Appendix B

Asymptotic results for Hankel functions

In this appendix we collect asymptotic results for Hankel functions in the regions of
large and small arguments. To set the stage, we recall some details on the analytic
behavior of H{V(+) (cf. [1, pp. 358-360]):

HO(@) = 1,0 +iY, (). veC, {eC\{0}, (B.1)
L@ = /2" Y [kITe +k+ D] (-DFE/2)%*, (B.2)
keNg
Y, (¢) = [sin(wm)] " [Ju() cos(vr) — J_u ()], (B.3)
n—1
Ya(©) =~ /27" Yk [ — k = D1©@/2)% + 227 (0 In(¢/2)
k=0
—r /" Y [Wk+ D+ Y+ k+ 1)
keNg
x [kl + ) (=D)k¢/2%*, neN, (B.4)
Sl k 1 ( 4) kg-zk
Ho) = Ze/2) et - 2 3 (N ) S @9
=1
J_n(©) = (=1)"Ju(0),  Y_n(0) = (- 1)"Y (z) neN,
HY(@Q) =" HD(0), (B.6)
where (cf. [1, p. 256])
-1
YO =T'@Q)/T©Q). v()=-yve-m. VO =-ye-m+ Y k' B
k=1
and .
yE-m = lim (— In(m) + Zk—l) = 0.5772156649 . .. (B.8)

denotes the Euler—Mascheroni constant (cf. [1, p. 255]). We also recall the asymptotic
behavior (cf. [1, p. 3601, [99, pp. 723-724])

H'©) =, @i/m)in@)+0(|m@)]F). (B.9)
§eC\{0}
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HOQ = /02T
teC\{0}
0(|§|min(v,—v+2))’ v ¢ N,
Re(v) >0, (B.10)
{ oO(|In(®)|II") + 0(™"*)., veN, v
H‘Sl)(é‘) §.= (2/71’)1/2&-—1/261'[é'_(l)ﬂ/Z)_(ﬂ'/4)], p > 0’ Im(é‘) > 0. (Bl])

o0

B.1 Asymptotics of H" (¢) as |¢| = oo

Hypothesis B.1. Let v € C withRe(v + (1/2)) > 0.

Assuming Hypothesis B.1, the Hankel function H,fl)( -) permits the following
representation (cf., e.g., [88, Equation 8.421.9], [181, Equation 6.12(3)])

H(¢)
) 1/2 i[t—(n/2)v—(7/4)] poo . v—(1/2)

- (—) ¢ / du e_”u”_(l/z)(l n ﬂ) . (B.12)
24 L+ (1/2) Jo 2¢

where Re(v + (1/2)) > 0 and —n/2 < arg(¢) < 3 /2. We will derive the asymptotic
behavior of H,fl)(i ) as |¢| — oo closely following the presentation given in [181,
Section 7.2].

The factor in parentheses in the integrand in (B.12) may be expanded for any
p € N according to

iu v—(1/2) D
(1+%) =
((1/2)_ pf U 7ol 1 ut v—p—(1/2)

+W(ﬁ) [)dt(l—l)p (]_F'é‘) ., (B.13)

where we have employed the Pochhammer symbol,

_T@+n)
(@)n = W’

We shall assume for convenience that p € N is chosen sufficiently large to guarantee
that Re(v — p — (1/2)) < 0, and we will comment on how to remove this restriction
later. Next, fix an angle § € (0, r/2) which satisfies

|arg(¢) — (/2)| <7 6.

With § so chosen, one infers
1 ut
ar - —
B\ T2t

g

L ((1/2)-),, (L)’"

n -
A m! 2i¢

3
I

~—

neN, aeC\{0,—-1,-2,-3,...}.

> sin(d), <7,
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forall # € [0, 1] and all u € (0, 00). In particular,

ut v—p—(1/2)
1— —
'( 2i§)

where C, , s is independent of {. Using the expansion (B.13) in (B.12), one obtains

< enllm(u)|[Sin(g)]Rc(V—P—(l/Z)) = Cyps. (B.14)

5 )1/2 el lE—(/2)v—(x/4)]
t T'(v+(1/2)

L (/2 =v), ((u\"
/ due (1/2){2 - (21‘4‘)

m=0

(1/2)=v),  u \? ! B ut \V-P—(1/2
() oo (-35)
_(3)”2ﬂ<W”*Wm L ((1/2) =), (v +m + (1/2))
~ e r(v+(1/2) .

m!(2ig)"
((1/2)_‘))1) * —u, v—/2)f Y i
F o, e (zﬂ

. v—p—(1/2)
AV -
/ dt (1 —1) (1 21;) }

:(i)Uzeité—(n/z)v—(nm)][i (1/2)—v) (V+(1/2)) (1)@)}

@ = (

M

m

n m!(2ig)m
(B.15)

where

((1/2) —v),
(p—DIT(v+(1/2))

%0 w O\ P e \V-P—(1/2)
X/ due_uu”_(l/z) — / dt (l—l)p_l 1—— .
0 21; 0 21;

One observes that

R{D(©) =

|RM) (0]
< Co,ps ((1/2) — V)P ! _ p—1:||: % vp—(1/2) i|
_(P—U!F@+wumx%op[ﬂ =0 A e | du

= Cy pslC|77. (B.17)
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As a consequence of (B.15), (B.16), and (B.17), one infers that for any fixed § €
(0,7/2),

HV(©)

2\"2 . 20 (1/2) = v),, (v+(1/2))
i[E—(r/2)v—(/4)] m -
;|—>oo(n§) ¢ ’ ) |:Z m!Q2i &)™ +O(|§| p)]’

m=0

|arg(§‘) — (n/2)| <nm—4§. (B.18)

To obtain similar expansions when Re(v — p — (1/2)) > 0, one chooses ¢ € N
so large that Re(v — g — (1/2)) < 0, which requires p < ¢. Then (B.15), (B.16),
(B.17), and (B.18) hold with p replaced by ¢g. In particular, by (B.15), for any fixed
8 €(0,7/2),

HP ()
(2N e rso—rgag [ = (1/2) = )0+ (1/2)m 0
—(7?;) ¢ 2 mlQig) TR
_ (2" je—ermv-can| 5 1((1/2)—\)),,,(1)+(1/2))m Z)
_(n_g“) n;) T + RO @ |
|arg(¢) — (w/2)| <7 =8, (B.19)
where

R (&) = qii ((1/2) — v)m (U + (1/2))m

()
v.pd A + RS (). (B.20)

m=p
The following lemma provides sufficient conditions for the differentiability of an
integral depending on a complex parameter.

Lemma B.2 ([119]). Let (X, M, &) be a measure space, let G C C be an open set,
andlet f : G x X — C be a function which satisfies the following conditions:

(1) f(, -) is M-measurable for every ¢ € G,

(ii) f(-,x) is holomorphic in G for every x € X, and

(i) [y du | f(-.x)| is locally bounded; that is, for every ¢y € G, there exists
&(Co) > 0 such that

sup [ du] £(e.0)| < o0,
teG X
1E=8ol=<e(%0)
Then [y du f(-,x) is holomorphic in G and

ddf” [ du f(¢ x) = / du 38; f(¢ x) inG foreveryn € N.
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Proposition B.3. Assume Hypothesis B.1. Let p € N, u € (0, 00), and suppose
Re(v—p—(1/2)) =0.If

Qo :={¢ € C||arg(l) — (7/2)| < 7}, (B.21)
then the function ay, py : Qo — C defined by

1 ut \VP~(1/2)
Ay, pv(l) = / dt (1— t)p(l — —) , €€, (B.22)
0 2i¢
is analytic in Q¢ and

n

d 1 an ut \VP—(1/2)

Wau,p’v(é') = /0 dt (1 — [)p an; (1 — —) s é‘ € QO. (B.23)
Proof. Let p e N,u € (0,00),v € C withRe(v — p — (1/2)) < 0. It suffices to apply
Lemma B.2 to the function

ut \VP—(1/2)

fu,P,V(é-ﬂt) = (1 - t)p(l - Té‘) ) ; € QO’ t € (05 1) (B24)
Of course, (B.24) defines a function which is Lebesgue measurable for each { € Q¢
and analytic in Q¢ for every ¢ € (0, 1). Therefore, it remains to verify condition (iii)

in Lemma B.2. To this end, let &y € 9. Choose § € (0, 7 /2) such that
Lo € Q5 := {Z eC| |arg(§) — (n/2)| < —8}.
By (B.14), one then infers

1
C
<[ dtlfupen| s =22 tey. 25)
0

1
|au,p,v(§)|=‘/0 dr fu,pw(C,1) »

In particular, choosing (&) € (0, 1) so small that

{CeC1t—2tl <e(o)} C Q.

one concludes

1
sup ‘ [t fupaten| < oc.
teQo 0
[£—8ol<e(So)
Therefore, condition (iii) in Lemma B.2 holds, and it follows that a,, , , is analytic
in Q. [ ]

Proposition B.4. Assume Hypothesis B.1, let p € N, and let Q¢ be defined as in
(B.21). The following statements hold:

(1) IfRe(v — p — (1/2)) <0, then the function R,(,B, : Qo — C defined by (B.16)
is analytic in Q.

(i) IfRe(v — p — (1/2)) > 0, then the function R,(,B,,q : Qo — C defined by (B.20)
is analytic in Qg for every q¢ € N such that Re(v — g — (1/2)) < 0.
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Proof. Let p € N and suppose Re(v — p — (1/2)) < 0. We begin with the proof of (i).
It suffices to show that the function b, ,, : ¢ — C defined by (cf. (B.22))

00 1 ut v—p—(1/2)
bp.v(§) :/ due‘“u”+”‘(1/2)/ de (1 —t)”“(l ——.)
0 0

o0
=3A du e =0Dg. (6t e Qo (B.26)

is analytic in Q¢. The function e *u?*"=1/2)q, , ,(¢) is a measurable function of
u € (0, 00) for each ¢ € Q4 and is, by Proposition B.3, an analytic function of { € Q2
for each u € (0, 00). Therefore, by Lemma B.2, it suffices to prove that for each
Lo € Qo, there exists £(&g) € (0, 0o) such that

o0
sup / due Pt =1, ()
0

£eQo
[£—8ol<e(8o)

To this end, let o € 2¢. Choose § € (0, 7/2) such that
Lo € Qg 1= {Z eC| |arg(§) - (n/2)| <7 —8}.

An application of (B.25) yields the following estimate:

o0
/0‘ du e—uup-i-v—(l/Z)au’p’v(é-)

< 0Q. B.27)

IA

Cops /Oo du e~y RepHv=(1/2))
p 0

%F(Re(p + v+ (1/2)). ¢ € Q.

Thus, one obtains (B.27) by choosing £({p) € (0, 1) so small that

(£ € CT1E =20l <e(bo)} C Q.

Finally, to prove item (ii), suppose that Re(v — p — (1/2)) > 0 and ¢ € N with
Re(v — ¢ — (1/2)) < 0. The first term on the right-hand side in (B.20) is analytic
in C\{0}, while the second term on the right-hand side in (B.20) is analytic in ¢ by
the statement in (i). Hence, the statement in (ii) follows from the subspace property
of analytic functions. u

Remark B.5. Of course, analyticity of Rl(,g, (resp., ﬁl(g,’q) follows immediately

from (B.15) (resp., (B.19)). However, the proof of Proposition B.4 shows that the ¢-
derivatives of R,(,B, may be computed by differentiating under the integrals in (B.16).
In fact, as a consequence of (B.23) and the proof of Proposition B.4, one infers that
under the assumptions of Proposition B.4,

on 00 o (1/2) 1 . on ut v—p—(1/2)
—b,, = due *uP™v" /d[ 11— —(1 - — ,
rghn©= [ due a0 (1-57)

{eQp, neN. (B28)
<&
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In order to state the next result, we introduce O-notation. Recall that if cC
and f, g : Q@ — C, then one writes

f@Q=0(®). teq,

if and only if there exists a constant C € (0, co) (independent of ¢ € 2) such that
@] =Cle®]. teq.

One writes B
f@Q)=0(©). teq,

if and only if for each n € N,

d"f  (d'g
I _O(dgn)’ {eq. (B.29)

It is understood that the constant corresponding to (B.29) will, in general, depend on
n e No.

The principal asymptotic result for H,fl)(Z;) as |¢{| — oo can be summarized as
follows:

Lemma B.6. Assume Hypothesis B.1 holds. If § € (0, /2), then
HP @) = efwn(Q), ey,
where

o) = O((1+1e)"). teQsn{zeC]||zl=1). (B.30)

Proof. Assume Hypothesis B.1 holds. We distinguish two cases: Re(v — (3/2)) <0
and Re(v — (3/2)) > 0. If Re(v — (3/2)) < 0, then one may take p = 1in (B.15) to
obtain

2 1/2 L B )
Hé“(n:(n—g) =204 RO (0)] = e, (). £eQy,

where

ng

It remains to prove w, (-) defined by (B.31) satisfies (B.30). To prove this, it suffices
to show that

¢+ R )]

1/2
wy(¢) = (i) /D= 4 RID(0)], ¢ e Q. (B.31)

O((1+12)7?). te@snizeC||z|=1): B32)

1|00
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that is,

1/ R a" 1/2
S RO©) O(dg,,(+|5|) )

§e§23ﬂ{ze(C||Z|21},neN0. (B.33)

dg“"

For n = 0, the relation in (B.33) follows immediately from (B.17). To treat the deriva-
tives in (B.33), one differentiates under the integrals in (B.16). For simplicity, we only
treat the case n = 1 and omit the details for n > 2. One computes

—4—1/2[1 +RO©0)] = R(©)

dg

> 00 O((1+1gN~")

s (/2 —v)r U,V (1/2) ( )v /2)
e A, e ¥

[1+ RN @]+ g—l/zd

36 ¢

_ ((1/2) =v)1(v = (3/2)) - v+(3/2)/ ( )v—(s/z)
4r(v +(1/2)) 0 2iC
Ml o((1+ |§|)—3/2), teQsn{zeCllz| =1} (B.34)

To obtain the final equality in (B.34), one applies (B.14) to bound the two ({-depen-
dent) integrals with respect to ¢ € (0, 1). This settles the case when Re(v — (3/2)) <0.
If Re(v — (3/2)) > 0, one chooses ¢ € N such that Re(v — ¢ — (1/2)) < 0. Then

2\ - - ‘
Hv‘“(o:(ﬂ—z) /2= R ()] =, (), ¢ ey,

where

\1/2 _
wu(0) = (7) G L B @] ¢ e
T )1,
Then, as a consequence of (B.20) and (B.32), one obtains

¢+ RN L] (s ). te@snizeC||z[>1). m

B.2 Asymptotics of H®(¢) as [¢] = 0

Since the asymptotics derived here will be applied to Dirac operators, we only con-
sider v € [0, oo) from this point on. We distinguish two cases:

(i v e(0,00)\N,
and
(i) v e Np.
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Case (i): v € (0, 00)\N. In this case, one has the following representation for H, ,fl)
in terms of Bessel functions:

HO (@) = [1 +i cot(wm)]J, (&) — i[ sin(m)] ', (§), CeC.

Repeated term-by-term differentiation of the series representations for Ji, re-
veals

d*
dek

_ (dk[ L@ )i”])[1+0(|§|2)]
g0 \d¢k [ T(1 £ v)

I 0 ok )
0 Fr ) T O] <1 ke No.

J:i:v(é‘)

As a result,
@ HV(@) = [1+icot(un)]L(;/2)” 1+ 0(|¢?)]
dik it 26T (v + 1)
— i[sin(vn)]_I%(f/Z)_"_k[l +0(1¢1*)]. 1Zl <1, k € Ny,

which settles Case (i).
Case (ii): v € Ny. Since v is a nonnegative integer, we write
n:=ve No.

First, we treat the case 71 € N. Then,

Ji(©) = i ,E—j),(z/ pmi tec, (835)
and
Yal) = (/D) mio =D a1 2 ine /2050
L Y v+ v+ =g
- G+ )]

m=0

= Y1,5(0) + Y2,5(0) + Y3.5(5), ¢ e C\{0}.
Repeated differentiation of the series representation for J5 yields

d* (M

a1 ® = e @R 0] Kl =1 ke NN [0.A] (B36)
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and
(1) k=124 2 8
L) = e 1+ 0 (1), ik even
é‘k n (_1)(k—ﬁ+1)/2(k+1)! 2 -
* st L0 (87)]. itk odd,

€< 1, k e NN (i,0). (B.37)

Repeated differentiation of Y7 ; yields

d* dk 5
Seeha©) = —a ( Sl ])[1 +0(IzP)]
= S R 0] Tl <1 ke N B38)
In view of (B.35),
Y2 (8) o —1 €/2E/2)" + 0" (), ¢ <1. (B.39)
Differentiation of the series representation of Y3 j; yields
d* LY@+ 1) —y]Gx e
ap @ =~ S &/" 1+ 0(1EP)],
Ll <1, ke NN[0,7], (B.40)
and
dk
WYS,ﬁ(Z)
D B 11 0(7)

7 + k even,

|§|i0 _ 1 [ (k=fi+D/2]+ D4y ((k+7i+1)/2]+DI(=D K=+ D/2 ) 2
E 2K ((k—ii+1)/2)!((k+7i+1)/2)! {[I—I-O(IZI )]

i + k odd,
el <1, k e NN (1,00). (B.4l)

In the remaining case 7 = 0, one obtains (cf., e.g., [66, (11) and (12)])

Jo(§) IZ|=%01+0(§2), el <1, (B.42)
with
_1\k/2
d* z(k[tl)c/z){c]!2 [1+0(|§|2)], k even,

|Z]<1, keN, (B.43)

© =
d k 0 (—1)(k+1)/2(k+1)!
é‘ m KFI[((k+1)/2)1]2 [1+0(|C|2)], k odd,
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and

V@) = 2@+ X 4 6@m@). <1 (B4
[E|—0 T T

Finally, to obtain expressions for the derivatives of H ;fl), one applies the repre-
sentation
Hi(©) = Ja(©) +iYa (). ¢ € C\{0}. il € No.

If n € N, then

dk HO@) = (M)k

agk O 2o ok Siq /2" 1+ 0(18?)]

=1 CIE 41 1 0((¢P)]
k
4 2~|:§k[ln(§/2)(§/2) ] (dg“k [§n+21n(§)])
1) — y]( )
o e +2k)”| MOk oy t1 4+ 0eP)], Tl <1, k e N0,
n!
while
dk (1) (- 1)(k_ﬁ)/2k! 5
age O = 2k ((k — ~)/2)!((k+ﬁ)/2)![1 +0(1¢1)]
-iC ”)"@/2)—" [+ 0(1tP)]
+i vdgk [(6/2)" In(¢/2)] + O(dgk [¢"F21n (;)])
[ ([ —i)/2] + 1) + ¥ ([(k +7)/2] + 1) |(=1) &=/ 2k )
"= H((k—m)/DN((k +1)/2)! [1+ 00
[¢] <1, k e NN (7, 00), 71 + k even,
and
dk (1) (- 1)(k—ﬁ+1)/2(k+1)! )
dgk H;©) t>0 2k ((k — 7+ 1)/2)N((k + 71 + 1)/2)!§[1 +0(eP)]
-8 ””‘@/2) K1+ 0(¢)]
+i 'd;k [(;/2)" In(¢/2)] + O(d;k ¢+ ln(g)])
N _[ Y([k—i+D/2]+ 1)+ v ([k+a+1)/2] + 1)](—1)(k_ﬁ+1)/2k!§
T 2k((k — i+ 1)/2)N((k + 7 + 1)/2)!

x[1+0([¢]*)]. [l <1, ke NN (i, o00), i +k odd.
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In the case 71 = 0,

k _1\k/2
4t o (~1) k!2[1+0(|c|2)]

dgk° t>0 2k[(k/2)!]
k

d
d_gk[_l (¢/2) + —] (d;k [gzln(g)]),
|¢] <1, k € Ny, k even,

and

(- 1)(k+1)/2(k+1)'

—H{P(©Q) = 1+ 0(18P)]

k

dk 12
+ld—§k[ In (4“/2)+—} +0(d§k[§21n(§)]),
] <1, k € N, k odd.




