Chapter 2

Basic frameworks and key constants

2.1 Framework

In this section, we are going to make our framework of this paper clear. It is based
on the notion of partitions of compact metric spaces parametrized by rooted trees,
which was introduced in [34]. Roughly speaking, a partition is successive divisions of
a given space like the binary division of the unit interval. See [34] for examples. Since
this notion is relatively new and unfamiliar to most readers, we will give a minimal
but detailed account of its definition.

To start with, we present the basics of graphs and trees.

Definition 2.1. Let T be a countable set and let A: T x T — {0, 1} which satisfies
A(w,v) = A(v, w) and A(w, w) = 0 for any w, v € T. We call the pair (T, A)
a (non-directed) graph with the vertices T and the adjacency matrix 4. An element
(u,v) € T x T is called an edge of (T, A) if A(u,v) = 1. We often identify the
adjacency matrix 4 with the collection of edges {(u,v) | u,v € T, A(u,v) = 1}.

(1) A graph (T, 4A) is called locally finite if #({v | A(w, v) = 1}) < oo for any
w € T, where #(A) is the number of elements of a set A.

(2) For wg,...,w, € T, (wg, wy, ..., wy) is called a path between wy and wy,
if A(w;, wj41) =1foranyi =0,1,...,n— 1. A path (wg, wy, ..., wy,) is called
simple if w; # wj forany i, j with0 <i < j <nand|i — j| <n.

(3) (T, A) is called a tree if there exists a unique simple path between w and v
for any w, v € T with w # v. For a tree (T, 4), the unique simple path between two
vertices w and v is called the geodesic between w and v and denoted by wv. We write
u € wv if wv = (wp, wy, ..., wy) and u = w; for some i.

Next, we define fundamental notions on trees.

Definition 2.2. Let (T, 4A) be a tree and let ¢ € T. The triple (7, A, ¢) is called
a rooted tree with root (or reference point, see, e.g., [45]) ¢.

(1) Define 7: T — T by

{ Wy—1 ifw # ¢ and pw = (Wo, W1, ..., Wy_1, W),
m(w) =

¢ ifw=¢

and, forw € T, set

Sw) = {v | 7(v) = wi\{w}.
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An element v € S(w) is thought of as a child of w. Moreover, for any k > 1, we
define S* (w) inductively as

S wy = | s*w).
veS(w)
which is the collection of descendants in the k-th generation from w.

(2) Forw € T and m > 0, we define
lw|=min{n |n >0, 7" (w) =¢} and T, ={w|weT, |w| =m)}.
(3) For any w € T, define
T (w) = {v | there exists n > 0 such that 7" (v) = w},

which is the collection of all the descendants of w.
(4) Define

Y ={(w(@))iso | w@i) € T; and w(i) = w(w(i + 1)) forany i > 0}.

For w = (w(i))i>0 € %, set [w];, = w(m) form > 0. An element (w(i));>o € X is
called a geodesic ray starting from ¢ in [45].

Remark. In [34], we have used (T'),, and Ty, in place of 7,, and T (w), respectively.

Throughout this paper, T is a countably infinite set and (7, 4) is a locally finite
tree satisfying #({v | (w,v) € A}) > 2foranyw € T
Next, we define partitions.

Definition 2.3 (Partition). Let (K, ) be a compact metrizable topological space hav-
ing no isolated point, where O is the totality of open sets.

A collection of non-empty compact subsets { Ky, }wer is called a partition of K
parametrized by (T, 4, ¢) if it satisfies the following conditions (P1) and (P2):

(P1) Ky = K and for any w € T, K, has no isolated point and

Ky = U K,.

veS(w)
(P2) For any geodesic ray w € X, [,,59 K[o],, is a single point.

Originally in [34], we did not assume that K is connected to include spaces like
the Cantor set. In this paper, however, we will only deal with connected spaces.
In such cases, the assumption that K has no isolated point is always satisfied unless K
is a single point.

As an illustrative example of partitions, we present the case of the unit square
[—1, 1]? as a self-similar set. This is an example of the general construction of parti-
tions associated with self-similar sets discussed in Section 4.1.
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Example 2.4 (The unit square). Let K = [—1,1]?> and let S = {1, 2,3, 4}. Set p;
[1,-1], po = [1.,—1], p3 = [1, 1] and pgy = [-1,1]. For i € S, define f;i(x) =
1(x = pi) + pi forany x € R Then it is obvious that

K= fi(K).

ieS

This is the expression of the unit square as the self-similar set with respect to the
collection of contractions { f; };es. Let

T, =8"={i1...in |ij € Sforany j = 1,...,n}.

In particular, let To = {¢}. Moreover, define T = | J T,y and define 7: T — T by

m=>0
7T(i1 lnln+1) = il ln

forany iy ...inin41 € Ty4+1 forn > 1 and 7 (¢p) = ¢. Define A(w, v) forw,v € T
as A(w,v) = lif 7 (w) = v or 7 (v) = w except for (w, v) = (¢, ). Then (T, A, @)
is a rooted tree. For w = wy ... w, € T,, define

Jw = fw1 O"'Ofwn and K, = fy(K).

Then {Ky, }weT is a partition of K parametrized by (7, #A, ¢). See Figure 2.1.

44 | 43 | 34 | 33 .
4 3

41 (42 | 31 | 32 +

14 | 13 | 24 | 23

I
I (13)

11 |12 | 21 | 22

T) ={1,2,3,4} T, ={1,2,3,4)?

Figure 2.1. Partition of the unit square.

The following definition is a collection of notions concerning partitions.

Definition 2.5. Let { K, },er be a partition of K parametrized by (7, 4, ¢).
(1) Define Oy, and By, for w € T by

szKw\( U K,,), szme( U KU).

vET |y \{w} veET |y \{w}

If Oy # 0 for any w € T, then the partition K is called minimal.
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(2) Forany A € T, and w € A, define Fj,‘,(w) CT,as

Fﬁ(w) = {u | u € A, there exist u(0),...,u(M) € A such that
u(0) = w,u(M) =uand K,y N Kyi+1) # 9
foranyi =0,...,M — 1}.

For simplicity, for w € T;,, we write I'ps (w) = F;[” (w).
(3) {Ky}wer is called uniformly finite if
sup #(I'1 (w)) < +o0.

weT

If a partition is minimal, then Oy, is actually the interior of K,,, and By, is the
topological boundary of K,,. See [34, Proposition 2.2.3] for details.

In the case of the unit square in Example 2.4, K, is a square and Oy, (resp. By,)
is the interior (resp. the boundary) of K,,. Therefore, it is minimal. Moreover,

sup #(I'1(w)) =8,

weT

so that it is uniformly finite.

Now we give the first part of our framework in this paper.

As we declared partially before, through this paper, T is a countably infinite set,
¢ T, (T, A)is alocally finite tree satisfying #({w|(w,v) € A}) > 2forany w € T,
(K, 09) is a compact connected metrizable space and {Ky }yer is a partition of K
parametrized by (T, 4, ¢).
Assumption 2.6. (1) Forany w € T, Ky, is connected.

(2) There exist My and ky € N such that
7% (Cat1 () S Tg, (7 (w) @.1)

foranyw € T.
(3) There exists My > M, such that

Tar, (u) N S*(w) € T @) 2.2)

foranyw € T, k > 1 andu € S*(w).

See Figure 2.2 for an illustrative exposition of Assumption 2.6 in the case of the
unit square.

Remark. As is explicitly mentioned in Proposition 2.16, Assumption 2.6 (2) is al-
ways satisfied under mild additional assumptions.
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N W
2 (w) X Cy )
7 (w) w = w2 (u)
Ty (u) S (w)
Q:ike =1, My =1 (22: k=2, My =My =1

Figure 2.2. Assumption 2.6: the unit square.

Remark. If M, = 1, then we have I'jyy, (w) N A = FA“}* (w) for any w and A. So in
this case, by choosing My = M, = 1, Assumption 2.6 (3) is always satisfied.

Throughout this paper, we set
Ly = sup #(I'1(w)). (2.3)

weT
Then, for any m € N,
sup #(T'm(w)) < (L™,
weT

Under Assumption 2.6 (2), if the partition {Ky, }yer is replaced by the parti-
tion { Ky },ye7 &+, Where Tk = Uizo Tk, the constant k, can be regarded as 1.
So doing such a replacement, we will adopt the following assumption.

Assumption 2.7. The constant k« appearing in (2.1) is 1.

For a given partition { K, }y e, We always associate the following graph struc-
ture E; on T,,.

Proposition 2.8. Forn > 0, define
Ey ={(w.,v) |w,v €T, w#v, Ky NK, #0}.

Then (T,, E) is a non-directed graph. Under Assumption 2.6, (T, E)) is connected
foranyn >0, and
Fl(w) = {U | (S Tn’ (w7v) € E::}

foranyn > 0and w € T,,.
Remark. In [34], E;¥ is denoted by J{" .
Definition 2.9. For w € T,,, define
9S™(w) = {v | v € S™(w), there exists v € Ty 4m

such that (v,v") € E¥, and 7™ (v') # w}.

n+m
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The set 35™ (w) is a kind of a boundary of S™ (w). In fact, it is easy to see
S (w) ={v|veS™(w), Ky, N By # @},
where By, is the topological boundary of K,, as is mentioned above. So the next
assumption means that the boundary is not the whole space.

Assumption 2.10. There exists mo > 1 such that S™ (w)\9S™ (w) # @ foranyw e T
and m > my.

In Figure 2.3, we have an illustrative exposition of Assumption 2.10 in the case
of the unit square.

o oo
952 (w)
y .
. SZ(w)\aSz(w) Ui(y :2)
Assumption 2.10 Assumption 2.15 (2B)

Figure 2.3. Assumptions 2.10 and 2.15 (2B); the unit square.

Definition 2.11. Forw € T, M > 1 and k > 1, define
Bui(w) = {v | v e S¥w), Ty—1(v) N ISK(w) # ).
Remark. Bj;(w) = 3S*(w).
The final assumption is an assumption on a measure y on K.

Assumption 2.12. The measure u is a Borel regular probability measure on K sat-
isfying
n(Kw) = Z w(Ky) (2.4)

veS(w)

for any w € T. There exists y € (0, 1) such that
/L(Kw) > V/L(Kn(w)) (2.5)

for any w € T. This property is called “super-exponential” in [34]. Moreover, there
exists k > 0 such that ifw,v € T, |w| = |v| and (w,v) € EI’;)‘, then

W(Ky) < kpu(Ky) (2.6)
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The above condition (2.6) corresponds to the gentleness of the measure p intro-
duced in [34]. Indeed, if u has the volume doubling property, then this condition is
satisfied. See Proposition 2.16 and its proof below for an exact statement.

Lemma 2.13. Under Assumptions 2.6, 2.10 and 2.12,

(1) w is exponential, i.e., u satisfies (2.5) and there exist m; > 1 and y; € (0, 1)
such that w(Ky) < yiu(Ky) forany w € T and v € S™ (w).
2) supyer #(S(w)) < .

Throughout this paper, we set

Ny = sup #(S(w)). 2.7
weT

Proof. (1) In fact, we set m; = my. For any w with |w| > 1 and m > 0, we see that
dS™(w) # 0 because K is connected. Hence by Assumption 2.10, #(S™0(w)) > 2
forany w € T. Let v € S™!(w). Then there exists u € S™!(w) with v # u. By (2.5),

w(Ky) = p(Ky) + n(Ky) > n(Ky) +y™ 1(Ky),
so that 1(Ky) < (1 — y"™)u(Ky).
@ u(Ku) = Y wK) =y D u(Kuw) = y#(Sw))u(Ky).

veS(w) veS(w)

Hence #(S(w)) < %

Lemma 2.14. Under Assumptions 2.6, 2.10 and 2.12,

S™(w)\ By,m(w) # 0
foranyw € T, M > 1 and m > Mmgy. Moreover,
u( U Ky) = 7™M u(Ky) (2.8)
veST (S™ (w)\Bpr,m(w))

foranyw € T, n > 0and m > Mmy.

Proof. By Assumption 2.10, we can inductively choose v; € S0 (w) for i > 1
such that v;yq € §™0(v;)\dS™0(v;) for any i > 1. At the same time, we see v; ¢
Biimo(w). If moi <k <mo(i + 1), then v ¢ B; x(w) for v = gmo+D=k(y, ).
So the first part of the claim has been verified. Now if v € S (w)\ Ba,m (w), then

p U Ko) = 1K) = v u(Ky)
veS(S™ (w)\ By m(w))

by Assumption 2.12.
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Until now, we have not considered any metric of (K, @), which was merely
assumed to be compact and metrizable. The introduction of a metric d on K having
suitable properties enables us to integrate the above assumptions into the following
one.

Assumption 2.15. The metric space (K, d) is a compact connected metric space and
diam(K, d) = 1, where

diam(A,d) = sup d(x,y)
x,y€A
for a subset A  B. The partition { Ky, }wer is minimal and uniformly finite.
(1) Forany w € T, Ky, is connected.
(2) There exist My > 1 and r € (0, 1) such that the following properties hold:
(2A) Define h,:T — (0,1] as h,(w) = r®l. Then there exist ¢1,c2 > 0 such
that
cihr(w) < diam(Ky, d) < c2hy(w)
foranyw € T.
(2B) Forx € K andn > 1, define

Upy(x :n) = U U Ky.

weTy, vellys (w)
xeKy

(See Figure 2.3 for examples of Uy (- : 2) in the case of the unit square.)
Then there exist c1, ¢ > 0 such that

By(x,c1r™) CUpm, (x :n) € By(x,car™)

foranyn > 1 and x € K, where Bg(x,r) ={y | d(x,y) <r}.

(2C) There exist ¢ > O such that, for any n > 1 and w € T,, there exists
x € Ky, such that
Ky 2 By(x,cr™).

(3) w is a Borel regular probability measure on K. Moreover, | is exponential
and has the volume doubling property with respect to the metric d. Further-
more, [ satisfies (2.4) for any w € T.

(4) There exists M such that (2.2) holds forany w € T, k > 1 and u € S*(w).
(5) Foranyw € T, n(U'p, +1(w)) € Iy, (7 (w)).

Remark. In the terminology of [34], (2A) corresponds to the bi-Lipschitz equiva-
lence of d and h,, (2B) says that the metric d is M«-adapted to &, and (2C) together
with (2B) yields d being thick. The combination of (2A), (2B) and (2C) is equivalent
to that of (BF1) and (BF2) in [34, Section 4.3].
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Remark. Modifying the original partition {K,, }wer, We may always obtain As-
sumption 2.15 (5) from Assumption 2.15 (1), (2), (3), and (4). Namely, by Propo-
sition 2.16, we have k. satisfying (2.1) under Assumption 2.15 (1), (2), (3) and (4).
So, replacing the original partition {Ky, }wer With {Ky },, c7*+, We may suppose
ki = 1.

Proposition 2.16. Assumption 2.15 (1), (2), (3) and (4) suffice Assumptions 2.6, 2.10
and 2.12.

Proof. About Assumption 2.6, (1) and (3) are included in Assumption 2.15. Since d
is M-adapted, [34, Proposition 4.4.4] shows the existence of k. required in Assump-
tion 2.6 (2). By (2C) and (2B), there exists my > 1 such that

Kuw 2 Ba(x.cr™) 2 Up, (x : 1+ my)

for any n > 1 and w € T,, where the point x € Ky, is chosen as in (2C). So if v €
Tywim and x € Ky, then K, € By(x, cr") and hence K, N By, = @. Therefore,
Assumption 2.10 is satisfied. Assumption 2.15 includes (2.4) and (2.5) follows from
the fact that u is exponential. Finally, (2.6) is a consequence of the volume doubling
property by [34, Theorem 3.3.4]. |

Under Assumption 2.15, we may suppose further properties of the metric d and
the measure . Namely, if o« > dimyr(K, d), then by (1.1), there exist an e-Ahlfors
regular metric d, which is quasisymmetric to d and a Borel regular measure v which
is a-Ahlfors regular with respect to dx, i.e., there exist ¢y, ¢, > 0 such that

c1r® < v(Bg,(x,r)) < cor® (2.9)

forany x € K and r € (0,2diam(K, d)]. Replacing d and u by d, and v, respectively,
we may assume that d is «-Ahlfors regular. Note that if u is a-Ahlfors regular with
respect to d, then « is the Hausdorff dimension of (K, d).

2.2 Conductance constant

In this section, we introduce the conductance constant &z, (w, A) and show the
existence of a partition of unity whose p-energies are estimated by conductance con-
stants from above. In the next section, using the method of combinatorial modulus,
we will establish a sub-multiplicative inequality of conductance constants.

Through this section, 7 is a countably infinite set, ¢ € T, (T, 4) is a locally finite
tree satisfying #({w|(w, v) € A}) > 2 forany w € T, (K, @) is a compact connected
metrizable space and { Ky, }e7 is a partition of K parametrized by (7, 4, ¢). More-
over, hereafter in this paper, we always presume Assumptions 2.6, 2.7, 2.10 and 2.12.
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To begin with, we define p-energies of functions on graphs (7}, E;) and the associ-
ated p-conductances between subsets.

Notation. Let A be a set. Set
LA ={f]| f:4—> R} (2.10)
Definition 2.17. (1) Let A C T,,. For f € £(A), define 81’]‘,A(f) by
1
=5 D If@w-fo)
u,veA,(u,v)EE,;
In particular, if A = T, we define & (f) = Sg,T,, (f) for f € £(Ty).
(2) Let A C Ty, and let Ay, A» C A. Define
Epm(A1, Az, A) = inf {&)7 0 (f) | [ € L(S™(A)), flsm(ay =1,
Slsmaz) = 0}.
(3) Let A C T,,. For w € A, define
Ex.pm(w. A) = Epm({w}, ATy (w), A),
which is called the p-conductance constant of w in A at level m.

For simplicity, we often denote a set consisting of a single point, {w}, by w.
For example, if A1 and A, are single points u and v respectively, we sometimes write
Epm(u, v, A) instead of &, ,, ({u}, {v}, A).

Remark. As we have mentioned in the introduction, the quantity &y, » (w, A) can
be regarded as “p-capacity” from the viewpoint of the potential theory.

Lemma 2.18. Foranyw € T, k > 0 and u € S*(w),
8Mo,p,m(ua Sk(w)) =< 8M*,p,m(u’ T|w|+k)‘
Proof. This follows from Assumption 2.6 (3). |

Remark. In the case M, = 1, we always have Ff‘ (w) = T'1(w) N A. Hence even
without (2.2),

&1 pm(w, SE(w)) < &1 pm (W, Tiw|+x)

foranyw € T,k > 0and u € Sk(w).

The following lemma shows the existence of a partition of unity.
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Lemma 2.19. Let p > 1 and let A € T,,. For any w € A, there exists @y,: S™(A) —
[0, 1] such that

Dovw=1 gulsmw = L) Guwlsmansmrs wy =0
weA

and
S;E%(A)((p'”) < (LM + 1P max Em,pm(w’, A).

w/EFzAM_H(w)
Proof. Choose hy, € £(S™(A)) such that hy, |sm@) = 1, hw|Sm(A)\Sm(1"/€, Wy = 0,
and &y, pm(w, A) = 8;’;’,’,,1(14)(}11,)). Define i € £(S™(A)) as

hw) =Y hu(v)

weA

for any v € S”(A). Note that 1 < h(v) < (Ls)™. Set

n+m

h *
Pw = - and  Epym(w) = E N S™(Cig 1 ().

It follows that ¢y, (4) = @y (v) = 0 forany (u,v) ¢ E,4m(w). Let (u,v) € Eyqpm(w).
Then hyy (V) (hy (V) — hy (1)) = 0 for any w' ¢ FfMH(w). Hence

lpw (1) — @u (v)] = m(h(vxhw(u) — (1)) + o (V) (B(V) = h(w)))
< h@) —hy |+ Y ) = b (V).

w/el"ﬁ‘lﬂ/,_,’_1 (w)

Set C = (L4)?*1! 4 1. Then the last inequality yields

1
&M =5 D lew) —gu®)I”
(u,U)EEn-‘,-m(w)
cr1
<

= X (kG =k

W, v)EE); +1m(w)
Y ) = b))
w’eFf‘M+1(w)

<Cr (gt + Y &)

w’eI‘é"M+l(w)

<C? max Em,pm(W', A). =
w’GFfM+l(w)

In particular, in the case A = T, the associated partition of unity defined below
will be used to show the regularity of the p-energy constructed in Section 3.1.
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Definition 2.20. For w € T, define hy, , ,, € €(Tjw|+m) as the unique function /
satisfying h[smw) = 1, hl1,, 1 \sm (T w)) = 0 and

€51 (1) = €t pn (W, Tiw))-
Moreover, define ¢y . € {(Tjw|+m) by

*
hM,w,m

*
(pM,w,m - * .
ZUET|w| hM,v,m

By the proof of Lemma 2.19,

8;;'+m(‘/’1>\k4,w,m) < (LM 4 1)P max Em,pm (v, Ty)

forany w € T,,.

2.3 Combinatorial modulus

Another principal tool of this paper is the notion of combinatorial modulus of a path
family of a graph introduced in [11]. The general theory will be briefly reviewed in
Appendix 6.3. In this section, we introduce the notion of the p-modulus of paths
between two sets and show a sub-multiplicative inequality for them. As in the last
section, T is a countably infinite set, ¢ € T, (T, 4A) is a locally finite tree satisfying
#{w|(w,v) € A}) =2 forany w € T, (K, O) is a compact connected metrizable
space and { K, }yer is a partition of K parametrized by (7, 4, ¢).
Definition 2.21. Let M, m € N.
(1) Define
Exgm = {(w,v) | w,v € Ty, v € Ty (w)}.
Note that £, = ET . Moreover, define
Om(w,v) = min{M | v € Ty (w)}

for w,v € Tpy. O (w, v) is called the graph distance of the graph (T, E ).
(2) Let A C T, andlet A1, A» € A. For k > 0, define
€M 4y, 42, A) = {(w(),....v()) | v(i) € S™(A) foranyi = 1,...,1,
there exist v(0) € S™ (A1) and v(l + 1) € S™(A,) such
that (v(i),v(i + 1)) € Eyy 4, foranyi =0,...,1}, (2.11)
ASD (A1, A2, A) = {f | f: Tom — [0.00), Xy f(w(i)) = 1
for any (w(1),...,w(l)) € €M (41, A2, A)}
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and

MM (A, A2, A) = inf > fwyr. (2.12)

feAn” (A A2.4) ye

(3) For w € T, define
Ew) = €M ({w}, Ty (w)°, T), AGh (w) = ADD (w}, Ty (w)°. T)

and
M%),m(w) = MM (w}. Ty (W), Ty).

The quantity M;{l;[,,) (A1, Az, A) is called the p-modulus of the family of paths
between A; and A, inside A.

Remark. In (2.11) and (2.12), the domain of f is Tj+,,. However, since we only
use f(u) foru € S™(A) in (2.11) and the sum in (2.12) becomes smaller by setting
f(u) =0foru € Ty4,\S™(A), we may think of the domain of f as S™(A).

As in the case of conductances, if A; and A, consist of single points u and v,
respectively, then we write E’,(nM)(u, v, A), Ag,,M)(u, v, A) and M;{‘;fn) (u, v, A) instead
of €M (fu}, (v}, A), A ({u}, {v}, A) and MS) ({u}. {v}, A), respectively.

In accordance with [34, Proposition 4.8.4], the following simple relation between
Epm (A1, Az, A) and MY (A1, Ay, A) holds. Hence to know M5, (A1, Aa, A) is
essentially to know &, (A1, Az, A).

Lemma 2.22. Let AC T, andlet A1, Ay C Awith Ay N Ay = @. Then for any m > 1
and p > 0,

1
7 Eom(d1 A2 4) < M) (A1, Az, A)
<2max{1, (L«)?""}6p m(A1, A2, A). (2.13)
The following theorem is the main result of this section.

Theorem 2.23 (Sub-multiplicative inequality). Let ko, L, M € N. Suppose that
70T 41(u)) € Ty (20 )
foranyu € T. Then

M) (w) < oMY (w max MY (@
M,p.k+1 - M,p,k( )veSk(FM(w)) L,p,l()

foranyl €e N, k > ko, w € T and p > 0, where ¢,,3 depends only on p, Ly and L.

Remark. If 7%50(T; 1 (1)) € Tar (ko (u)), then 7% (T 41 (1)) € Tar(nF (1)) for
any k > ko.
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Similar sub-multiplicative inequalities for moduli of curve families have been
shown in [11, Proposition 3.6], [14, Lemma 3.8] and [34, Lemma 4.9.3].

By Assumption 2.7, the assumption 750 (T4 (u)) € Tar (sw*0(u)) is satisfied
with M = L = M, and k¢ = 1. This fact along with Lemma 2.22 shows the following
sub-multiplicative inequality of conductance constants.

Corollary 2.24. Foranyn,k,l > 1, w € T, and p > 1.

8M*,p,k-f—l (U), Tn) =< C2A248M*,p,k (w, Tn) max 8M*,p,l (U7 Tn—i—k)’ (2.14)
veSk (Tar (w))

where the constant ¢24 = c224(p, L+, M) depends only on p, Ly and M.
The rest of this section is devoted to a proof of Theorem 2.23.

Lemma 2.25. Let A C T, and let A1, A, C A with Ay N Ay = 0. Assume that
Tpr(u)N S™(A) is connected for any u € S™(A). Then

M) (A1, Az, A) < MM (A1, Az, A) < (L) PTOIM M) (A1, Az, A).
Proof. By definition,
€M (A;, A7, A) D2 €D (A1, A2, A) and  AM (A}, Ay, A) € AV (4, Az, A).

This shows
MED (A1, Az, A) < MM (A4, A5, A).

Define H, = I'ps(u) for any u € T, 4p,. Then
#(Hy) < (L™ and #({v |u € Hy}) < (L)Y

Let (u(1), ..., u(l)) e €M) (A, Ay, A). Then there exist u(0) € S™ (A1) N Tar (u(1))
and u(/ + 1) € S™(A2) N T'ar (u(l)). Since u(0) and u(1) is connected by a chain in
Tar(u(1)) and u(i) and u(i 4 1) is connected by a chainfori = 1,...,1 in Ty (u(7)),
we have a chain belonging to € (A1, A, A) and contained in Ui=1....n Hug)- Thus
Lemma C.4 shows

(M)(Al,Az A) < (L« )(pH)MeM(l) (A1, Az, A). n

Proof of Theorem 2.23. Let [ € A(LH)(w) andlet g, € A(Ll)l(v) forany v € Tjy| 4.
Define h: Ty |+k+1 — [0, 00) by

h(u) = max { f(v)go) | v € T (! () 0S¥ (Tar (W)} X gk (00, ) @)-

Claim 1. % € ”4’1(\}1)k+l(w)‘
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Proof. Let (u(1),...,u(m)) € Eﬁ}’)kﬂ (w). There exist such u(0) € S¥*!(w) and
u(m + 1)€ Ty +x+1\S* T (Tar (w)) that u(0) € Ty (u(1)) and u(m + 1) € Ty (u(m)).
Set v(i) = 7l (u(i)) fori = 0,...,m + 1. Let v4(0) = v(0) and let ig = 0. Define
n«, Vx(n) and iy fori = 1,...,n, inductively as follows: If

max{j | in < j =m,v(j) € I'L(v«(n))} = m,
then n = n,. If
max{; | in < j =m,v(j) € [L(v«(n))} <m,
then define
int1=max{j |inp <j <m,v(j) eTL(w«m)}+1 and vi(n+1)=v(n4+1).

The fact that 7% (I 41 (v4(0))) € Tar (7% (v(0))) implies 74 > 1. Since v(ip4q — 1) €
'z (v« (n)), we have ve(n + 1) € ' +1(v«(n)). Hence

(We(1).....va(n2)) € E;F TP (),

Moreover, since v«(n — 1) ¢ I'p(v«(n)) for n = 1, ..., ny, there exist j, and my,
suchthat i, < j, <my, <i, and (U(j,),...,u(my,)) € ‘Célg(v*(n)). Since gy, (n) €
AD (vi(n)), we have

D @) = Y f0x )Gy () = f(va()).
i=Jn i=Jn

This and the fact that (v« (1),...,v«(nx)) € E’](‘;Zl)(w) yield

Do) =) fs() = 1.
i=1 j=1

Thus Claim 1 has been verified. m|

Set Cy = max{(L+)“®@~V 1}. Then by Lemma A.1, for u € S¥T/(I'ys (w)),

p
h)? < ( ) f(v)gv(u))

vel'y (w! W)NSK(Tas ()

<Gy 3 F@)Pgo)?.

vel'z (! w)NSK (Tar (w))

The above inequality and Claim 1 yield
RPN ESD S T0) L= B D S O LI A (L

ueSk+ (Tpr (w)) veSK(Tar () UETwi+k+1
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Taking infimum over g, € ,A(Ll)l(v) and f € A(L+l)(w) we have

MY ey =c Y fPM® )
veSK (T (w))
Yo f? max M ()

k
veTim veSk (T (w))

(L+1) €Y)]
<
< Cy Mpk(w) UGS"I?I?A);(w))M ’ (v).

28

Finally, applying Lemma 2.25, we have the desired inequality. This completes the

proof of Theorem 2.23.

2.4 Neighbor disparity constant

Another important constant in this paper is 0, (-), which is called the neighbor

disparity constant. The neighbor disparity constant controls the differences between
means of a function on several cells via the p-energy of the function. For p = 2,

02,m was introduced in [36] for the case of self-similar sets.

Notation. For A € T, and f € Z(A) define

()4 = 3 fwn(Ky).

veA

ZveA ( w)

Furthermore, set
E;(A) =(AxA)N E,’,‘

Definition 2.26. Let A C T,,.

(1) Define Py p: £(S™(A)) — £(A) by

(Pnm )W) = (f)smw)

forany f € £(S™(A)) and w € A.

(2) Form > 0 and p > 1, define

& (P
o'p’m(A) — Sup M’
retsma) &, gma(f)

which is called the p-neighbor disparity constant of A at level m.

(3) Let {G;}i=1,..x be a collection of subsets of T;,. The family {G;};—1, x

called a covering of (A, E,; (A)) with covering numbers (N7, Ng) if

k
A= ~ #(li ) <
LJ]G“ max (i | x € Gi}) < Nr,

(2.15)

is
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and for any (u,v) € E;(A), there exist/ < Ng and {w(1),...,w(/ + 1)} € A such
that w(1) = u, w(l + 1) = v and (w@), w(i@ + 1)) € U;,,_x E;(G)) for any
i=1,...,1

Remark. The neighbor disparity constant o, (w, v) defined in the introduction is

equal to 0 (A) with A = {w, v}.

One of the advantages of neighbor disparity constants is their compatibility with
the integral projection Py, from £(Ty4m) to £(T,) as follows.

Lemma 2.27 ([36, Lemma 2.12]). Let A be a connected subset of T,, let m > 0 and
let {G; }{le be a covering of (A, E,; (A)) with covering numbers (N7, Ng). Then

& A(Pam f) < c201 max 0pm(GOEREH 4(f)

forany f € £(S™(A)), where ¢227 = (Lx)NE(Ng)?~'Nr, and

0pm(A) < 207 max op;,(G;).
i=1

=1,...,

In particular, if Ay, Ay C A, then
Epo(A1, A2, A) < 207 max. Op.m (Gi)&pm(Ay, Az, A) (2.16)
=

forany m > 0.
Proof. For (w,v) € E;;, set
Dj(w,v) = {(u1,uz) | (u1,uz) € E;, there exists (w(1),...,w(l), w(l + 1))
such that w(l) = u, w(l + 1) = uy
and (w(@), w( + 1)) = (w,v) forsomei =1,...,[}.
If (uy,uz) € Dy(w,v), thenu; € I'_1(w) and u, € T’y (u1). Hence
#(Dy(w,v)) < (L)',

Since {G; }i1,... k is a covering of A with covering numbers (N7, Ng), we have

1
EpaPamf) =5 3 |Pam())@01) = Pum(f)u2)l”
(u1,u2)€E; (A)
k
(Np)P™" max #(Dwg (w.v) ) &g, (Pumf)

i=1

IA

k
< LONEWNE) Y 0pm(GHEN G 61 (f)
i=1

Nentm
= 27 ,_nllaxkGp,m(Gz)gpjsm(A)(f)

=1,...,
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Next, choose f such that f |4, = 1, f|4, = 0and &, ,, (A1, A2, A) = Sggﬁ(A)(f).
Then
Epo(A1, A2, A) < &) 4(Pum f)-

So we have (2.16). [ ]

Lemma 2.28 ([36, Proposition 2.13(3)]). Let p > 1 and let A € Ty. If {Bi}i=1....1

is a covering of (S"(A), Ef ,,(S"(A))) with covering number (N1, Ng), then

Op,n+m (A) < €2270p.n (A) _Irllaxlap,m(Bi)-
i=

yeees

Proof. By Lemma 2.27, for any f € {(Tx+n+m),

€y A(Pin(Prtnmf)) < 0pn(AVENEL o (Prtnm )

=< 0p,nC2270pn (A) iil}ax ; Op,m (Bi)gigfﬁ:fm) (f) un

Due to Theorem 3.33, we will see that if p > dimgg (K, d), then it is enough to
consider neighbor disparity constants for a family #« = {{w,v}|(w,v) € U,~¢ Ex }-
As we will mention right after Example 2.30, however, allowing all the pair_s in $x
might cause a trouble, so that we need the following notion of a covering system in
general.

Definition 2.29. Let ¢ C (J,.¢t4 | A € T, }. The collection ¢ is called a covering
system with covering numbers (N, Ng) if the following conditions are satisfied:
(1) supygeg #(A) < oo.
(2) Forany w € T and m > 1, there exists a finite subset &' C ¢ such that N is
a covering of (S™(w), E¥, (S™(w))) with covering numbers (N7, Ng).

n+m
(3) Forany G € g and m > 0, if G C Ty, then there exists a finite subset N C ¢
such that N is a covering of (S™(G), E,,,(S™(G))) with covering numbers
(N7, Ng).

For a covering system ¢, set

of = max{o, ,(4) | A€ g, A< T,} and Gim = supo?
n=>0

p,m,n p.m,n’

Remark. By (2.6), applying Theorem 6.10, we see that

<oo and 0<o? <oo.

g
0 <0pmn p,m

Example 2.30. Define
$« = {{w, v} | (w,v) € E,; for some n > 0}.
Then g« is a covering system with covering numbers (L, 1).

If we allow all the pairs in J«, we may end up with the following situation.
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Proposition 2.31. Let § be a covering system and let {w, v} € . Assume Ky, N K,
is a single point {x}, and for any m > 0, there exist w’' € S™(w) and v’ € S™(v) such
that {w’,v'} ={u | u € Tyy4m,x € Ky}. Then

g g
O m.wl >1 and Opm = 1

forany p > 0andm > 0.
Proof. Setn = |w|. Let f = ygmy). Then Py f = y(w). Hence
+ _ -
SZ,SZ’!(w)US’"(v)(f) =1 and 8;’{w,v}(P,,,mf) =1,
so that o ;m ({w, v}) > 1. [

As we will observe in the following sections, the consequence of the above propo-
sition should be avoided if p < dimygr(K, d) because we expect (but do not have
a proof in general) that lim,,_.¢ alfim = 0 for p < dimyg (K, d). For example, a suit-
able substitute of ¢, for the unit square described in Example 2.4 is given as follows.

Example 2.32. Let K be the unit square [—1, 1]? treated in Example 2.4. Define
Fo = {{w, v} | {w,v} € g«, Ky N Ky is a line segment},

where the subscript £ in $; represents the word “line”. Then g is a covering system
with covering numbers (4, 2). Note that no {w, v} € J, satisfies the assumption of
Proposition 2.31.

Similar modification of . can be made in the case of subsystems of cubic tilings
studied in Section 4.3 including the Sierpifiski carpet. See (4.15) for details.

Now, we start to investigate the properties of the neighbor disparity constants of
a fixed covering system.

The following lemma is a consequence of Lemma 2.27 connecting the conduc-
tance constants with the neighbor disparity constants.

Lemma 2.33. Let § be a covering system with covering numbers (N7, Ng). Let
p>landletw e T. Foranyk > 1, m,[ > 0andv € Sk(w),

Emtpm(v. SKW)) < cam0d) L Ep i (0. SF (W) (2.17)

In particular; there exists ¢33, depending only on Nt, Ng, M, p and L, such that
k
if SK(w) # T35 ) (v), then
133 < 0¥ Eat.pa (v, SK(w)) 2.18)
233 = Op 1 |w|+k M,p,l\V, .

foranyn > 1andl > 0.
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Proof. Let A = S*¥T™(w) and choose a covering &' C g of S+ (w) with covering
number (N7, Ng). Then by (2.16),

k
€p.0(S™(v), S™(Tay ™ (v)°), S+ (w))
k w c m
< €207 MaX 0,1 (G) g (S (1). 8™ (T (0)°). S™+F (w)).

This implies (2.17). To obtain (2.18), letting m = 0 in (2.17), we have
8M,AIJ,O(Us Sk(w)) = 02427Ui15‘w|+k8M,p,l (v, Sk(w))

According to Theorem 6.3, cg (L+, (L*)M_1 . D) < &m,po(v, Sk(w)). This immedi-
ately implies (2.18). ]

Another important consequence of Lemma 2.27 is a sub-multiplicative inequality
of neighbor disparity constants.

Lemma 2.34. Let § be a covering system with covering numbers (N7, Ng) and let
p > 1. Then
S F F
O}J,n—i—m,k = 62-270'1),n,ko}z,m,/wl-n

foranyn,m,k € N.
Proof. This is straightforward by Lemma 2.28. ]

In the rest of this section, we study an estimate of the difference f(u) — f(v) for
f:Ty — R and u,v € T by means of the p-energy &, (/) and neighbor disparity
constants.

Lemma 2.35. Let § be a covering system with covering numbers (N1, Ng). Let
w e T andletm > 1. Forany f € £(S™(w)) and u € S(w),

1 1
(F)smawy — (Fsm-1ayl < Nalod 1 1) P Eent ()7

Proof. Let N C & be a covering of (S(w), EI*;U‘H(S(w))) with covering numbers
(N1, NEg). For any v € S(w), there exist vy, va,...,vx € S(w)and Gy,...,Gy € N
such that k < Ny, vy = v, vx =u and (v;,vi4+1) € E;(G;) foranyi =1,....k — 1.

Hence

() sm=10) = (F ) sm=10)|

k—1 k—1 .

1 1

< Osm1n = Fsm1pil £ Y €t (Pl r1m-1£)?
i=1

i=1

k—1

F{ 1 |lw|+m 1 g L ojw|+m 1

< O i) D E s ()7 SN )7 €y ()7
i=1
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Combining this with

(Nsmaw) = (Dsmre = s D (Hsm-1y = (Fsm=160) @),

veS(w)

(

we obtain the desired inequality. ]

Lemma 2.36. Suppose that § is a covering system with covering numbers (N1, NEg).
Foranyu,v € T, and [ € £(Ty+m),

(F)smen — (sma) < Nebae, v)(F,, €177 (£))7.

Proof. Suppose that N C ¢ is a covering of T,, with covering number (N7, Ng).
Set N = 0,(u,v) and g = Py, f. There exists (u(1),...,u(N + 1)) € T, such
that u(1) = u,u(N + 1) = v and (u(i),u(i + 1)) € E; foranyi =1,..., N. For
any i, there exist G;1,..., Gi Ny, € # and (u(i,1),...,u(i, Ng + 1)) such that
u(@, 1) =u@),u(i, Ng + 1) =u( + 1) and (u(i, j), u(i,j + 1)) € E;(G;,;) for
any j = 1,..., Ng. Then,

lg(w) —g)] = Z lg () — gu@ + 1))

~
—

Ng

> (Ve 3 lei. )~ g(uti. j + 1))

1 j=1

> (V) 12 26, (P )

M=

i i
S

N

'MZ

(g7 ,,,,,,,Z " snGe ()

N
Il
_-

N =

(NeY? o, s NEERTT  (f))

'MZ

1

< NNE (0 n€L " (). .

~

Lemma 2.37. Let § be a covering system with covering numbers (N7, Ng). Let
n > m. Then, for any u,v € T, and [ € £(Ty,),

1760 = )] = (NEOu (2" @), 7" ) O )

12N, Z( 0 imsi) )Sg(f)%. (2.19)
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Proof. Setv(i) = x" ™ (v) fori =0,...,n —m. Then by Lemma 2.35,
n—m
| f() = (Fsn=mn=mapl < D () gn-m=i @y = (f)sn—m=i+1 -1yl
i=1
n—m 1 1
SN D O i) P ER)7 (2.20)

i=1

The same inequality holds if we replace v by u. Set v/ = 7™ (v) and v’ = 7" (u).
Applying Lemma 2.36, we obtain

() sm-mry = (F)sn-mn] < NEOu @', V)08 o) PELF)P. (221

By (2.20) and (2.21), we have (2.19). [ ]



