] [t1 — t2]

Theorem 8.7 ([135, Theorem 4 and Corollary 2]). Suppose that A and B are self-
adjoint operators on a Hilbert space J, such that (A — B) € B1(H#) and o(A) U
o(B) C [0, 1]. For any function f € C1%([0,1]) with 0 < o < 1 one has

[f(4) = f(B)] € B:1(J)
and
where the constant C is independent of A and B.

Assuming Hypothesis 8.3 with r = 2k, k € N, we intend to use Theorem 8.7 for
the operators A = (S2 + Ig) % and B = (Sg + I3)7%. In the following Lemma 8.8
we will show that with this choice of operators A, B the condition (4 — B) € B1(H)
of Theorem 8.7 is satisfied.

Lemma 8.8. Assume Hypothesis 8.3 with r = 2k for some k € N. Then
[(S2 + L) ™ = (S5 + L) *] € B1(J0)
Proof. One writes
(S2 +Ig) % —(S2+ I5)7*
=(S+ilg) (S —ilg)™ —(So+ilsp)*(So—ilsp)*
= [(S +ilx)™* = (So +ile) *][(S —ils)™ — (So —il5)¥]
+[(S +ilge)™ = (So+ i) *](So—ilye) ™
+ (So + il3) F[(S —ilge)™ — (So —ilg) "] (8.14)

By Lemma 8.6, the second and the third terms are trace-class operators. By Theorem
8.5 one infers that

[(S +ilg)™ = (So + il3)7*] € Brs1)/e+1)(H).

Therefore, the first term on the right-hand side of (8.14) is a trace-class operator
too. ]
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Lemma 8.9. Let k € N and introduce the functions

1 (1+t2)k

, ha(t) = , teR.
12(1 + 12)2k=1 1 2(1) 2(1 + 12)2k=1 1

hi(1) =

There exist f1, f>» € CY/0 ([0, 1]) such that
@) = A+, ha@) = HL(0+D)7F), teR.

Proof. We set

2 U

Siw) = T_al/k y 2 So(u) = T—al/k 42 u € [0,1].

A direct verification shows that
h@) = fi(A+7F), o) = (A+)7F), 1eR.

Since
1—u* +u? >0, uel01]

f1, f> € C(]0, 1]). By the fact fi(u) = ufa(u), u € [0, 1], it suffices to show that
> € CHU/K)([0, 1]). One verifies that

£ = [1—ul/* 4 u?] - u[—%u(l/k)_1 + 2u]
2 - [1—ul/* 4 y2]2

1= [1=(1/k) JutE —u?
- [1—ul/k 4 y2)2

Clearly f; € C([0,1]), j = 1,2. Furthermore, since the map u u'/* is of Holder
class C%1/R)([0, 1]) and the map u + [1 —ul/* + uz]_z is bounded on [0, 1], it
follows that £ € c /K ([0, 1]), that is, f» € C-(/K0) ([0, 1]), as required. ]

Lemma 8.10. Assume Hypothesis 8.3 with r = 2k for some k € N. Let hy be as in
Lemma 8.9 and introduce

g(t) t € R.

t
N
Then,

[£(S) — g(So0)|h2(So) € By(H).

Proof. Since

(1+ %)k

h ) = =
2(0) 12(1 +12)%k1 + 1 t]>00

o((1 +1*)7%),
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it suffices to show that

[2(S) — g(S0)](SE + 1) € Bi(H).
By [38, Lemma 3.1],

= %Re(/(; %[(SH(AJF1)1/213(;)—1_(So+i(k+1)1/21%)—1])’

with a convergent Bochner integral in B(#). The substitution § = (1 + 1)'/2 then
yields

1 *©  6do

Therefore, it suffices to prove that

00 0do ) . . s B
ol £ 0L = (S0 £ 01075 + L)
are convergent integrals in B (J).

The resolvent identity implies

*  9do o - i
/ W[(Siwl;e) L (So +i015) | (S2 + 1)
1 f—

o0 0do . -1 . —1(¢2 —k
= —/1 W(Sizelgg) (S—So)(So+i0lz) ' (Sg+15) .
Let 0 < & < 1/2 be as in Hypothesis 8.3, that is,
(S = S0)(S§ + 13) ™% € B1(J0).
One estimates
1(S £i013)7"(S — So)(So £ i013) (83 + I3)* |2, 0
= ” (Sii"fae)_lﬂg(m || (S_SO)(S(%‘HW)_k_g ”31(.}() ” (Sg+9213f)_1/2+8 ||£(J€)

<g—2t2e H (S — SO)(Sg + IR)_k_e ”:31(36’)’

implying,

o0 0do . -1 . —1,¢2 —k
1 _

B1(H)
do

= /1 @ —yirgiae | S~ S0Se + 1™ g, ey
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Since & < 1/2, it follows that [;° d6(6% — 1)71/2625=! < oo and thus the integral

0 ’ - ! — j —1,.¢2 —k
W(S £i013) (S —So)(So£i0l3)  (Sy + 1)
1

converges in B (H). [

Lemma 8.11. Assume Hypothesis 8.3 with r = 2k for some k € N. For the function
¢ introduced in (8.12) one concludes that

[(B(S) +ilse) ™" — ($(So) +ilse) '] € Bi(H).
Proof. One writes

[p(0) +i]7" = [t(1 + 2P 4]

t(1 4 2=/ 1
= —1
ZZ(] + t2)2k_1 +1 12(1 + 12)2](—1 +1
t (1 +12)k _ 1

— ,
([2 + 1)1/2 12(1 +t2)2k_1 +1 t2(1 +t2)2k_1 +1

that is,
[6(t) +i]"" = g@)hi1(t) —iha(1), t€R,

where A1, h, are introduced in Lemma 8.9 and g in Lemma 8.10. Therefore,

[(6(S) +ilse) " = (#(So) +ilse) ']
= 2(8)h1(S) — g(So)h1(So) — i[h2(S) — h2(So)]
= [g(S) — g(S0) |h1(So) + g(S)[A1(S) — h1(So)] — i [h2(S) — h2(S0)].

and by Lemma 8.10 one concludes that
[2(S) — &(S0)]h1(So) € B1 ().
Thus, Lemma 8.9 implies
hi(S) = hj(So) = fi((S* + 13)™*) = /i ((S§ + 15)7F), j =12,
with f; € CL%([0,1]), j = 1,2. Lemma 8.8 then yields
[(S? + I5)7F — (SZ + 1) %] € B1(H).
Thus, by Theorem 8.7 one obtains
[ (S + 1)) = £i((S + L)) € Bi(JO).  j =1.2,

and hence,
[(#(S) +ilxe) ™ — ($(So) +ily) '] € By(H).

as required. |
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The following theorem improves the integrability condition in (8.5) for even
r € N.

Theorem 8.12. Assume Hypothesis 8.3 with r = 2k for some k € N. For any [ €
&r(R) one has

[£(S) = f(So)] € B1(H),

and there exists a function
£(-:8,S0) € L"(R: (1 +|AD" 7" dA) (8.15)
such that the following trace formula holds,
trge (f(S) = f(So)) = /RE(A; S.So)dA f'(A),  f €& ®). (8.16)
In particular, one has
[(S—zIp)™ —(So—zlp) "] € Bi(#), zeC\R, (8.17)

and
[ E(A:S.S0)dA
R ()L _ Z)r+1 ’

Proof. Let ¢ be as in (8.12). Then Lemma 8.11 implies that
[(#(S) +ils) ™" = ((So) +ilx) '] € Ba (o),
and hence there exists the spectral shift function
E(-:6(5).$(S0)) € L' ([0.11: (1 + A1) dA)
for the pair (¢(S), ¢(Sp)). Since

trge ((S —zlgp)™" — (So — ZI]()_r) = z € C\R. (8.18)

P (1)=1+)D20+r%)>1>0,

it follows that ¢ is strictly monotone increasing on R. Hence, we introduce the spec-
tral shift function £(-; S, Sp) by setting

E(A: S, S0) = E(p(M): p(S).¢(So)) forae. A €R.
Since £(-:¢(S). $(S0)) € L' ([0.1]: (1 + [A)~2d 1), the definition of ¢ implies that
£(-:S,S0) € L'(R; (1 +[A) " da).
Next, let f € &, (R). Then f o ¢! € F1(R), and hence (8.3) implies
trge (f(S) = f£(So0)) = trge (f 0 ¢~ )(#(S)) = (f 0 ¢~ )(@(S0)))

1 F1(67 ()
= 1D(S),d(So))dp—F7———"-—=
/0 {1609 o)
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= [ £@@r0(5). 4S)ar £ R

=/R§(A;S,So)d)t o,

proving (8.16).
Since for any z € C\R the map A — (A — z)™", A € R, belongs to the class
&r(R), the trace formula (8.18) is a particular case of formula (8.16). [



