
Chapter 9

Representing �. � IS; S0/ in terms of regularized
Fredholm determinants

In this chapter, we establish the representation of �. � IS; S0/ in terms of regularized
Fredholm determinants.

Hypothesis 9.1. Let S0 and S be self-adjoint operators in H with .S � S0/ 2 B.H /.
(i) If r 2 N is odd, assume (8.4), that is,�

.S � zIH /
�r

� .S0 � zIH /
�r
�
2 B1.H /; z 2 CnR; (9.1)

and

.S � S0/.S0 � zIH /
�j

2 B.rC1/=j .H /; j 2 N; 1 � j � r C 1: (9.2)

(ii) If r 2 N is even, assume the remaining conditions in Hypothesis 8.3, that is,
for some 0 < " < 1=2,

.S � S0/.S
2
0 C IH /

�.r=2/�"
2 B1.H /: (9.3)

By Remark 8.4 (i), (9.2) holds for odd and even r .

Remark 9.2. In the applications to multidimensional Dirac operators to be consid-
ered in the sequel, the number r in (9.2) is the dimension of the underlying Euclidean
space Rn, that is, r D n, n 2 N, n � 2, as detailed in Lemma 7.2. ˘

By Theorem 8.5, Hypothesis 9.1 implies�
.S � zIH /

�r
� .S0 � zIH /

�r
�
2 B1.H /; z 2 CnR; (9.4)

for odd and even r .
By Theorem 8.12 the spectral shift function �. � IS;S0/ exists and (8.5) and (8.18)

hold. The main aim of the present chapter is to obtain an almost everywhere repre-
sentation for �. � IS; S0/ in terms of the regularized perturbation determinants of the
operators .S � S0/.S0 � zIH /

�1, z 2 CnR.
To set the stage, we begin by recalling some basic definitions and results per-

taining to regularized determinants to be used in the sequel. For detailed discussions
of regularized determinants, we refer to [159, Chapters 3, 5, and 9] and [184, Sec-
tion 1.7].

Let ¹hnº1nD1 denote an orthonormal basis for H and suppose A 2 B1.H /. For
each N 2 N, let MN 2 CN�N denote the matrix with entries

ıj;k C .hj ; Ahk/H ; 1 � j; k � N:
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The sequence ¹detCN�N .MN /º
1
ND1 has a limit as N ! 1, and its value does not

depend on the orthonormal basis chosen. One defines the Fredholm determinant

detH .IH C A/ WD lim
N!1

detCN�N .MN /:

The Fredholm determinant is continuous with respect to k � kB1.H/. That is, if ¹Anº1nD1
� B1.H / and limn!1 kAn � AkB1.H/ D 0, then

lim
n!1

detH .IH C An/ D detH .IH C A/: (9.5)

In fact, the Fredholm determinant is Fréchet differentiable with respect to A (cf., e.g.,
[159, Theorem 5.2]). Moreover, if � � C is an open set and A W � ! B1.H / is
analytic, then the function detH .IH C A. � // is analytic in �, and

d

dz
log

�
detH

�
IH C A.z/

��
D trH

��
IH C A.z/

��1
A0.z/

�
:

The definition of the Fredholm determinant given in (9.5) is generally not mean-
ingful if A 2 Bp.H / with p 2 Nn¹1º. To give meaning to the determinant in this
case, suitable modifications are needed. For p 2 Nn¹1º, one introduces the function
Rp W Bp.H /! B1.H / by

Rp.A/ D .IH C A/e
Pp�1

jD1
.�1/j j�1Aj

� IH ; A 2 Bp.H /: (9.6)

Then the regularized (or modified) Fredholm determinant is defined by

detH ;p.IH C A/ D detH
�
IH CRp.A/

�
; A 2 Bp.H /; p 2 Nn¹1º: (9.7)

The Fredholm determinant detH ;p. � / retains many of the properties of the ordinary
Fredholm determinant. For example, detH ;p.IH C A/ is continuous with respect to
A 2 Bp.H /: if A 2 Bp.H /, ¹Anº1nD1 � Bp.H /, and limn!1 kAn �AkBp.H/ D 0,
then

lim
n!1

detH ;p.IH C An/ D detH ;p.IH C A/:

In addition, if� � C is open and A W�! Bp.H / is analytic in�, then the function
detH ;p.IH C A. � // is analytic in � and

d

dz
log

�
detH ;p

�
IH C A.z/

��
D .�1/p�1 trH

��
IH C A.z/

��1
Ap�1.z/A0.z/

�
: (9.8)

The importance of the regularized determinant stems from the fact that for A 2

Bp.H /, the operator IH C A is boundedly invertible (i.e., �1 2 �.A/) if and only if
detH ;p.IH C A/ ¤ 0 (cf., e.g., [159, Theorem 9.2]). Equivalently, �1 2 �.A/ if and
only if detH ;p.IH C A/ D 0.
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Finally, we note the cyclicity property of the regularized determinant: if A; B 2

B.H / are such that AB;BA 2 Bp.H /, then

detH ;p.IH C AB/ D detH ;p.IH C BA/: (9.9)

In particular, if A 2 Bp.H / and B 2 B.H /, then (9.9) holds. Similarly, if A; B 2

B.H / are such that AB;BA 2 B1.H /, then

trH .AB/ D trH .BA/: (9.10)

With these preliminaries in hand, we start with introducing the regularized deter-
minant associated with the (non-symmetrized) Birman–Schwinger-type operator

B.z/ WD .S � S0/.S0 � zIH /
�1; z 2 CnR: (9.11)

Lemma 9.3. Assume Hypothesis 9.1. The map

B.z/ D .S � S0/.S0 � zIH /
�1; z 2 CnR; (9.12)

is a BrC1.H /-valued analytic function.

Proof. Let z0 2 CnR be fixed. Then (see e.g. [183, Theorem 5.14])

.S0 � zIH /
�1

D

1X
kD0

.S0 � z0IH /
�k�1.z � z0/

k;

where the series converges with respect to the B.H /-norm for all z 2 CnR such that
jz � z0j < k.S0 � z0IH /

�1k�1
B.H/

� j Im.z0/j�1. Therefore,

.S � S0/.S0 � zIH /
�1

D

1X
kD0

.S � S0/.S0 � z0IH /
�k�1.z � z0/

k :

We claim that the latter series converges in the ball ¹z 2 C j jz � z0j < j Im.z0/jº in
the BrC1.H / norm. By (9.2), the operator

B.z/ D .S � S0/.S0 � z0IH /
�1

2 BrC1.H /;

so that .S � S0/.S0 � z0IH /
�k�1


BrC1.H/

�
.S � S0/.S0 � z0IH /

�1


BrC1.H/

.S0 � z0IH /
�k


B.H/

�
.S � S0/.S0 � z0IH /

�1


BrC1.H/

ˇ̌
Im.z0/

ˇ̌�k
:

This proves the convergence.
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Lemma 9.4. Assume Hypothesis 9.1. The function

FS;S0
.z/ WD ln

�
detH ;rC1

�
.S � zIH /.S0 � zIH /

�1
��
; z 2 CnR; (9.13)

is well-defined, in fact, analytic in CnR.

Proof. By the second resolvent identity,

.S � zIH /.S0 � zIH /
�1

D IH C B.z/; z 2 CnR;

where B. � / is the BrC1.H /-valued analytic function defined in (9.12). Hence, by the
properties of regularized determinants the function

z ! detH ;rC1

�
IH C B.z/

�
is analytic in C˙. Combining the Cauchy integral theorem and [128, Theorem V.4.1],
one infers that the function

z ! ln
�

detH ;rC1

�
IH C B.z/

��
is a well-defined analytic function in C˙, provided that detH ;rC1.IH C B.z// ¤ 0

for all z 2 CnR. Thus, it remains to show, that detH ;rC1.IH C B.z// ¤ 0 for every
z 2 CnR. If detH ;rC1.IH CB.z//D 0 for some z 2 CnR, then �1 is in the spectrum
of B.z/: By compactness of B. � /, �1 is an eigenvalue of B.z/; and therefore, IH C

B.z/ has a nontrivial kernel. Since S0 is self-adjoint and hence z 2 CnR cannot be
an eigenvalue of S0, z is an eigenvalue for S , which, once more, cannot be the case
since S is also self-adjoint.

To correlate the function ln.detH ;rC1.IH C B. � /// with the spectral shift func-
tion for the pair .S; S0/, we need to introduce an auxiliary function.

Lemma 9.5. Assume Hypothesis 9.1 and let B. � / be defined by (9.12). There exists
an analytic function GS;S0

. � / in CnR such that

d r

dzr
GS;S0

.z/

D trH

�
d r�1

dzr�1

r�1X
jD0

.�1/r�j .S0 � zIH /
�1B.z/r�j

�
; z 2 CnR: (9.14)

Proof. It suffices to prove that each of the terms

trH

�
d r�1

dzr�1
.S0 � zIH /

�1B.z/r�j
�
; z 2 CnR; j 2 N0; 0 � j � r � 1; (9.15)

defines an analytic function. To analyze the operator under the trace in (9.15), we
introduce multi-indices. Recalling N0 D N [ ¹0º, for � 2 N an element k 2 N�

0 is
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called a multi-index which we express componentwise as

k D .k1; : : : ; k�/ 2 N�
0 ; kp 2 N0; 1 � p � �: (9.16)

The order of the multi-index k 2 N�
0 is defined to be

jkj WD k1 C � � � C k� : (9.17)

For each fixed j 2 N0 with 0 � j � r � 1,

d r�1

dzr�1
.S0 � zIH /

�1B.z/r�j

D

X
k2Nr�jC1

0

jkjDr�1

cj;k.S0 � zIH /
�.k1C1/

r�jC1Y
`D2

.S � S0/.S0 � IH /
�.k`C1/; (9.18)

for an appropriate set of z-independent scalars

cj;k 2 R; k 2 Nr�jC1
0 ; jkj D r � 1:

The assumption (9.2) and the analog of Hölder’s inequality for trace ideals (see [159,
Theorem 2.8]) imply that each term in the sum in (9.18) is a trace class operator. In
particular, (9.18) implies that the operator dr�1

dzr�1 .S0� zIH /
�1B.z/r�j is a trace class

operator. Repeating the argument in Lemma 9.3 and employing (9.2), one concludes
that the map

CnR 3 z !
d r�1

dzr�1
.S0 � zIH /

�1B.z/r�j ; 0 � j � r � 1;

is a B1.H /-valued analytic function.

The following lemma is the main result, which allows to correlate the regular-
ized determinant of the operator IH C .S � S0/.S0 � zIH /

�1 and the spectral shift
function �. � ; S; S0/ (see Theorem 9.9 below).

Lemma 9.6. Assume Hypothesis 9.1. If FS;S0
and GS;S0

denote the analytic func-
tions in CnR introduced in (9.13) and (9.14), respectively, then there exist polynomi-
als P˙;r�1 of degree less than or equal to r � 1 such that

FS;S0
.z/ D .z � i/r

Z
R

�.�IS; S0/d�

.� � i/r
1

� � z
CGS;S0

.z/C P˙;r�1.z/; z2C˙:

Proof. One recalls the BrC1.H /-valued analytic function B. � / defined in (9.12). By
the second resolvent identity,�

IH C B.z/
��1

D
�
IH C .S � S0/.S0 � zIH /

�1
��1
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D
�
.S � zIH /.S0 � zIH /

�1
��1

D .S0 � zIH /.S � zIH /
�1; z 2 CnR:

In addition,
B 0.z/ D B.z/.S0 � zIH /

�1; z 2 CnR:

Applying (9.8), one obtains

d

dz
FS;S0

.z/

D
d

dz
ln
�

detH ;rC1.IH C B.z//
�

D .�1/m trH

�
.S0 � zIH /.S � zIH /

�1B.z/rB.z/.S0 � zIH /
�1
�

D .�1/m trH

�
.S0�zIH /.S �zIH /

�1B.z/rC1.S0�zIH /
�1
�
; z2CnR:

For z 2 CnR, .S0 � zIH /.S � zIH /
�1 2 B.H / and B.z/rC1 2 B1.H / (cf. (9.2)),

so that
d

dz
FS;S0

.z/ D .�1/r trH

�
B.z/rC1.S0 � zIH /

�1.S0 � zIH /.S � zIH /
�1
�

D .�1/r trH

�
B.z/rC1.S � zIH /

�1
�

D .�1/r trH

�
.S � zIH /

�1B.z/rC1
�
; z 2 CnR: (9.19)

By the second resolvent identity,

.S � z/�1B.z/ D .S � z/�1.S � S0/.S0 � z/
�1

D .S0 � z/
�1

� .S � z/�1; z 2 CnR; (9.20)

and repeated application of (9.20) yields

.�1/r.S � zIH /
�1B.z/rC1

D .�1/r
�
.S0 � zIH /

�1
� .S � zIH /

�1
�
B.z/r

D .S0 � zIH /
�1

r�1X
jD0

.�1/r�jB.z/r�j

C .S0 � zIH /
�1

� .S � zIH /
�1; z 2 CnR: (9.21)

Hence, combining (9.19) with (9.21), one obtains

d

dz
FS;S0

.z/

D trH

�
.S0 � zIH /

�1
� .S � zIH /

�1
C .S0 � zIH /

�1

r�1X
jD0

.�1/r�jB.z/r�j
�
;

z 2 CnR: (9.22)
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Differentiating (9.22) r � 1 times,

d r

dzr
FS;S0

.z/

D
d r�1

dzr�1
trH

�
.S0 � zIH /

�1
� .S � zIH /

�1

C .S0 � zIH /
�1

r�1X
jD0

.�1/r�jB.z/r�j
�

D trH

�
.r � 1/Š

�
.S0 � zIH /

�r
� .S � zIH /

�r
�

C
d r�1

dzr�1
.S0 � zIH /

�1

r�1X
jD0

.�1/r�jB.z/r�j
�
; z 2 CnR: (9.23)

By (9.4) and Lemma 9.5, (9.23) may be recast as

d r

dzr
FS;S0

.z/ D .r � 1/Š trH

�
.S0 � zIH /

�r
� .S � zIH /

�r
�

C
d r

dzr
GS;S0

.z/; z 2 CnR;

and an application of Theorem 8.12 yields

d r

dzr
FS;S0

.z/ D rŠ

Z
R

�.�IS; S0/ d�

.� � z/rC1
C
d r

dzr
GS;S0

.z/; z 2 CnR: (9.24)

Repeated application of the elementary identity

kŠ

.� � z/kC1
D

d

dz

�
.k � 1/Š

.� � z/k
�

1

.� � i/k

�
; z 2 CnR; � 2 R; k 2 N;

yields

rŠ

.� � z/rC1
D

d r

dzr

�
1

� � z
�

rX
jD1

.z � i/j�1

.� � i/j

�
D

d r

dzr

�
1

� � z
�
.z � i/r � .� � i/r

.z � �/.� � i/r

�
D

d r

dzr

�
.z � i/r

.� � z/.� � i/r

�
; z 2 CnR; � 2 R: (9.25)

Therefore, (9.24) and (9.25) imply

d r

dzr
FS;S0

.z/

D
d r

dzr

Z
R

�.�IS; S0/d� .z � i/
r

.� � i/r.� � z/
C
d r

dzr
GS;S0

.z/; z 2 CnR;

completing the proof.
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Remark 9.7. For bookkeeping purposes we have thus far worked with the non-
symmetrized Birman–Schwinger-type operator B.z/ WD .S � S0/.S0 � zIH /

�1, z 2
CnR and avoided a factorization of S � S0 (and similarly we exploited V without
its factorization (3.20) in Chapter 7). In the concrete case of massless Dirac opera-
tors H0;H we will eventually switch over to a symmetrized analog (cf. (2.6)–(2.10),
(10.78)). ˘

The main result of this chapter provides a means for recovering the spectral shift
function �. � I S; S0/ almost everywhere in terms of the normal (or nontangential)
boundary values of the functions FS;S0

. � / and GS;S0
. � / when the latter exist. Its

proof relies on the following (special case of) Privalov’s theorem (see, e.g., [184,
Theorem 1.2.5]).

Theorem 9.8. Let � 2 L1
�
RI .1C j�j/�1 d�

�
. If

H.z/ WD

Z
R

�.�/d�

� � z
; z 2 CnR;

then

lim
"#0

H.�˙ i"/ D ˙�i�.�/C p:v:
Z

R

�.�0/d�0

�0 � �
for a.e. � 2 R; (9.26)

where p:v:. � / abbreviates the principal value operation. In particular, one obtains
the following special case of the Stieltjes inversion theorem,

�.�/ D .2�i/�1 lim
"#0

�
H.�C i"/ �H.� � i"/

�
for a.e. � 2 R: (9.27)

Moreover, the normal limits in (9.26) and (9.27) can be replaced by nontangential
limits.

Theorem 9.9. Assume Hypothesis 9.1 and let FS;S0
and GS;S0

denote analytic func-
tions in CnR satisfying (9.13) and (9.14), respectively. If FS;S0

and GS;S0
have

normal boundary values on R, then for a.e. � 2 R,

�.�IS; S0/ D ��1 Im
�
FS;S0

.�C i0/
�
� ��1 Im

�
GS;S0

.�C i0/
�

C Pr�1.�/ for a.e. � 2 R; (9.28)

where Pr�1 is a polynomial of degree less than or equal to r � 1.

Proof. By Lemma 9.6,

FS;S0
.z/ D .z � i/r

Z
R

�.�IS; S0/d�

.� � z/.� � i/r
CGS;S0

.z/

C P˙;r�1.z/; z 2 C˙: (9.29)
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If
H˙.z/ WD FS;S0

.z/ �GS;S0
.z/ � P˙;r�1.z/; z 2 C˙;

then (9.29) may be recast as

H˙.z/

.z � i/r
D

Z
R

�.�IS; S0/d�

.� � z/.� � i/r
; z 2 C˙; z ¤ i:

By (8.5), the spectral shift function �. � IS; S0/ satisfies

�. � IS; S0/. � � i/
�r

2 L1
�
RI .1C j�j/�1 d�

�
:

An application of Theorem 9.8 then yields

�.�IS; S0/

.� � i/r

D .2�i/�1 lim
"#0

�
HC.�C i"/

.�C i" � i/r
�
H�.� � i"/

.� � i" � i/r

�
for a.e. � 2 R;

and hence,

�.�IS; S0/ D .2�i/�1 lim
"#0

�
HC.� � i"/ �H�.�C i"/

�
for a.e. � 2 R: (9.30)

It follows from the definition of the functions FS;S0
and GS;S0

(cf. Lemmas 9.4 and
9.5) that

FS;S0
. Nz/ D FS;S0

.z/; GS;S0
. Nz/ D GS;S0

.z/; z 2 CnR:

Thus, by (9.30),

�.�IS; S0/ D .2�i/�1 lim
"#0

�
FS;S0

.�C i"/ � FS;S0
.� � i"/

�
� .2�i/�1 lim

"#0

�
GS;S0

.�C i"/CGS;S0
.� � i"/

�
� .2�i/�1

�
PC;r�1.�/ � P�;r�1.�/

�
D ��1 Im

�
FS;S0

.�C i0/
�
� ��1 Im

�
GS;S0

.�C i0/
�

C Pr�1.�/ for a.e. � 2 R;

where the polynomial Pr�1 WD .2�i/�1ŒP�;r�1 � PC;r�1� has degree less than or
equal to r � 1 (since P˙;r�1 have degree less than or equal to r � 1).


