
Chapter 12

Analysis of �. � IH; H0/ and an application to the Witten
index for a class of non-Fredholm operators

Combining Hypotheses 10.16 and 11.1 we next make the following assumptions to
describe continuity properties of the spectral shift function for the pair .H;H0/.

Hypothesis 12.1. Let n 2 N and suppose that V D ¹V`;`0º1�`;`0�N satisfies for some
constants C 2 .0;1/ and " > 0,

V 2 ŒL1.Rn/�N�N ;ˇ̌
V`;`0.x/

ˇ̌
� C hxi�n�1�" for a.e. x 2 Rn; 1 � `; `0 � N: (12.1)

In addition, assume that V.x/D ¹V`;`0.x/º1�`;`0�N is self-adjoint for a.e. x 2 Rn. In
accordance with the factorization based on the polar decomposition of V discussed
in (10.9) we suppose that V D V �

1 V2 D jV j1=2UV jV j1=2, where V1 D V �
1 D jV j1=2,

V2 D UV jV j1=2.
Finally, we assume that V satisfies (4.2) and (4.3)1.

Thus, combining Theorems 9.9, 10.17, and 11.2 yields our principal result:

Theorem 12.2. Assume Hypothesis 12.1. Then

�. � IH;H0/ 2 C
�
.�1; 0/ [ .0;1/

�
; (12.2)

and the left and right limits at zero,

�.0˙IH;H0/ D lim
"#0

�.˙"IH;H0/; (12.3)

exist. In particular, if 0 is a regular point for H according to Definition 10.6 (iii) and
Theorem 10.7 (iii), then

�. � IH;H0/ 2 C.R/: (12.4)

In the remainder of this chapter we describe an application to the Witten index
for a class of non-Fredholm operators applicable in the context of multi-dimensional,
massless Dirac operators H . We develop some necessary preparations and the basic
setup next.

We begin by isolating a bit of notation: Linear operators in the Hilbert space
L2.RIdt IH /, in short,L2.RIH /, will be denoted by boldface symbols of the type T ,

1The first condition in (4.3) is superseded by assumption (12.1).
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to distinguish them from operators T in H . In particular, operators denoted by T in
the Hilbert space L2.RIH / represent operators associated with a family of operators
¹T .t/ºt2R in H , defined by

.T f /.t/ D T .t/f .t/ for a.e. t 2 R;

f 2 dom.T / D
²
g 2 L2.RIH /

ˇ̌̌
g.t/ 2 dom

�
T .t/

�
for a.e. t 2 RI

t 7! T .t/g.t/ is (weakly) measurable;
Z

R
dt
T .t/g.t/2

H
<1

³
: (12.5)

In the special case, where ¹T .t/º is a family of bounded operators on H with

sup
t2R

T .t/
B.H/

<1;

the associated operator T is a bounded operator onL2.RIH /with kT kB.L2.RIH// D

supt2R kT .t/kB.H/.
For brevity we will abbreviate I WD IL2.RIH/ in the following and note that

in the concrete situation of n-dimensional, massless Dirac operators at hand, H D

ŒL2.Rn/�N .
Denoting

A� D H0; BC D V; AC D A� C BC D H;

we introduce two families of operators in ŒL2.Rn/�N by

B.t/ D b.t/BC; t 2 R;

b.k/ 2 C1.R/ \ L1.RI dt/; k 2 N0; b0 2 L1.RI dt/;

lim
t!1

b.t/ D 1; lim
t!�1

b.t/ D 0;

A.t/ D A� C B.t/; t 2 R:

(12.6)

Next, following the general setups described in [38, 41–44, 78, 137] we recall the
definitions of A, B;A0 D B 0, given in terms of the families A.t/, B.t/, and B 0.t/,
t 2 R, as in (12.5). In addition, A� in L2

�
RI ŒL2.Rn/�N

�
represents the self-adjoint

(constant fiber) operator defined by

.A�f /.t/ D A�f .t/ for a.e. t 2 R;

f 2 dom.A�/ D

²
g 2 L2

�
RI ŒL2.Rn/�N

� ˇ̌̌
g.t/ 2 dom.A�/ for a.e. t 2 R;

t 7! A�g.t/ is (weakly) measurable,
Z

R
dt
A�g.t/

2
ŒL2.Rn/�N

<1

³
: (12.7)
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Next, we introduce the operator D
A

in L2
�
RI ŒL2.Rn/�N

�
by

DA D
d

dt
C A; dom.DA/ D W 1;2

�
RI ŒL2.Rn/�N

�
\ dom.A�/; (12.8)

where
A D A� C B; dom.A/ D dom.A�/;

and
kBkB.L2.RIŒL2.Rn/�N // D sup

t2R

B.t/
B.ŒL2.Rn/�N /

<1:

Here the operator d=dt in L2
�
RI ŒL2.Rn/�N

�
is defined by�

d

dt
f

�
.t/ D f 0.t/ for a.e. t 2 R;

f 2 dom.d=dt/ D
®
g 2 L2

�
RI ŒL2.Rn/�N

�
j g 2 ACloc

�
RI ŒL2.Rn/�N

�
;

g0 2 L2
�
RI ŒL2.Rn/�N

�¯
D W 1;2

�
RI ŒL2.Rn/�N

�
: (12.9)

By [78, Lemma 4.4] (which extends to the present setting), D
A

is densely defined
and closed in L2.RI ŒL2.Rn/�N / and the adjoint operator D�

A
of D

A
is given by

D�
A D �

d

dt
C A; dom.D�

A/ D W 1;2
�
RI ŒL2.Rn/�N

�
\ dom.A�/:

This enables one to introduce the nonnegative, self-adjoint operators Hj , j D 1;2,
in L2.RI ŒL2.Rn/�N / by

H1 D D�
ADA; H2 D DAD�

A:

In order to effectively describe the domains of Hj , j D 1; 2, we will decompose
the latter as discussed below: To this end, one first observes that

kB 0
kB.L2.RIŒL2.Rn/�N // D sup

t2R

B 0.t/


B.ŒL2.Rn/�N /
<1: (12.10)

It is convenient to also introduce the operator H0 in L2.RI ŒL2.Rn/�N / by

H0 D �
d2

dt2
C A2

�; dom.H0/ D W 2;2
�
RI ŒL2.Rn/�N

�
\ dom.A2

�/: (12.11)

Then H0 is self-adjoint by Theorem VIII.33 of [141]. Moreover, since the opera-
tor BA� C A�B is H0-bounded with bound less than one, [108, Theorem VI.4.3]
implies the following decomposition of the operators Hj , j D 1; 2,

Hj D �
d2

dt2
C A2

C .�1/jA0
D H0 C BA� C A�B C B2

C .�1/jB 0;

dom.Hj / D dom.H0/; j D 1; 2: (12.12)
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Next, we introduce an approximation procedure as follows: Consider the charac-
teristic function for the interval Œ�`; `� � R,

�`.�/ D �Œ�`;`�.�/; � 2 R; ` 2 N; (12.13)

and hence
s-lim
`!1

�`.A�/ D IŒL2.Rn/�N : (12.14)

Introducing

A`.t/ D A� C �`.A�/B.t/�`.A�/ D A� C B`.t/;

dom
�
A`.t/

�
D dom.A�/; ` 2 N; t 2 R; (12.15)

AC;` D A� C �`.A�/BC�`.A�/; dom.AC;`/ D dom.A�/; ` 2 N; (12.16)

where

B`.t/ D �`.A�/B.t/�`.A�/; dom
�
B`.t/

�
D ŒL2.Rn/�N ; ` 2 N; t 2 R;

one concludes that

AC;` � A�D�`.A�/BC�`.A�/ 2 B1

�
ŒL2.Rn/�N

�
; ` 2 N; (12.17)

A0
`.t/DB

0
`.t/D�`.A�/B

0.t/�`.A�/2B1

�
ŒL2.Rn/�N

�
; `2N; t 2R: (12.18)

As a consequence of (12.17), which follows from�`.A�/BC�`.A�/


B1.ŒL2.Rn/�N /

�
�`.A�/BC.A� � iIŒL2.Rn/�N /

�n�1


B1.ŒL2.Rn/�N /

�
.A� � iIŒL2.Rn/�N /

nC1�`.A�/


B.ŒL2.Rn/�N /
<1 (12.19)

(cf. (7.2)), the spectral shift functions �. � IAC;`; A�/, ` 2 N, exist and are uniquely
determined by

�. � IAC;`; A�/ 2 L
1.RI d�/; ` 2 N; (12.20)

implying

trŒL2.Rn/�N

�
f .AC;`/ � f .A�/

�
D

Z
R
�.�IAC;`; A�/d� f

0.�/; f 2C1
0 .R/:

We also note the analogous decompositions,

Hj;` D �
d2

dt2
C A2

` C .�1/jA0
` D H0 C B`A� C A�B` C B2

` C .�1/jB 0
`;

dom.Hj;`/ D dom.H0/ D W 2;2
�
RI ŒL2.Rn/�N

�
; ` 2 N; j D 1; 2;
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with
B` D �`.A�/B�`.A�/; B 0

` D �`.A�/B
0�`.A�/; ` 2 N;

implying

H2 � H1 D 2B 0; (12.21)

H2;` � H1;` D 2B 0
` D 2�`.A�/B

0�`.A�/; ` 2 N: (12.22)

Next, we recall the fact that for " > 0,

L2
�
RnI .1C jxj/.n=2/C"dnx

�
� `1.L2/.Rn/

(see, e.g., [159, p. 38] for the definition of the Birman–Solomyak space `1.L2/.Rn/)
and, given ˛ > n, �

1C j � j
��˛

2 L2
�
RnI .1C jxj/.n=2/C"dnx

�
for 0 < " sufficiently small (depending on a). This is of relevance here so that [44,
Section 8] becomes applicable in our context.

We continue with the following basic result in [44, Theorems 5.2 and 8.4]:

Theorem 12.3. In addition to Hypothesis 12.1 suppose that

V`;`0 2 W
4n;1.Rn/; 1 � `; `0 � N:

Then, abbreviating

q D dn=2e D

´
.nC 1/=2; n odd;

n=2; n even;

one obtains�
.H2 � z I/�q � .H1 � z I/�q

�
;
�
.H2;` � z I/�q � .H1;` � z I/�q

�
2 B1

�
L2
�
RI ŒL2.Rn/�N

��
; ` 2 N; z 2 CnŒ0;1/; (12.23)

and

lim
`!1

�.H2;` � z I/�q � .H1;` � z I/�q
�

�
�
.H2 � z I/�q � .H1 � z I/�q

�
B1.L2.RIŒL2.Rn/�N //

D 0;

z 2 CnŒ0;1/: (12.24)

For the fact that q D dn=2e in (12.23) can be replaced by any r � q, r 2 N, see,
for instance, [184, p. 210]; similarly, (12.24) extends to r � q, r 2 N, by [40].
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Relations (12.23) together with the fact that Hj � 0, Hj;` � 0, ` 2 N, j D 1; 2,
implies the existence and uniqueness of spectral shift functions �. � I H2;H1/ and
�. � IH2;`;H1;`/ for the pair of operators .H2;H1/ and .H2;`;H1;`/, ` 2 N, respec-
tively, employing the normalization

�.�IH2;H1/ D 0; �.�IH2;`;H1;`/ D 0; � < 0; ` 2 N (12.25)

(cf. [184, Section 8.9]). Moreover,

�. � IH2;H1/ 2 L
1
�
RI
�
1C j�j

��q�1
d�
�
: (12.26)

Since in analogy to (12.19),A0
`. � /


B1.ŒL2.Rn/�N /

D
B 0

`. � /


B1.ŒL2.Rn/�N /

D
�`.A�/B

0. � /�`.A�/


B1.ŒL2.Rn/�N /

�
�`.A�/BC.A� � iIŒL2.Rn/�N /

�n�1


B1.ŒL2.Rn/�N /

�
.A� � iIŒL2.Rn/�N /

nC1�`.A�/


B.ŒL2.Rn/�N /
b0. � / 2 L1.RI dt/;

` 2 N; (12.27)

employing b0. � / 2 L1.RI dt/ (cf. (12.6)), one obtainsZ
R
dt
A0

`.t/


B1.ŒL2.Rn/�N /
<1; ` 2 N: (12.28)

Given (12.28), the results in [137] (see also [78]) actually imply that�
.H2;` � z I/�1 � .H1;` � z I/�1

�
2 B1

�
L2
�
RI ŒL2.Rn/�N

��
; ` 2 N;

and
�. � IH2;`;H1;`/ 2 L

1
�
RI .1C j�j/�2d�

�
; ` 2 N:

In particular,

trL2.RIŒL2.Rn/�N /

�
f .H2/ � f .H1/

�
D

Z
Œ0;1/

�.�IH2;H1/d� f
0.�/;

trL2.RIŒL2.Rn/�N /

�
f .H2;`/ � f .H1;`/

�
D

Z
Œ0;1/

�.�IH2;`;H1;`/d� f
0.�/;

` 2 N; f 2 C1
0 .R/:

In addition, as derived in [137] (see also, [78]), (12.20), (12.25), and (12.28) imply
the approximate trace formula,Z

Œ0;1/

�.�IH2;`;H1;`/ d�

.� � z/2
D
1

2

Z
R

�.�IAC;`; A�/ d�

.�2 � z/3=2
; ` 2 N; z 2 CnŒ0;1/;

(12.29)
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which in turn implies Pushnitski’s formula [137],

�.�IH2;`;H1;`/ D

´
1
�

R �1=2

��1=2

�.�IAC;`;A�/ d�

.���2/1=2 ; for a.e. � > 0,

0; � < 0;
` 2 N; (12.30)

via a Stieltjes inversion argument (cf. [78, Section 8]).
As shown in [40], (12.24) implies for f 2 C1

0 .R/,

lim
`!1

�f .H2;`/ � f .H1;`/
�
�
�
f .H2/ � f .H1/

�
B1.L2.RIŒL2.Rn/�N //

D 0;

(12.31)
and hence

lim
`!1

Z
Œ0;1/

d� �.�IH2;`;H1;`/f
0.�/

D lim
`!1

trL2.RIŒL2.Rn/�N /

�
f .H2;`/ � f .H1;`/

�
D trL2.RIŒL2.Rn/�N /

�
f .H2/ � f .H1/

�
D

Z
Œ0;1/

d� �.�IH2;H1/f
0.�/: (12.32)

Abbreviating

q0 D 2bn=2c C 1 D

´
n; n odd;

nC 1; n even;

and assuming Hypothesis 7.1, one recalls that Theorem 7.4 implies�
.AC � zIŒL2.Rn/�N /

�r0 � .A� � zIŒL2.Rn/�N /
�r0
�
2 B1

�
ŒL2.Rn/�N

�
;

r0 2 N; r0 � q0; z 2 CnR: (12.33)

Since q0 is always odd, [185, Theorem 2.2] yields the existence of a spectral shift
function �. � IAC; A�/ for the pair .AC; A�/ satisfying

�. � IAC; A�/ 2 L
1
�
RI
�
1C j�j

��q0�1d�
�

(12.34)

and hence

trŒL2.Rn/�N

�
f .AC/� f .A�/

�
D

Z
R
�.�IAC; A�/d� f

0.�/; f 2C1
0 .R/: (12.35)

While �. � IAC; A�/ in (12.34), (12.35) is not unique, we will select a unique candi-
date using Theorem 12.4 below.

The next result is essentially [40, Theorem 4.7]; due to its importance we repro-
duce the proof here. To prepare the stage, we temporarily go beyond the approxi-
mation AC;` of AC and now introduce the following path of self-adjoint operators
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¹AC.s/ºs2Œ0;1�, in ŒL2.Rn/�N , where

AC.s/ D A� C PsBCPs; dom
�
AC.s/

�
D dom.A�/; s 2 Œ0; 1�; (12.36)

Ps D �Œ�.1�s/�1;.1�s/�1�.A�/; s 2 Œ0; 1/; P1 D IŒL2.Rn/�N ; (12.37)

in particular,

AC.0/ D AC;1 .cf. (12.16) with ` D 1/ and AC.1/ D AC: (12.38)

Theorem 12.4. Assume Hypothesis 12.1 and suppose that

V`;`0 2 W
4n;1.Rn/; 1 � `; `0 � N:

Then there exists a unique spectral shift function �. � IAC; A�/ such that

�. � IAC; A�/ D �
�
� IAC.1/; A�

�
D lim
`!1

�. � IAC;`; A�/ in L1
�
RI .1C j�j/�q0�1d�

�
: (12.39)

Moreover, assume that g 2 L1.RI d�/. Then

lim
`!1

�. � IAC;`; A�/g � �. � IAC; A�/g

L1.RI.1Cj�j/�q0�1d�/

D 0; (12.40)

and hence,

lim
`!1

Z
R
�.�IAC;`; A�/d� h.�/ D

Z
R
�.�IAC; A�/d� h.�/ (12.41)

for all h 2 L1.RI d�/ such that ess: sup�2R jh.�/j.1C j�j/q0C1 <1.

Proof. Since by (12.17), �`.A�/BC�`.A�/ 2 B1

�
ŒL2.Rn/�N

�
, also

AC.s/ � A� D PsBCPs 2 B1

�
ŒL2.Rn/�N

�
; s 2 Œ0; 1/;

and hence there exists a uniques spectral shift function �. � IAC.s/; A�/ for the pair
.AC.s/; A�/ satisfying

�. � IAC.s/; A�/ 2 L
1.RI d�/:

Moreover, in complete analogy to (12.33), the family AC.s/ depends continuously
on s 2 Œ0; 1� with respect to the pseudometric

dq0;z.A;A
0/

D
.A � zIŒL2.Rn/�N /

�q0 � .A0
� zIŒL2.Rn/�N /

�q0


B1.ŒL2.Rn/�N /
(12.42)
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for A;A0 in the set of self-adjoint operators which satisfy for all � 2 iRn¹0º,�
.A � �IŒL2.Rn/�N /

�q0 � .A� � �IŒL2.Rn/�N /
�q0

�
;�

.A0
� �IŒL2.Rn/�N /

�q0 � .A� � �IŒL2.Rn/�N /
�q0

�
2 B1

�
ŒL2.Rn/�N

�
:

Thus, the hypotheses of [40, Theorem 4.7] are satisfied and one concludes the exis-
tence of a unique spectral shift function �. � IAC.s/; A�/ for the pair .AC.s/; A�/

depending continuously on s 2 Œ0; 1� in the space L1
�
RI .1C j�j/�q0�1d�

�
, satisfy-

ing �. � IAC.0/; A�/ D �. � IAC;1; A�/. Taking s D .` � 1/=`, ` 2 N, yields

�. � IAC; A�/ D �. � IAC.1/; A�/ D lim
s"1

�. � IAC.s/; A�/

D lim
`!1

�. � IAC;`; A�/ in L2
�
RI .1C j�j/�q0�1d�

�
:

Hence an appropriate subsequence, again denoted by ¹�. � IAC;`;A�/º`2N , converges
pointwise a.e. to �. � IAC; A�/ as `! 1. Since each �. � IAC;`; A�/ 2 L

1.RI d�/,
` 2 N, is uniquely defined one obtains a unique spectral shift function satisfying
(12.42).

The facts (12.40) and (12.41) are now evident.

In the following we will always employ �. � IAC; A�/ as determined by the lim-
iting relation (12.39) as the spectral shift function for the pair .AC; A�/.

The next result is fundamental, it establishes (12.30) in the limit `! 1.

Theorem 12.5. Assume Hypothesis 12.1 and suppose that

V`;`0 2 W
4n;1.Rn/; 1 � `; `0 � N:

Then,

�.�IH2;H1/ D
1

�

Z �1=2

��1=2

�.�IAC; A�/ d�

.� � �2/1=2
for a.e. � > 0: (12.43)

Proof. We start by multiplying the approximate relation (12.30) by the derivative f 0

of a test function f 2 C1
0 .R/, and integrate to get,Z

R
�.�IH2;`;H1;`/d� f

0.�/ D

Z
Œ0;1/

�.�IH2;`;H1;`/d� f
0.�/

D
1

�

Z
Œ0;1/

d�f 0.�/

Z �1=2

��1=2

�.�IAC;`; A�/ d�

.� � �2/1=2

D
1

�

Z
R
�.�IAC;`; A�/d� F

0.�/; ` 2 N; (12.44)
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where F 0 is defined by

F 0.�/ D

Z 1

�2

d�f 0.�/.� � �2/�1=2; � 2 R: (12.45)

We claim that
F 0

2 C1
0 .R/;

rendering the manipulations leading to (12.44) well defined. Clearly, F 0 2 C0.R/
since f 0 2 C1

0 .R/. To show that F 0 2 C1
0 .R/, it suffices to repeatedly integrate by

parts and allude to the following representations of F 0,

F 0.�/ D

Z 1

�2

d�f 0.�/.� � �2/�1=2

D �2

Z 1

�2

d�f 00.�/.� � �2/1=2

D 2
2

3

Z 1

�2

d�f 000.�/.� � �2/3=2

:::

D ck

Z 1

�2

d�f .k/.�/.� � �2/k�.3=2/ � 2 R; k 2 N; (12.46)

for appropriate constants ck , k 2 N. Thus, (12.44) yields the following,Z
Œ0;1/

�.�IH2;`;H1;`/d�f
0.�/D

1

�

Z
R
�.�IAC;`;A�/d� F

0.�/; `2N; (12.47)

where f 2 C1
0 .R/ was arbitrary, and F 0 2 C1

0 .R/ (depending on f 0) is given by
(12.45) or equivalently, by any of the expressions in (12.46).

It remains to control the limits `! 1 on either side of (12.47): By (12.32), the
left-hand side of (12.47) converges as `! 1,

lim
`!1

Z
Œ0;1/

�.�IH2;`;H1;`/d� f
0.�/ D

Z
Œ0;1/

�.�IH2;H1/d� f
0.�/: (12.48)

For the right-hand side of (12.47) one applies Theorem 12.4, especially, (12.41), and
concludes that

lim
`!1

1

�

Z
R
�.�IAC;`; A�/d� F

0.�/ D
1

�

Z
R
�.�IAC; A�/d� F

0.�/; (12.49)

since by (12.42)

lim
`!1

�. � IAC;`; A�/ � �. � IAC; A�/

L1.RI.1Cj�j/�q0�1d�/

D 0:
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Combining (12.47)–(12.49) finally yieldsZ
Œ0;1/

�.�IH2;H1/d� f
0.�/ D

1

�

Z
R
�.�IAC; A�/d� F

0.�/

D
1

�

Z
R
d�f 0.�/

Z �1=2

��1=2

�.�IAC; A�/ d�

.� � �2/1=2
�Œ0;1/.�/; f 2 C1

0 .R/:

An application of the Du Bois–Raymond Lemma (see, e.g., [114, Theorem 6.11]),
thus implies for some constant c 2 R,

�.�IH2;H1/ D
1

�

Z �1=2

��1=2

�.�IAC; A�/ d�

.� � �2/1=2
�Œ0;1/.�/C c for a.e. � 2 R:

Due to our normalization (12.25), c D 0, proving (12.43).

Having established (12.43), we turn to the resolvent regularized Witten index of
the densely defined and closed operator D

A
. We refer to [31, 38, 41–44, 78, 84, 137]

and the references therein for a bit of history on this subject.
Since �.A˙/ D R, in particular, 0 … �.AC/ \ �.A�/,

DA is a non-Fredholm operator:

This follows from the criterion for Fredholm operators established in [43, Theo-
rem 2.6] (which extends to the current setting by replacing the resolvent of A˙ by
appropriate powers of the resolvent in the proof).

In the following we will show that even though D
A

is a non-Fredholm operator,
its Witten index is well defined and expressible in terms of the spectral shift functions
for the pair of operators .H2;H1/ and .AC; A�/.

To introduce an appropriately (resolvent regularized) Witten index of D
A

, we
consider a densely defined, closed operator T in the complex, separable Hilbert space
K and assume that for some k 2 N, and all � < 0�

.T �T � �IK/
�k

� .T T �
� �IK/

�k
�
2 B1.K/:

Then the kth resolvent regularized Witten index of T is defined by

Wk;r.T / D lim
�"0
.��/k trK

�
.T �T � �IK/

�k
� .T T �

� �IK/
�k
�
;

whenever the limit exists. The case k D 1 as well as the approach where resolvents
are replaced by semigroups has been studied in great detail in [43], the extension to
k � 2 was discussed in [44].

It is well known that the (regularized) Witten index is generally not an integer, in
fact, it can take on any real value (cf. [31, 84]). The intrinsic value of Wk;r.T / lies
in its stability properties with respect to additive perturbations, analogous to stability
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properties of the Fredholm index. Indeed, as long as one replaces the familiar relative
compactness assumption on an additive perturbation in connection with the Fredholm
index, by appropriate relative trace class conditions in connection with the resolvent
regularized Witten index, stability of the Witten index was proved in [31] (for k D 1,
see also [45]) and, in connection with the analogous semigroup regularized Witten
index, in [84] (the semigroup approach then yielding stability for Wk;r. � /, k 2 N).

The following result, the first of this kind applicable to non-Fredholm operators
in a partial differential operator setting involving multi-dimensional massless Dirac
operators, then characterizes the Witten index of D

A
in terms of spectral shift func-

tions:

Theorem 12.6. Assume Hypothesis 12.1 and suppose that

V`;`0 2 W
4n;1.Rn/; 1 � `; `0 � N:

Then 0 is a right Lebesgue point of �. � IH2;H1/, denoted by �L.0CIH2;H1/, and

�L.0CIH2;H1/ D
�
�.0CIAC; A�/C �.0�IAC; A�/

�ı
2:

In addition, the resolvent regularized Witten index Wk;r.DA
/ of D

A
exists for all

k 2 N, k � q and equals

Wk;r.DA/ D �L.0CIH2;H1/ D
�
�.0CIAC; A�/C �.0�IAC; A�/

�ı
2

D
�
�.0CIH;H0/C �.0�IH;H0/

�ı
2: (12.50)

Proof. The key new input for the proof is the existence of 0 as a left and right
Lebesgue point of �. � IAC;A�/D �. � IH;H0/. This is established in Theorem 12.2,
in fact, more is proved since left and right limits of �. � IH;H0/ at 0 are shown to exist.
For q D 1, the remaining assertions are proved in [43, Theorem 4.3], the extension to
q � 2 is discussed in [44, Section 7].

The actual computation of the right-hand side of (12.50) in terms of the potential
V is left for a future investigation.


