
Chapter 1

Introduction

The main objective of this paper is to generalize the following elementary fact.
Let I D Œ0; 1�. Define
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for n � 1 and f W I ! R. If f is smooth or more generally f 2 W 1;p.I /, which is
the .1; p/-Sobolev space, then
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as n! 1, where rf is the derivative of f .
Our naive question is what is a counterpart of this in the case of metric spaces.

More precisely, our general strategy of the study is:

(1) To fix an adequate sequence of discrete graphs ¹.Tn; E
�
n /ºn�1, where Tn is

a discrete approximation of the original metric space .X; d/ and E�
n is the collection

of edges, i.e., pairs of points in Tn. For a function f WTn ! R, define

Enp .f / D
1

2

X
.x;y/2E�

n

jf .x/ � f .y/jp;

which is called the p-energy of the function f .

(2) To find a proper scaling constant � such that the space of functions

¹f WX ! R j �nEnp .Pnf / is “convergent” as n! 1º;

wherePnf is a suitable discrete approximation of f , is rich enough to be a “Sobolev”
space in some sense. From our perspective, we do not care about the existence of
a derivative rf but pursue the convergence of �nEnp .Pnf /.

Actually, in the case p D 2, this strategy was employed to construct Dirichlet
forms inducing diffusion processes on self-similar sets like the Sierpiński gasket1

and the Sierpiński carpet. (See Figure 1.4.) For the sake of simplicity, we confine our-
selves to non-finitely ramified self-similar sets. (This excludes post critically finite

1In many papers, people use “Sierpinski” in place of “Sierpiński”. Of course, originally
“Sierpiński” is the correct one as a Polish family name but such a simplification often occurs
when the subject becomes popular and a part of classics.
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Figure 1.1. Square-based self-similar sets.

self-similar sets represented by the Sierpiński gasket.) Barlow and Bass constructed
the Brownian motions on (generalized) Sierpiński carpets in [1–6] as scaling limits
of the Brownian motions on regions approximating Sierpiński carpets. Later in [36],
Kusuoka and Zhou employed the above strategy for p D 2 and directly constructed
the Dirichlet form inducing the Brownian motion on the planar Sierpiński carpet.
Note that all these works were done in the last century. Although more than 20 years
have passed, no essential progress has been made on the construction of diffusion
processes/Dirichlet forms on non-finitely ramified self-similar sets. In particular, no
diffusion was constructed on square-based non-finitely ramified self-similar sets like
those in Figure 1.1. The right-hand one is an example of rationally ramified Sierpiński
crosses treated in Section 4.5. It has two different contraction ratios. The left-hand
one is an example having no symmetry of the square. As a by-product of our results
in this paper, we will construct non-trivial self-similar local regular Dirichlet forms
on classes of square-based self-similar sets including those in Figure 1.1. See Sec-
tions 4.3, 4.4, and 4.5 for details.

From the viewpoint of construction of Sobolev spaces on metric spaces, there
have already been established theories based on upper gradients, which correspond
to local Lipschitz constants of Lipschitz functions. Compared with our strategy above,
this direction is to seek a counterpart of rf instead of the convergence of �nEnp .Pnf /

like us. The pioneering works of this theory are Hajłasz [22], Cheeger [15] and Shan-
mugalingam [40]. One can find a panoramic view of this theory in [23]. Recent studies
by Kajino and Murugan in [26,27], however, have suggested that they may not cover
all the interesting cases. So far examples in question are higher-dimensional Sier-
piński gaskets, the Vicsek set, and the planar Sierpiński carpet. What they have shown
in [26,27] is that the Brownian motions on those examples will not have the Gaussian
heat kernel estimate under any time change by a pair .d;�/, where d is quasisymmet-
ric to the Euclidean metric dE and � has the volume doubling property with respect
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to dE . On the other hand, under the established theory, the heat kernel associated with
a .1; 2/-Sobolev space satisfying a .2; 2/-Poincaré inequality should satisfy the Gaus-
sian estimate due to the results in [21, 39, 42]. Thus, the Dirichlet forms associated
with the Brownian motions on the above-mentioned self-similar sets can hardly be
one of .1; 2/-Sobolev spaces based on upper gradients. Note that, in these cases, there
exist plenty of rectifiable curves with respect to (the restriction of) the Euclidean
metrics, which are even quasiconvex. Partly motivated by such a situation, we will
try to provide an alternative theory of function spaces, which may be called Sobolev
spaces or else, on metric spaces, and to construct natural diffusion processes at the
same time.

Getting straight to the conclusion, we are going to propose a condition called p-
conductive homogeneity and show that under this condition, the strategy consisting
of (1) and (2) succeeds for p > dimAR.K; d/, where dimAR.K; d/ is the Ahlfors
regular conformal dimension of a compact metric space .K; d/. One can see a more
precise and detailed exposition in what follows. The definition of the Ahlfors regular
conformal dimension of .K; d/ is

dimAR.K; d/ D inf¹˛ j there exist a metric � on K which is
quasisymmetric to d and a Borel regular measure �
which is ˛-Ahlfors regular with respect to �º; (1.1)

where the definition of Ahlfors regularity of a measure is given in (2.9). The notion of
quasisymmetry was introduced in [43] as a certain generalization of quasiconformal
maps of the complex plane. It is defined in the following way:

Definition 1.1. Let .X; d/ be a metric space. A metric � on X is said to be qua-
sisymmetirc to d if .X; �/ gives the same topology as d and there exists a homeo-
morphism h from Œ0;1/ to itself satisfying h.0/ D 0 and for any t > 0, �.x; z/ �
h.t/�.x; y/ whenever d.x; z/ < td.x; y/.

In the direction of our study, Shimizu has done pioneering work for the case of
the planar Sierpiński carpet, PSC for short, in the very recent paper [41]. Extending
Kusuoka–Zhou’s method, he has constructed a p-energy and the corresponding p-
energy measure for p > dimAR.PSC;dE /, and done detailed analysis of those objects.
In particular, he has shown that the collection of functions with finite p-energies is
a Banach space that is reflexive and separable. His proof of reflexivity and sepa-
rability can be easily extended to our general case as well. See Theorem 3.22 for
details.

Our framework on metric spaces is the theory of partitions introduced in [34]. Let
.K;d/ be a compact metric space. We always suppose that .K;d/ is connected in this
paper. Roughly speaking, a partition of K is a sequence of successive divisions of K
by some of its compact subsets. The idea is illustrated in Figure 1.2. Let T0 D ¹�º
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T0 D ¹�º T1 D ¹1; 2; 3º S.1/ D ¹11; 12; 13º

S.2/ D ¹21; 22º

S.2/ D ¹31; 32; 33º

Figure 1.2. Partition.

and set K� D K. Starting from K, we first divide K into a finite number of children
Kw for w 2 T1, i.e.,

K D

[
w2T1

Kw :

The set T1 is thought of as the collection of children of T0 and denoted by S.�/.
Then we repeat this process of division, i.e., each w 2 T1 has a collection of children,
S.w/, such that

Kw D

[
v2S.w/

Kv:

Define T2 as the disjoint union of the S.w/’s for w 2 T1. So repeating this pro-
cess inductively, we have ¹Tnºn�0 where each w 2 Tn has the collection of children
S.w/ � TnC1. Set

T D

[
n�0

Tn:

With several requirements described in Section 2.1, the family ¹Kwºw2T is called
a partition of K.

For each n � 1, Tn has a natural graph structure associated with a given partition
¹Kwºw2T . Namely, if

E�
n D ¹.u; v/ j u; v 2 Tn; Ku \Kv ¤ ;º;

then .Tn; E�
n / is a connected graph, which is illustrated in Figure 1.3. To avoid tech-

nical complexity, we are going to explain our results under Assumption 2.15 hereafter
in the introduction. In fact, if .K;d/ is ˛-Ahlfors regular for some ˛ and the metric d
is 1-adapted in the sense of [34], then Assumption 2.15 holds. So our setting should
be broad enough.
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Figure 1.3. Graphs associated with a partition (dotted lines are vertices).

For A � Tn, we define the p-energy of a function on A by

Enp;A.f / D
1

2

X
u;v2A

.u;v/2E�
n

jf .u/ � f .v/jp:

To carry out our strategy, we introduce two key characteristic quantities: conductance
and neighbor disparity constants. For m � 0, A1; A2; A � Tn with A1; A2 � A and
A1 \ A2 D ;, define

Ep;m.A1; A2; A/ D inf
®
EnCmp;A .f / j f WSm.A/! R; f jSm.A1/ � 1; f jSm.A2/ � 0

¯
;

where Sm.A/ � TnCm is the collection of the descendants in the m-th generation
from A. The quantity Ep;m.A1; A2; A/ is called the p-conductance between A1 and
A2 within A at the level m.

Remark. Attaching a resistor of resistance 1 to each edge .u; v/ 2 E�
nCm, we may

consider the graph .TnCm; E�
nCm/ as an electric network. In this respect, the recipro-

cal of E2;m.A1; A2; A/ is the effective resistance between A1 and A2 within A and
hence E2;m.A1; A2; A/ corresponds to the effective conductance. Such an analogy
has been often used in the study of random walks. See [18] for a classical reference.
In potential theory, the quantity E2;m.A1; A2; A/ is called “capacity” as well.

In particular, for w 2 Tn, define

Ep;m.w/ D Ep;m.¹wº; �1.w/
c ; Tn/;

where �1.w/ is the collection of neighbors of w in Tn given by

�1.w/ D ¹v j v 2 Tn; .w; v/ 2 E
�
nº:
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The value Ep;m.w/ represents the p-conductance between w and the complement of
its neighborhood �1.w/ in the m-th generation from w. In [34], it was shown that

lim
m!1

�
sup
w2T

Ep;m.w/
1
m

�
< 1 if and only if p > dimAR.K; d/: (1.2)

The other one, the neighbor disparity constant, is defined as

�p;m;n D sup
.w;v/2E�

n

�
sup

f WSm.w;v/!R

j.f /Sm.w/ � .f /Sm.v/j
p

EnCm
p;Sm.w;v/

.f /

�
;

where Sm.w; v/ D Sm.w/ [ Sm.v/ and .f /Sm.w/ is the average of f on Sm.w/
under a suitable measure �. (This definition of the neighbor disparity constant is
a simplified version for introductory purposes. The full version will be presented
in Section 2.4.) For the case pD 2, this constant was introduced in [36]. The neighbor
disparity constant controls the difference of means of a function on neighboring cells
via the p-energy.

And now, p-conductive homogeneity, which is the principal notion of this paper,
is defined as follows.

Definition 1.2. A metric space .K; d/ is said to be p-conductively homogeneous if
and only if there exists c > 0 such that

sup
w2T

Ep;m.w/ sup
n�1

�p;m;n � c

for any m � 1.

The above condition is essentially due to Kusuoka–Zhou [36] when p D 2. Cao
and Qiu named this condition as condition (B) in [13], where they have constructed
a diffusion process on so called unconstrained Sierpiński carpets by following the
Kusuoka–Zhou’s method.

At a glance, it does not quite look like “homogeneity”. The following theorem,
however, gives the legitimacy of the name.

Theorem 1.3 (Theorem 3.30). A metric space .K; d/ is p-conductively homoge-
neous if and only if there exist � > 0 and c1; c2 > 0 such that

c1�
�m

� Ep;m.w/ � c2�
�m

for any w 2 T n¹�º and m � 1 and

c1�
m
� �p;m;n � c2�

m

for any m; n � 1.



Introduction 7

The next natural question is how the conductive homogeneity is related to the con-
struction of a p-energy. The answer is the next theorem which follows by combining
Theorems 3.5, 3.21, 3.23 and Lemma 3.34.

Theorem 1.4. Suppose p > dimAR.K; d/ and .K; d/ is p-conductively homoge-
neous. Let C.K/ be the collection of continuous functions on K. Define

Np.f / D
�

sup
m�0

�mEmp .Pmf /
� 1
p

for f 2 Lp.K;�/, where

.Pmf /.w/ D
1

�.Kw/

Z
Kw

f .x/�.dx/;

and

Wp
D ¹f j f 2 Lp.K;�/;Np.f / <1º:

Then

(1) Np.f / D 0 if and only if f is constant on K.

(2) Np is a semi-norm of Wp .

(3) .Wp; k � kp;� C Np.�// is a Banach space.

(4) Wp is a dense subset of .C.K/; k � k1/.

Moreover, there exists yEpWW
p ! Œ0;1/ such that yE

1
p
p is a semi-norm of Wp which

is equivalent to Np.�/, yEp satisfies the Markov property and there exist � > 0 and
c1; c2 > 0 such that

c1d.x; y/
�
� sup

f 2Wp

yEp.f /¤0

jf .x/ � f .y/jp

yEp.f /
� c2d.x; y/

�

for any x;y 2K. In particular, for pD 2, one can choose . yE2;W2/ as a local regular
Dirichlet form on L2.K;�/.

Note that by (1.2), the condition p > dimAR.K; d/ implies � > 1. An explicit
description of the constant � is given in Lemma 3.34. In addition, we show a sub-
Gaussian type heat kernel estimate for the diffusion process induced by the Dirichlet
form . yE2;W

2/ in Theorem 3.35. Moreover, if .K; d/ is a self-similar set with ratio-
nally related contraction ratios, then a self-similar p-energy which is equivalent to Np
will be constructed in Section 4.1.

Another important question is how to show conductive homogeneity. The follow-
ing theorem provides an equivalent and useful condition for this purpose.
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Theorem 1.5 (Theorem 3.33). Suppose that p > dimAR.K; d/. .K; d/ is p-conduc-
tively homogeneous if and only if, for any k � 1, there exists c.k/ > 0 such that

sup
z2T

Ep;m.z/ � c.k/Ep;m.u; v; S
k.w// (1.3)

for any m � 1, w 2 T and u; v 2 Sk.w/ with u ¤ v.

The condition in the above theorem, (1.3), which is the same as (3.20) in The-
orem 3.33, is a relative of the “knight move” condition in [36] described in the
terminology of random walks, although the word “knight move” does not make sense
from the appearance of (1.3) any longer. The original “knight move” in [1] was the
name of an argument based on the symmetry of the Sierpiński carpet to show a prob-
abilistic counterpart of (1.3). With certain symmetries of the space, it is possible to
show (1.3) by the method of combinatorial modulus in [11]. Applying Theorem 1.5,
we are going to show the conductive homogeneity for examples like those in Fig-
ure 1.1 in Sections 4.4 and 4.5.

Besides applications, Theorem 1.5 has a remarkable theoretical consequence;
conductive homogeneity is determined only by conductance constants and is inde-
pendent of the neighbor disparity constants if p > dimAR.K; d/. This is the reason
conductive homogeneity is called “conductive”.

The major methodological backgrounds of this paper are Kusuoka–Zhou’s argu-
ments in [36] and combinatorial moduli of path families on graphs introduced in [11].
On many occasions, we will extend Kusuoka–Zhou’s results to compact metric spaces
and to general values of p. On such occasions, we will put a reference to the original
result by Kusuoka and Zhou right behind the number of a proposition or a lemma
like Lemma 2.27 [36, Lemma 2.12]. Beyond Kusuoka–Zhou’s arguments, the notion
of combinatorial modulus will play a crucial role on several occasions. The most
important one is in the proof of a sub-multiplicative inequality of conductance con-
stants, Corollary 2.24. Moreover, by Lemma C.4, one can compare moduli of different
graphs and this lemma is indispensable for showing (1.3) in Sections 4.3 and 4.5.

Regrettably, we do not have much for the case p � dimAR.K; d/. In Section 3.2,
we will construct a function space Wp and a semi-norm yEp on Wp under p-con-
ductive homogeneity for p 2 Œ1; dimAR.K; d/�. In this case, however, Wp is given
as a subspace of Lp.K; �/ and we do not know whether Wp \ C.K/ is dense in
.C.K/; k � k1/ or not. This is due to the lack of an elliptic Harnack principle of
p-harmonic functions on the corresponding graphs. In the case p D 2, using the
coupling method, Barlow and Bass conquered this difficulty for higher-dimensional
Sierpiński carpets in [5, 6]. We have little idea what is an analytic counterpart of
the coupling method at this moment. It is a big open problem for future work. In
particular, it is interesting to know whether the following naive conjecture is true
or not.
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Figure 1.4. von Koch curve, Sierpiński gasket and Sierpiński carpet.

Conjecture. Wp � C.K/ if and only if p > dimAR.K; d/.

Now we briefly explain what happens in the cases of familiar examples.

1: Unit (hyper)cube Œ�1; 1�n: In this case, for any p > n,

Wp
D W 1;p.Œ�1; 1�n/

and there exists c > 0 such that

c yEp.f / �

Z
Œ�1;1�n

jrf jpdx � c�1 yEp.f /

for any f 2 W 1;p.Œ�1; 1�n/. See Example 4.31 for details. Even if p 2 Œ1; n�, the
above results should be true but we do not have any proof for now.

2: von Koch curve (Figure 1.4) : The von Koch curve does not contain any rectifiable
curve, so that the approaches using upper gradients do not work from the beginning.
However, our theory does not distinguish metric spaces which are snowflake equiv-
alent, i.e., two metric spaces .X; dX / and .Y; dY / are snowflake equivalent if there
exist a homeomorphism 'WX ! Y , c1; c2 > 0 and ˛ > 0 such that

c1dX .x1; x2/
˛
� dY .'.x1/; '.x2// � c2dX .x1; x2/

˛

for any x1; x2 2X . Since the von Koch curve is snowflake equivalent to the unit inter-
val Œ0; 1�, we see that Wp for the von Koch curve equals W 1;p.Œ0; 1�/ for any p > 1.

3: Planar Sierpiński carpet (Figure 1.4) : As is mentioned above, this is one of the
original motivations of this paper and it is expected that our space Wp is quite dif-
ferent from what one may get from the upper gradient approaches. By Theorem 4.13,
the planar Sierpiński carpet K is shown to be p-conductive homogeneous for any
p > dimAR.K; d�/, where d� is the restriction of the Euclidean metric. Moreover, let

˛H D
log 8
log 3

and p̌ D
log 8�
log 3

;
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where � is the exponent appearing in Theorem 1.3. Then by [41, Theorem 2.19], we
have a fractional Korevaar–Shoen type expression of Wp as follows:

Wp
D

°
f
ˇ̌
f 2Lp.K;�/; lim

r#0

Z
K

1

r˛H

Z
Bd� .x;r/

jf .x/ � f .y/jp

rˇp
�.dy/�.dx/<1

±
;

where � is the normalized ˛H -dimensional Hausdorff measure. Furthermore, it is
shown in [41] that p̌ > p. This fact implies that Wp should not coincide with any
of the spaces obtained by approaches using upper gradients.

4: Sierpiński gasket (Figure 1.4) : Let K be the standard Sierpiński gasket and let d�
be the restriction of the Euclidean metric. Since K is one of nested fractals and

dimAR.K; d�/ D 1;

Theorem 4.50 yields that K is p-conductively homogeneous for any p > 1. Argu-
ments analogous to those in [41, Section 5.3] give the same fractional Korevaar–
Shoen type expression of Wp as the planar Sierpiński carpet. In this case,

˛H D
log 3
log 2

and p̌ D
log 3�
log 2

:

We expect that p̌ > p for any p > 1. In fact, due to [8], we know

ˇ2 D
log 5
log 2

> 2:

Moreover, ˇp
p

is monotonically decreasing by [34, Lemma 4.7.3]. So at least for
p 2 .1; 2�, p̌ > p and the space Wp does not seem to be obtained by the upper
gradient approaches. However in this case, if we replace the Euclidean metric with
the harmonic geodesic metric and the Hausdorff measure with the Kusuoka measure,
then the heat kernel associated with the new pair of the metric and the measure has
the Gaussian estimate. See [30] for details. Consequently, the Cheeger theory [15] is
now in place for W2 at least. On the other hand, the replacement of the metric and
the measure causes a change of the partition and, consequently, a change of the asso-
ciated function space WP . So, we expect that Wp associated with the new pair may
coincide with those obtained from the approaches based on upper gradients but we
have no proof so far.

Before the conclusion of the introduction, we mention two related works. The first
one is [10], where the authors constructed another type of “Sobolev spaces” PAp.X/

on a compact metric space .Z; d/ from its hyperbolic fillings X . The method is to
construct a discretization Pf onX of f 2 L1.Z/, and to consider the weak `p-norm
of the gradient of Pf . Their space PAp.Z/ seems closely related to our space Wp but
we merely know that Wp � PAp.X/ under suitable assumptions at this point.
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The second one is [24], where the authors constructed a p-energy on Sierpiński
gasket type self-similar sets by extending the notion of harmonic structures in the
case of p D 2 for post critically finite self-similar sets. Their p-energy should be
equivalent to ours, although they did not show the completeness of the domain of
their p-energy. Despite the fact that their method can work only for finitely ramified
self-similar sets even if p D 2, their work is the first pioneering study to construct
a p-energy by renormalizing discrete counterparts.

The organization of this paper is as follows.
In Section 2.1, we review the basics of partitions of compact metric spaces and

then give a framework of this paper including standing assumptions, Assumptions 2.6,
2.7, 2.10 and 2.12. In the end, we present Assumption 2.15, which is stronger than
the combination of all the assumptions above but more concise.

In Section 2.2, we introduce the notion of conductance constant which is one of
two principal quantities of this paper and we show the existence of a partition of unity
associated with the conductance constant.

In Section 2.3, we introduce the notion of combinatorial moduli of path families
on graphs and show a sub-multiplicative inequality for conductance constants using
them.

In Section 2.4, we introduce the other principal quantity, the neighbor disparity
constant and show its relation with the conductance constant and a sub-multiplicative
inequality of them.

In Section 3.1, we construct our function space Wp and the p-energy yEp under
Assumption 3.2 and show Theorem 1.4. At the same time, we propose a condition
called p-conducive homogeneity and show that the condition p > dimAR.K; d/ and
p-conductive homogeneity imply Assumption 3.2 in Section 3.3.

In Section 3.2, we see what we can do for p � dimAR.K; d/. In Section 3.3, we
show Theorem 3.30 (D Theorem 1.3) and Theorem 3.33 (D Theorem 1.5). Moreover,
in Theorem 3.35, we give a sub-Gaussian type heat kernel estimate for the diffusion
process induced by the Dirichlet form .E;W2/ given in Section 3.1.

In Section 4.1, we construct a self-similar p-energy for self-similar sets with ratio-
nally related contraction ratios. In Section 4.2, we give a sufficient condition for the
conductive homogeneity for self-similar sets. Section 4.3 is devoted to a class of
self-similar sets called subsystems of cubic tiling, for which conductive homogene-
ity is shown through Theorem 3.33. This class includes the Sierpiński carpets, the
Menger curve, and the higher-dimensional hypercubes. In Section 4.4, we present
examples of subsystems of cubic tiling having the conductive homogeneity. Also,
Section 4.5 is devoted to showing conductive homogeneity of rationally ramified Sier-
piński crosses.

In Sections 5.1, 5.2 and 5.3, we give a proof of Theorem 3.33. In Section 6.1,
we show that conductance, Poincaré and neighbor disparity constants are uniformly
bounded from below and above.
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We will briefly discuss the modification of the graph structure in Section 6.2.
Finally, in Section 6.3, we gather open problems and future directions of research.
Appendices give basic facts used in this paper.


