Chapter 9

Representing &(-; S, Sy) in terms of regularized
Fredholm determinants

In this chapter, we establish the representation of £(-; S, Sp) in terms of regularized
Fredholm determinants.

Hypothesis 9.1. Let So and S be self-adjoint operators in K with (S — So) € B(H).
(1) If r € N is odd, assume (8.4), that is,

[(S—zIg)™ —(So—zI5%) "] € B1(¥), zeC\R, 9.1)
and
(S —S0)(So—zIg) ™ € Byrinyj(H), jeN, 1<j<r+1. 9.2)

(ii) If r € N is even, assume the remaining conditions in Hypothesis 8.3, that is,
for some 0 <& < 1/2,

(S — So)(SZ + 13)~ "D~ ¢ By (H). 9.3)
By Remark 8.4 (i), (9.2) holds for odd and even r.

Remark 9.2. In the applications to multidimensional Dirac operators to be consid-
ered in the sequel, the number r in (9.2) is the dimension of the underlying Euclidean
space R”, thatis,r = n,n € N, n > 2, as detailed in Lemma 7.2. <o

By Theorem 8.5, Hypothesis 9.1 implies
[(S—zIp)™" —(So—zlp) "] € Bi(K), zeC\R, (9.4)

for odd and even r.

By Theorem 8.12 the spectral shift function £(-; S, So) exists and (8.5) and (8.18)
hold. The main aim of the present chapter is to obtain an almost everywhere repre-
sentation for £(-; S, Sp) in terms of the regularized perturbation determinants of the
operators (S — So)(So —zI%)~ !,z € C\R.

To set the stage, we begin by recalling some basic definitions and results per-
taining to regularized determinants to be used in the sequel. For detailed discussions
of regularized determinants, we refer to [159, Chapters 3, 5, and 9] and [184, Sec-
tion 1.7].

Let {h,}>2, denote an orthonormal basis for # and suppose A € B (). For
each N € N, let My € CV*N denote the matrix with entries

Sik + (hj, Ahr)g, 1=<jk=<N.
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The sequence {detcnvxv (My)}%—, has a limit as N — oo, and its value does not
depend on the orthonormal basis chosen. One defines the Fredholm determinant

detge (I3 + A) := Nlim detonxn (My).
—>00

The Fredholm determinant is continuous with respect to || - || g, (). That s, if {4, }5>,
C B1(H) and lim, . || An — A”;Bl(gg) = 0, then

lim detgy(Ig + A,) = detge (g + A). 9.5)
n—00

In fact, the Fredholm determinant is Fréchet differentiable with respect to A (cf., e.g.,
[159, Theorem 5.2]). Moreover, if 2 C C is an open set and A : 2 — B (H) is
analytic, then the function detg ({3 + A(-)) is analytic in €2, and

% log (detge (I3 + A(2))) = trge (I3 + A(z))_lA/(z)).

The definition of the Fredholm determinant given in (9.5) is generally not mean-
ingful if A € 8,(H) with p € N\{1}. To give meaning to the determinant in this
case, suitable modifications are needed. For p € N\{1}, one introduces the function
Ry : By (H) — Bi(H) by

—1 P — i
Rp(A) = (Igp + A)eXi=1 VI 1 A e B,(30). (9.6)
Then the regularized (or modified) Fredholm determinant is defined by
detg, (I3 + A) = detge (I3 + Rp(A)), A€ Bp(H), peN\{l}. (9.7

The Fredholm determinant detg ,(-) retains many of the properties of the ordinary
Fredholm determinant. For example, detg ,(/s% + A) is continuous with respect to
A€ By(H):if Ae By(H),{An}ne; C Bp(H), and limy o [| 44 — All 8, (56) = 0,
then

nll)ngo detge, , (I3 + Ay) = detg (15 + A).

In addition, if 2 € C is openand 4 : Q@ — B, (H) is analytic in €2, then the function
detg , (15 + A(-)) is analytic in £ and
d
v log (det]g,p (IJ@ + A(Z)))
= (=) Vg (T3 + A2)) " AP71(2) 4 (2)). 9.8)

The importance of the regularized determinant stems from the fact that for 4 €
B, (H), the operator 13 + A is boundedly invertible (i.e., —1 € p(A)) if and only if
detg (I3 + A) # 0 (cf., e.g., [159, Theorem 9.2]). Equivalently, —1 € o(A) if and
only if detg ,(I3 + A) = 0.
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Finally, we note the cyclicity property of the regularized determinant: if A, B €
B(H) are such that AB, BA € B,(H), then

dety , (I3 + AB) = dety ,(13 + BA). 9.9

In particular, if A € 8,(H#) and B € B(H), then (9.9) holds. Similarly, if 4, B €
B(H) are such that AB, BA € B1(H), then

trge (AB) = try (BA). (9.10)

With these preliminaries in hand, we start with introducing the regularized deter-
minant associated with the (non-symmetrized) Birman—Schwinger-type operator

B(z) := (S — So)(So — zIx)™', zeC\R. 9.11)
Lemma 9.3. Assume Hypothesis 9.1. The map
B(z) = (S = So)(So —zIp)~!, z€C\R, (9.12)
is a By 4+1(H)-valued analytic function.
Proof. Let zg € C\R be fixed. Then (see e.g. [183, Theorem 5.14])
o
(So—zIz) ™' =) (So — zol3e) ¥ (z = z0)¥,
k=0

where the series converges with respect to the B(J¢)-norm for all z € C\R such that
|2 = zo| < [1(So — zoZ3e) " | 55y < |1m(z0)|™". Therefore,

(S = S0)(So—z5) ™" = Y (S = S0)(So — z01¢) ' (z — 20)*.
k=0

We claim that the latter series converges in the ball {z € C | |z — z¢| < | Im(z¢)|} in
the B +1(H) norm. By (9.2), the operator

B(z) = (S — S0)(So — zolg) ™" € Brs1(H),
so that
” (S — S0)(So — ZOIJf’)_k_1| Byp1 ()
< (S = So)(So — zoL5e)~" |$,_+l(;,1g) 1(So — zoZse)™* H:B(Jf)

= ” (S - SO)(SO - ZOIJC)_l H$r+1(5¢7)| Im(ZO)|_k~

This proves the convergence. |
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Lemma 9.4. Assume Hypothesis 9.1. The function
Fs.5,(z) := In(detge 41 ((S —zI5)(So —zI%)~")), z€C\R,  (9.13)
is well-defined, in fact, analytic in C\R.
Proof. By the second resolvent identity,
(S —zI3)(So—zI%) ' =1y + B(z), zeC\R,

where B(-) is the B, 41 (H)-valued analytic function defined in (9.12). Hence, by the
properties of regularized determinants the function

z — detge r41 (I3 + B(2))

is analytic in C 4. Combining the Cauchy integral theorem and [128, Theorem V.4.1],
one infers that the function

z — In(detg, 41 (I3 + B(2)))

is a well-defined analytic function in C4, provided that detg ,+1 (I3 + B(z)) # 0
for all z € C\R. Thus, it remains to show, that detg 1 (/5% + B(z)) # 0 for every
z e C\R.If detg ;41 ({5 + B(z)) = 0 for some z € C\R, then —1 is in the spectrum
of B(z). By compactness of B(-), —1 is an eigenvalue of B(z), and therefore, /5 +
B(z) has a nontrivial kernel. Since Sy is self-adjoint and hence z € C\R cannot be
an eigenvalue of Sy, z is an eigenvalue for S, which, once more, cannot be the case
since S is also self-adjoint. ]

To correlate the function In(detg 1 ({5 + B(-))) with the spectral shift func-
tion for the pair (S, Sp), we need to introduce an auxiliary function.

Lemma 9.5. Assume Hypothesis 9.1 and let B(-) be defined by (9.12). There exists
an analytic function Gg s, () in C\R such that

r

d
EGS,SO(Z)

r—1 r—1
= try ( d Z(—l)"j(So — 213{)—13(2)’—1), ze C\R. (9.14)

dzr—1
j=0
Proof. Tt suffices to prove that each of the terms
dzr—1

dr—l .
trge ( (So —ZIJ()_IB(Z)r_']), zeC\R, jeNp,0<j<r—1, (9.15

defines an analytic function. To analyze the operator under the trace in (9.15), we
introduce multi-indices. Recalling No = N U {0}, for v € N an element k € Ny is
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called a multi-index which we express componentwise as
k=(ki,....ky) eNy, kp,eNy, 1<p<v. (9.16)
The order of the multi-index k € Ny is defined to be
|kl := k14 +ky. 9.17)

For each fixed j € Nowith0 < j <r —1,

dr_l -1 r—j
F(SO_ZIR) B(2)
r—j+1
= > caSo—zLe)"®TY TT (5= S0)(So — L) *etV. (9.18)
KGNS_j—H (=2
lkl=r—1

for an appropriate set of z-independent scalars
cik€R, keNy/T lkl=r—1.

The assumption (9.2) and the analog of Holder’s inequality for trace ideals (see [159,
Theorem 2.8]) imply that each term in the sum in (9.18) is a trace class operator. In
particular, (9.18) implies that the operator ;Zr,—__ll (So —zI3)~'B(z)"~/ is atrace class
operator. Repeating the argument in Lemma 9.3 and employing (9.2), one concludes
that the map

r—1

d .
C\R3>z— ——(So—zI%) 'B(z)™/, 0<j<r—1,
er—l

is a 81 (H)-valued analytic function. [

The following lemma is the main result, which allows to correlate the regular-
ized determinant of the operator /5 + (S — So)(So — z/5) ™! and the spectral shift
function £(-, S, Sp) (see Theorem 9.9 below).

Lemma 9.6. Assume Hypothesis 9.1. If Fs s, and Gs s, denote the analytic func-
tions in C\R introduced in (9.13) and (9.14), respectively, then there exist polynomi-
als Py ,_1 of degree less than or equal to r — 1 such that

E(L S, So)dA 1
h—i) A—

FS,SO(Z) =(z— i)r . e + GS,SO(Z) + Pi,r_l(z), zeCy4.

Proof. One recalls the B, 1 (#)-valued analytic function B(-) defined in (9.12). By
the second resolvent identity,

(I + B(2)) "' = (Ie + (S — So)(So — zL3)™")
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= ((S —zI3)(So — zIz) ™)™
= (So—zI%)(S —zI%)™', zeC\R.
In addition,

B'(z) = B(z)(So — zI%)™!, z e C\R.
Applying (9.8), one obtains

e Fs.s,(2)

d
<7 In(detger1(Te + B(2))

= (=1)"trge ((So — z13)(S — z13) "' B(2)" B(2)(So — z1%) ")

= (—=1)" trge ((So—zI5)(S—zI3) 'B(z) *'(So—zI5%)~'), zeC\R.

For z € C\R, (So — z1%)(S — Z]Jg)_l € B(H) and B(z)’Jrl € B1(H) (cf. (9.2)),
so that

e Fs,50(2) = (1) trge (B(2)" T (So — z13) ™' (So — z13)(S — z15) ")
= (=1)"trge (B(z)" (S — z15)7")
= (=1)"trge (S —zI3) ' B(z)"™).

z € C\R. 9.19)
By the second resolvent identity,

(S—2)7"B(z) = (S —2)7(S = S0)(So —2)~"
=So—2) "= (S -2, zeC\R,

(9.20)
and repeated application of (9.20) yields
(—=1)"(S —zI) "' B(z)"*!
= (=1)"((So = zl3)™" = (S —zIx)~")B(2)"
r—1
= (So—zlp)™" Y (=1 B(z)"/
j=0
+ (So—zlp) ' = (S —zIg) !, zeC\R. 9.21)
Hence, combining (9.19) with (9.21), one obtains
7 Fs.50(2)
r—1 ) '
= try ((So —zlp) " = (S —zlp) ™" + (So — zLp) ! Z(—l)"fB(z)’—f),
j=0

zeC\R. (9.22)
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Differentiating (9.22) r — 1 times,
dr
d r

dr—l
= oy e ((so —zly) P = (S —zlx)!

—Fs 5,(2)

r—1
o=z B )

J=0

= try ((r — 1)!((50 —zly) T = (S —zlx)™")

r— r—1

+ o 1(S0—Zlgg) 'S (=1 B(2) T f), ze C\R. (9.23)
j=0

By (9.4) and Lemma 9.5, (9.23) may be recast as

r

Fs,50(2) = (r = Dltrge ((So — 215" = (S = z136)™")

dzr
r
d rGS SO(Z) z G(C\R,
and an application of Theorem 8.12 yields
dr EA;S,S0)dA dr
d ; SSO(Z)—}" RW dz rGSSO(Z) ZE(C\R. (924)

Repeated application of the elementary identity

k! d ( (k—1)! 1
(A — z)k+1 - E((A—z)k - ()L—i)k)’ zeC\R, A eR, k €N,
yields
r! _ d (Z—l)J 1
(A —z)rtt _E( —Z_Z A —1i)/ )
_d (1 (Z—l)r—()t—z)’
- dz’(k—z_ DG —iy )
dr (z—i)
= —(m) z € C\R, A e R. (9.25)
Therefore, (9.24) and (9.25) imply
dr
e ,FSSO(Z)
A S,So)dA(z—1i)" dar
er g( ()t—lo)) (A(—Zz)l) + dz rGS SO(Z) zE€ (C\R,

completing the proof. |
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Remark 9.7. For bookkeeping purposes we have thus far worked with the non-
symmetrized Birman—Schwinger-type operator B(z) := (S — So)(So —zI%) !,z €
C\R and avoided a factorization of S — Sy (and similarly we exploited V' without
its factorization (3.20) in Chapter 7). In the concrete case of massless Dirac opera-
tors Hy, H we will eventually switch over to a symmetrized analog (cf. (2.6)—(2.10),
(10.78)). o

The main result of this chapter provides a means for recovering the spectral shift
function £(-; S, Sp) almost everywhere in terms of the normal (or nontangential)
boundary values of the functions Fg gs,(-) and Gg s,(-) when the latter exist. Its
proof relies on the following (special case of) Privalov’s theorem (see, e.g., [184,
Theorem 1.2.5]).

Theorem 9.8. Let 6 € L'(R; (1 + [A)71dA). If

H(z) := /]1‘@ b6A)dA z € C\R,

A=z’
then

OV )d A

T fora.e. A € R, (9.26)

lim H(A +is) = £7i0(A) + p.V./
el0 R

where p.v.(-) abbreviates the principal value operation. In particular, one obtains
the following special case of the Stieltjes inversion theorem,

O\ = 2mi)~! lijn [HA +ie)— H(A —ig)| forae AeR. (9.27)
&0
Moreover, the normal limits in (9.26) and (9.27) can be replaced by nontangential
limits.

Theorem 9.9. Assume Hypothesis 9.1 and let Fs s, and G, s, denote analytic func-
tions in C\R satisfying (9.13) and (9.14), respectively. If Fs s, and Gs_ s, have
normal boundary values on R, then for a.e. A € R,

£(X;S.So) = 7' Im (Fs,5,(A +i0)) — 7' Im (Gs,s,(A + i0))
+ Pr_1(A) fora.e A €R, (9.28)

where Py_y is a polynomial of degree less than or equal to r — 1.

Proof. By Lemma 9.6,

E(A: S, So)dA
R (A—2)(A—i0)
+ Pi,_1(z), zeCy. (9.29)

FS,S()(Z) = (Z - l)r + GS,S()(Z)
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If
Hy(2) := Fs,5,(2) — Gs,50(2) = Pxr-1(2), z€Cy,

then (9.29) may be recast as

Hi(z) :/ E(A; S, So)dA
(z—=0)y R A—2)(A—i)"’

By (8.5), the spectral shift function £(-; S, So) satisfies

ZG(C;E,Z#I'.

E(:8.80)(- =) e L'(R: (1 + A" dA).

An application of Theorem 9.8 then yields

£(A; S, So)

(A—i)

Hy(A+is) H_(A—ie)
A+ic—i) (A—ie—i)

= (27i) ' lim [
£l0

i| forae. A € R,
and hence,
E; S, So) = 2ni)7! lilm [H+()L —ie)— H_-(A + is)] fora.e. A € R. (9.30)
el0

It follows from the definition of the functions Fg g, and Gg s, (cf. Lemmas 9.4 and
9.5) that

Fs.5,(2) = Fs.5,(2), Gs.5,(2) = Gs5,(z), z € C\R.
Thus, by (9.30),
£ S, So) = (2mi) 7! 18%1 [Fs,s0(A +ig) — Fs,5,(A —ig)]
— Qni)™! Ef& [Gs,s0(A +i€) + Gg,50(A —ig)]

— Qri) Py 1) — P 1 (A)]
= 77 m (Fg,5,(A +i0)) — 7~ Im (Gss,50 (A + i0))
+ Pr_1(A) forae. A €eR,

where the polynomial P,_; := (27i) ![P_,_; — P4 1] has degree less than or
equal to r — 1 (since P+ ,—; have degree less than or equal to r — 1). |



