Appendix E Notational conventions

For convenience of the reader we now summarize most of our notational conventions used throughout this manuscript.

Basic abbreviations

We employ the shortcut $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

 $\lfloor \cdot \rfloor$ denotes the floor function on \mathbb{R} , that is, $\lfloor x \rfloor$ characterizes the largest integer less than or equal to $x \in \mathbb{R}$. Similarly, $\lceil \cdot \rceil$ denotes ceiling function, that is, $\lceil x \rceil$ characterizes the smallest integer larger than or equal to $x \in \mathbb{R}$.

We abbreviate $\mathbb{C}_{\pm} = \{z \in \mathbb{C} \mid \pm \operatorname{Im}(z) > 0\}.$

Vectors and matrices

Vectors in \mathbb{R}^n are denoted by $x = (x_1, ..., x_n)^\top \in \mathbb{R}^n$ (with \top abbreviating the transpose operation) or $p = (p_1, ..., p_n)^\top \in \mathbb{R}^n$, $n \in \mathbb{N}$. For $x = (x_1, ..., x_n)^\top \in \mathbb{R}^n$ we abbreviate

$$\langle x \rangle = \left(1 + |x|^2\right)^{1/2},$$

where $|x| = (x_1^2 + \dots + x_n^2)^{1/2}$ denotes the standard Euclidean norm of $x \in \mathbb{R}^n$, $n \in \mathbb{N}$.

The dot symbol, " \cdot ", is used in three different ways: First, it denotes the standard scalar product in \mathbb{R}^n ,

$$x \cdot y = \sum_{j=1}^{n} x_j y_j, \quad x = (x_1, \dots, x_n)^{\top}, \ y = (y_1, \dots, y_n)^{\top} \in \mathbb{R}^n.$$

Second, we will also use it for *n*-vectors of operators, $\underline{A} = (A_1, \dots, A_n)^{\top}$ and $\underline{B} = (B_1, \dots, B_n)^{\top}$ acting in the same Hilbert space in the form

$$\underline{A} \cdot \underline{B} = \sum_{j=1}^{n} A_j B_j,$$

whenever it is obvious how to resolve the domain issues of the possibly unbounded operators involved.

For X a given space, T a linear operator in X, and $A = (a_{j,k})_{1 \le j,k \le N} \in \mathbb{C}^{N \times N}$ an $N \times N$ matrix with constant complex-valued entries acting in \mathbb{C}^N , $N \in \mathbb{N}$, we will avoid tensor product notation as in

$$T \otimes A \quad \text{in } X \otimes \mathbb{C}^N,$$

such that

$$X \otimes \mathbb{C}^N$$
 is identified with the symbol $X^N = (X, \dots, X)^\top$,

and

$$T \otimes A$$
 is identified with $TA = (Ta_{j,k})_{1 \le j,k \le N} = (a_{j,k}T)_{1 \le j,k \le N} = AT$. (E.1)

That is, we interpret $T \otimes A$ as entrywise multiplication, resulting in an $N \times N$ block operator matrix TA = AT. Thus, if $T = (T_1, \ldots, T_n)$, with $T_j, 1 \le j \le n$, operators in \mathcal{H} , and $A = (A_1, \ldots, A_n)$, with $A_j \in \mathbb{C}^{N \times N}$, $1 \le j \le n$, $N \times N$ matrices with constant, complex-valued entries acting in \mathbb{C}^N , we will employ the dot symbol also in the form

$$T \cdot A = \sum_{j=1}^{n} T_j A_j = \sum_{j=1}^{n} A_j T_j = A \cdot T,$$

where $T_j A_j = A_j T_j$, $1 \le j \le n$, are defined as in (E.1).

 $A \in X^{m \times n}, m, n \in \mathbb{N}$, represents an $m \times n$ matrix $A = (A_{j,k})_{1 \le j \le m, 1 \le k \le n}$, with entries $A_{j,k}$ in $X, 1 \le j \le m, 1 \le k \le n$. In particular, $F = (F_1, \ldots, F_n)^\top \in X^n$ is a vector with *n* components and $F_j \in X$ denotes its *j*-th component, $1 \le j \le n$.

The identity operator in \mathbb{C}^n is represented by $I_n, n \in \mathbb{N}$.

Special functions and function spaces

For special functions such as the Gamma function $\Gamma(\cdot)$, the digamma function $\psi(\cdot) = \Gamma'(\cdot)/\Gamma(\cdot)$, Bessel functions of order ν , $J_{\nu}(\cdot)$, $Y_{\nu}(\cdot)$, Hankel functions of the first kind and order ν , $H_{\nu}^{(1)}(\cdot)$, the Euler–Macheroni constant γ_{E-M} , etc., we refer to [1].

To simplify notation, we frequently omit Lebesgue measure whenever possible and simply use $L^{p}(\mathbb{R}^{n})$ instead of $L^{p}(\mathbb{R}^{n}; d^{n}x), p \in (0, \infty) \cup \{\infty\}$.

Weak L^p -spaces (i.e., Lorentz spaces $L^{p,q}(\mathbb{R}^n; d\rho)$ with $q = \infty$), are denoted by $L^p_{\text{weak}}(\mathbb{R}^n; d\rho)$, $p \in (0, \infty)$. Here $(\mathbb{R}^n, d\rho)$ represents a separable measure space and the measure ρ is assumed to be σ -finite. The seminorm on $L^p_{\text{weak}}(\mathbb{R}^n; d\rho)$ is abbreviated by

$$||f||_{L^p_{\text{weak}}(\mathbb{R}^n;d\rho)} := \sup_{t>0} \left(t \left[\mu_f(t) \right]^{1/p} \right), \quad p \in (0,\infty),$$

where

$$\mu_f(t) = \rho(\{x \in \mathbb{R}^n \mid |f(x)| > t\}).$$

In particular,

$$\|f + g\|_{L^{p}_{\text{weak}}(\mathbb{R}^{n};d\rho)} \le c_{p} \Big[\|f\|_{L^{p}_{\text{weak}}(\mathbb{R}^{n};d\rho)} + \|g\|_{L^{p}_{\text{weak}}(\mathbb{R}^{n};d\rho)} \Big],$$

$$c_{p} = \max(2, 2^{1/p}), \ p \in (0, \infty).$$

Again, we omit the measure ρ and just employ the notation $L^p_{\text{weak}}(\mathbb{R}^n)$ in case ρ equals Lebesgue measure on \mathbb{R}^n .

If $n \in \mathbb{N}$ and $N \in \mathbb{N} \setminus \{1\}$, we set

$$[L^{2}(\mathbb{R}^{n})]^{N} := L^{2}(\mathbb{R}^{n}; \mathbb{C}^{N}), \quad [W^{1,2}(\mathbb{R}^{n})]^{N} := W^{1,2}(\mathbb{R}^{n}; \mathbb{C}^{N}), \quad \text{etc.} \quad (E.2)$$

The symbol \mathcal{F} is used to denote the Fourier transform, $f^{\wedge} := \mathcal{F} f$, similarly $f^{\vee} := \mathcal{F}^{-1} f$, $f \in \mathcal{S}'(\mathbb{R}^n)$, with $\mathcal{S}(\mathbb{R}^n)$ the Schwartz test function space, and $\mathcal{S}'(\mathbb{R}^n)$ its dual with elements the tempered distributions. In particular,

$$f^{\wedge}(p) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} d^n x \, e^{-ip \cdot x} f(x),$$

$$f^{\vee}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} d^n p \, e^{ip \cdot x} f(p),$$

$$p, x \in \mathbb{R}^n, \ f \in \mathcal{S}(\mathbb{R}^n).$$

If $-\infty \le a < b \le \infty$ and *F* maps $\mathbb{C} \setminus (a, b)$ to a normed linear space, then the normal boundary values of *F* at $\lambda \in (a, b)$ (when these values exist) are denoted by $F(\lambda \pm i0) := \lim_{\varepsilon \downarrow 0} F(\lambda \pm i\varepsilon)$.

For $n, k \in \mathbb{N}$ and an open set $\Omega \subset \mathbb{R}^n$, $C^k(\Omega)$ denotes the set of all $f : \Omega \to \mathbb{C}$ that are k times continuously differentiable.

Linear operators in Hilbert spaces

Let \mathcal{H} , \mathcal{K} be separable, complex Hilbert spaces, $(\cdot, \cdot)_{\mathcal{H}}$ the scalar product in \mathcal{H} (linear in the second argument), $\|\cdot\|_{\mathcal{H}}$ the norm on \mathcal{H} , and $I_{\mathcal{H}}$ the identity operator in \mathcal{H} .

If T is a linear operator mapping (a subspace of) a Hilbert space into another, then dom(T) and ker(T) denote the domain and kernel (i.e., null space) of T. The closure of a closable operator A is denoted by \overline{A} . The set of closed linear operators with domain contained in \mathcal{H} and range contained in \mathcal{K} is denoted by $\mathcal{C}(\mathcal{H}, \mathcal{K})$ (or simply by $\mathcal{C}(\mathcal{H})$ if $\mathcal{H} = \mathcal{K}$).

The resolvent set, spectrum, and point spectrum (i.e., the set of eigenvalues) of a closed operator T are denoted by $\rho(T)$, $\sigma(T)$, and $\sigma_p(T)$, respectively.

If *S* is self-adjoint in \mathcal{H} , the family of strongly right-continuous spectral projections associated with *S* is denoted by $E_S(\lambda) = E_S((-\infty, \lambda]), \lambda \in \mathbb{R}$, moreover, the singular, discrete, essential, absolutely continuous, and singularly continuous spectrum of *S* are denoted by $\sigma_s(S), \sigma_{d}(S), \sigma_{ess}(S), \sigma_{ac}(S)$, and $\sigma_{sc}(S)$, respectively.

For a densely defined closed operator S in \mathcal{H} we employ the abbreviation $\langle S \rangle := (I_{\mathcal{H}} + |S|^2)^{1/2}$, and similarly, if $T = (T_1, \ldots, T_n)^{\top}$, with T_j densely defined and closed in $\mathcal{H}, 1 \leq j \leq n$,

$$\langle T \rangle = (I_{\mathcal{H}} + |T|^2)^{1/2}, \quad |T| = (|T_1|^2 + \dots + |T_n|^2)^{1/2},$$

whenever it is obvious how to define $|T_1|^2 + \cdots + |T_n|^2$ as a self-adjoint operator.

The Banach spaces of bounded and compact linear operators on a separable complex Hilbert space \mathcal{H} are denoted by $\mathcal{B}(\mathcal{H})$ and $\mathcal{B}_{\infty}(\mathcal{H})$, respectively; the corresponding ℓ^p -based Schatten–von Neumann ideals are denoted by $\mathcal{B}_p(\mathcal{H})$, with associated norm abbreviated by $\|\cdot\|_{\mathcal{B}_p(\mathcal{H})}$, $p \geq 1$.

Following a standard practice in mathematical physics, we simplify the notation of operators of multiplication by a scalar or matrix-valued function V and hence use V rather than the more elaborate symbol M_V throughout this manuscript.