
Chapter 2

Basic frameworks and key constants

2.1 Framework

In this section, we are going to make our framework of this paper clear. It is based
on the notion of partitions of compact metric spaces parametrized by rooted trees,
which was introduced in [34]. Roughly speaking, a partition is successive divisions of
a given space like the binary division of the unit interval. See [34] for examples. Since
this notion is relatively new and unfamiliar to most readers, we will give a minimal
but detailed account of its definition.

To start with, we present the basics of graphs and trees.

Definition 2.1. Let T be a countable set and let AW T � T ! ¹0; 1º which satisfies
A.w; v/ D A.v; w/ and A.w; w/ D 0 for any w; v 2 T . We call the pair .T;A/
a (non-directed) graph with the vertices T and the adjacency matrix A. An element
.u; v/ 2 T � T is called an edge of .T;A/ if A.u; v/ D 1. We often identify the
adjacency matrix A with the collection of edges ¹.u; v/ j u; v 2 T;A.u; v/ D 1º.

(1) A graph .T;A/ is called locally finite if #.¹v j A.w; v/ D 1º/ <1 for any
w 2 T , where #.A/ is the number of elements of a set A.

(2) For w0; : : : ; wn 2 T , .w0; w1; : : : ; wn/ is called a path between w0 and wn
if A.wi ; wiC1/ D 1 for any i D 0; 1; : : : ; n � 1. A path .w0; w1; : : : ; wn/ is called
simple if wi ¤ wj for any i; j with 0 � i < j � n and ji � j j < n.

(3) .T;A/ is called a tree if there exists a unique simple path between w and v
for any w; v 2 T with w ¤ v. For a tree .T;A/, the unique simple path between two
verticesw and v is called the geodesic betweenw and v and denoted bywv. We write
u 2 wv if wv D .w0; w1; : : : ; wn/ and u D wi for some i .

Next, we define fundamental notions on trees.

Definition 2.2. Let .T;A/ be a tree and let � 2 T . The triple .T;A; �/ is called
a rooted tree with root (or reference point, see, e.g., [45]) �.

(1) Define � WT ! T by

�.w/ D

´
wn�1 if w ¤ � and �w D .w0; w1; : : : ; wn�1; wn/,

� if w D �

and, for w 2 T , set
S.w/ D ¹v j �.v/ D wºn¹wº:
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An element v 2 S.w/ is thought of as a child of w. Moreover, for any k � 1, we
define Sk.w/ inductively as

SkC1.w/ D
[

v2S.w/

Sk.v/;

which is the collection of descendants in the k-th generation from w.

(2) For w 2 T and m � 0, we define

jwj D min¹n j n � 0; �n.w/ D �º and Tm D ¹w j w 2 T; jwj D mº:

(3) For any w 2 T , define

T .w/ D ¹v j there exists n � 0 such that �n.v/ D wº;

which is the collection of all the descendants of w.

(4) Define

† D ¹.w.i//i�0 j w.i/ 2 Ti and w.i/ D �.w.i C 1// for any i � 0º:

For ! D .!.i//i�0 2 †, set Œ!�m D !.m/ for m � 0. An element .w.i//i�0 2 † is
called a geodesic ray starting from � in [45].

Remark. In [34], we have used .T /n and Tw in place of Tn and T .w/, respectively.

Throughout this paper, T is a countably infinite set and .T;A/ is a locally finite
tree satisfying #.¹v j .w; v/ 2 Aº/ � 2 for any w 2 T .

Next, we define partitions.

Definition 2.3 (Partition). Let .K;O/ be a compact metrizable topological space hav-
ing no isolated point, where O is the totality of open sets.

A collection of non-empty compact subsets ¹Kwºw2T is called a partition of K
parametrized by .T;A; �/ if it satisfies the following conditions (P1) and (P2):

(P1) K� D K and for any w 2 T , Kw has no isolated point and

Kw D

[
v2S.w/

Kv:

(P2) For any geodesic ray ! 2 †,
T
m�0KŒ!�m is a single point.

Originally in [34], we did not assume that K is connected to include spaces like
the Cantor set. In this paper, however, we will only deal with connected spaces.
In such cases, the assumption thatK has no isolated point is always satisfied unlessK
is a single point.

As an illustrative example of partitions, we present the case of the unit square
Œ�1; 1�2 as a self-similar set. This is an example of the general construction of parti-
tions associated with self-similar sets discussed in Section 4.1.
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Example 2.4 (The unit square). Let K D Œ�1; 1�2 and let S D ¹1; 2; 3; 4º. Set p1 D
Œ�1; �1�; p2 D Œ1; �1�; p3 D Œ1; 1� and p4 D Œ�1; 1�. For i 2 S , define fi .x/ D
1
2
.x � pi /C pi for any x 2 R2. Then it is obvious that

K D

[
i2S

fi .K/:

This is the expression of the unit square as the self-similar set with respect to the
collection of contractions ¹fiºi2S . Let

Tn D Sn D ¹i1 : : : in j ij 2 S for any j D 1; : : : ; nº:

In particular, let T0 D ¹�º. Moreover, define T D
S
m�0 Tm and define � WT ! T by

�.i1 : : : ininC1/ D i1 : : : in

for any i1 : : : ininC1 2 TnC1 for n � 1 and �.�/ D �. Define A.w; v/ for w; v 2 T

as A.w; v/D 1 if �.w/D v or �.v/D w except for .w; v/D .�; �/. Then .T;A; �/
is a rooted tree. For w D w1 : : : wn 2 Tn, define

fw D fw1 ı � � � ı fwn and Kw D fw.K/:

Then ¹Kwºw2T is a partition of K parametrized by .T;A; �/. See Figure 2.1.

1 2

34

11 12 21 22

14 13 24 23

31 3241 42

34 3344 43

C

jj

�1.13/

T1 D ¹1; 2; 3; 4º T2 D ¹1; 2; 3; 4º2

Figure 2.1. Partition of the unit square.

The following definition is a collection of notions concerning partitions.

Definition 2.5. Let ¹Kwºw2T be a partition of K parametrized by .T;A; �/.

(1) Define Ow and Bw for w 2 T by

Ow D Kwn
� [
v2Tjwjn¹wº

Kv

�
; Bw D Kw \

� [
v2Tjwjn¹wº

Kv

�
:

If Ow ¤ ; for any w 2 T , then the partition K is called minimal.
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(2) For any A � Tn and w 2 A, define �AM .w/ � Tn as

�AM .w/ D ¹u j u 2 A; there exist u.0/; : : : ; u.M/ 2 A such that

u.0/ D w, u.M/ D u and Ku.i/ \Ku.iC1/ ¤ ;

for any i D 0; : : : ;M � 1º:

For simplicity, for w 2 Tn, we write �M .w/ D �
Tn
M .w/.

(3) ¹Kwºw2T is called uniformly finite if

sup
w2T

#.�1.w// < C1:

If a partition is minimal, then Ow is actually the interior of Kw , and Bw is the
topological boundary of Kw . See [34, Proposition 2.2.3] for details.

In the case of the unit square in Example 2.4, Kw is a square and Ow (resp. Bw )
is the interior (resp. the boundary) of Kw . Therefore, it is minimal. Moreover,

sup
w2T

#.�1.w// � 8;

so that it is uniformly finite.
Now we give the first part of our framework in this paper.
As we declared partially before, through this paper, T is a countably infinite set,

� 2 T , .T;A/ is a locally finite tree satisfying #.¹wj.w; v/ 2 Aº/ � 2 for any w 2 T ,
.K;O/ is a compact connected metrizable space and ¹Kwºw2T is a partition of K
parametrized by .T;A; �/.

Assumption 2.6. (1) For any w 2 T , Kw is connected.

(2) There exist M� and k� 2 N such that

�k�.�M�C1.w// � �M�
.�k�.w// (2.1)

for any w 2 T .

(3) There exists M0 �M� such that

�M�
.u/ \ Sk.w/ � �

Sk.w/
M0

.u/ (2.2)

for any w 2 T , k � 1 and u 2 Sk.w/.

See Figure 2.2 for an illustrative exposition of Assumption 2.6 in the case of the
unit square.

Remark. As is explicitly mentioned in Proposition 2.16, Assumption 2.6 (2) is al-
ways satisfied under mild additional assumptions.
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u

�1.u/

w D �2.u/

S2.w/

w

�2.w/

�.w/

�1�.u/

(2.1)W k� D 1; M� D 1 (2.2)W k D 2; M� DM0 D 1

Figure 2.2. Assumption 2.6: the unit square.

Remark. If M� D 1, then we have �M�
.w/ \ A D �AM�

.w/ for any w and A. So in
this case, by choosing M0 DM� D 1, Assumption 2.6 (3) is always satisfied.

Throughout this paper, we set

L� D sup
w2T

#.�1.w//: (2.3)

Then, for any m 2 N,
sup
w2T

#.�m.w// � .L�/
m:

Under Assumption 2.6 (2), if the partition ¹Kwºw2T is replaced by the parti-
tion ¹Kwºw2T .k�/ , where T .k�/ D

S
i�0 Tik� , the constant k� can be regarded as 1.

So doing such a replacement, we will adopt the following assumption.

Assumption 2.7. The constant k� appearing in (2.1) is 1.

For a given partition ¹Kwºw2T , we always associate the following graph struc-
ture E�

n on Tn.

Proposition 2.8. For n � 0, define

E�
n D ¹.w; v/ j w; v 2 Tn; w ¤ v; Kw \Kv ¤ ;º:

Then .Tn;E�
n / is a non-directed graph. Under Assumption 2.6, .Tn;E�

n / is connected
for any n � 0, and

�1.w/ D ¹v j v 2 Tn; .w; v/ 2 E
�
nº

for any n � 0 and w 2 Tn.

Remark. In [34], E�
n is denoted by J h1;n.

Definition 2.9. For w 2 Tn, define

@Sm.w/ D ¹v j v 2 Sm.w/; there exists v0 2 TnCm
such that .v; v0/ 2 E�

nCm and �m.v0/ ¤ wº:
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The set @Sm.w/ is a kind of a boundary of Sm.w/. In fact, it is easy to see

@Sm.w/ D ¹v j v 2 Sm.w/; Kv \ Bw ¤ ;º;

where Bw is the topological boundary of Kw as is mentioned above. So the next
assumption means that the boundary is not the whole space.

Assumption 2.10. There existsm0 � 1 such that Sm.w/n@Sm.w/¤; for anyw 2 T

and m � m0.

In Figure 2.3, we have an illustrative exposition of Assumption 2.10 in the case
of the unit square.

x

y

U1.x W 2/

U1.y W 2/

m0 D 2

@S2.w/

S2.w/n@S2.w/

Assumption 2.10 Assumption 2.15 (2B)

Figure 2.3. Assumptions 2.10 and 2.15 (2B); the unit square.

Definition 2.11. For w 2 T , M � 1 and k � 1, define

BM;k.w/ D
®
v j v 2 Sk.w/; �M�1.v/ \ @S

k.w/ ¤ ;
¯
:

Remark. B1;k.w/ D @Sk.w/.

The final assumption is an assumption on a measure � on K.

Assumption 2.12. The measure � is a Borel regular probability measure on K sat-
isfying

�.Kw/ D
X

v2S.w/

�.Kv/ (2.4)

for any w 2 T . There exists  2 .0; 1/ such that

�.Kw/ � �.K�.w// (2.5)

for any w 2 T . This property is called “super-exponential” in [34]. Moreover, there
exists � > 0 such that if w; v 2 T , jwj D jvj and .w; v/ 2 E�

jwj
, then

�.Kw/ � ��.Kv/ (2.6)
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The above condition (2.6) corresponds to the gentleness of the measure � intro-
duced in [34]. Indeed, if � has the volume doubling property, then this condition is
satisfied. See Proposition 2.16 and its proof below for an exact statement.

Lemma 2.13. Under Assumptions 2.6, 2.10 and 2.12,

(1) � is exponential, i.e., � satisfies (2.5) and there exist m1 � 1 and 1 2 .0; 1/
such that �.Kv/ � 1�.Kw/ for any w 2 T and v 2 Sm1.w/.

(2) supw2T #.S.w// <1.

Throughout this paper, we set

N� D sup
w2T

#.S.w//: (2.7)

Proof. (1) In fact, we set m1 D m0. For any w with jwj � 1 and m � 0, we see that
@Sm.w/ ¤ ; because K is connected. Hence by Assumption 2.10, #.Sm0.w// � 2

for any w 2 T . Let v 2 Sm1.w/. Then there exists u 2 Sm1.w/ with v ¤ u. By (2.5),

�.Kw/ � �.Kv/C �.Ku/ � �.Kv/C m1�.Kw/;

so that �.Kv/ � .1 � m1/�.Kw/.
(2) �.Kw/ D

X
v2S.w/

�.Kv/ � 
X

v2S.w/

�.Kw/ D #.S.w//�.Kw/.

Hence #.S.w// � 1


.

Lemma 2.14. Under Assumptions 2.6, 2.10 and 2.12,

Sm.w/nBM;m.w/ ¤ ;

for any w 2 T , M � 1 and m �Mm0. Moreover,

�
� [
v2Sn.Sm.w/nBM;m.w//

Kv

�
� m0M�.Kw/ (2.8)

for any w 2 T , n � 0 and m �Mm0.

Proof. By Assumption 2.10, we can inductively choose vi 2 S im0.w/ for i � 1

such that viC1 2 Sm0.vi /n@S
m0.vi / for any i � 1. At the same time, we see vi …

Bi;im0.w/. If m0i < k � m0.i C 1/, then v … Bi;k.w/ for v D �m0.iC1/�k.viC1/.
So the first part of the claim has been verified. Now if v 2 Sm.w/nBM;m.w/, then

�
� [
v2Sn.Sm.w/nBM;m.w//

Kv

�
� �.Kv/ � m0M�.Kw/

by Assumption 2.12.
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Until now, we have not considered any metric of .K; O/, which was merely
assumed to be compact and metrizable. The introduction of a metric d on K having
suitable properties enables us to integrate the above assumptions into the following
one.

Assumption 2.15. The metric space .K;d/ is a compact connected metric space and
diam.K; d/ D 1, where

diam.A; d/ D sup
x;y2A

d.x; y/

for a subset A � B . The partition ¹Kwºw2T is minimal and uniformly finite.

(1) For any w 2 T , Kw is connected.

(2) There exist M� � 1 and r 2 .0; 1/ such that the following properties hold:

(2A) Define hr WT ! .0; 1� as hr.w/D r jwj. Then there exist c1; c2 > 0 such
that

c1hr.w/ � diam.Kw ; d / � c2hr.w/

for any w 2 T .

(2B) For x 2 K and n � 1, define

UM .x W n/ D
[
w2Tn
x2Kw

[
v2�M .w/

Kv:

(See Figure 2.3 for examples of U1.� W 2/ in the case of the unit square.)
Then there exist c1; c2 > 0 such that

Bd .x; c1r
n/ � UM�

.x W n/ � Bd .x; c2r
n/

for any n � 1 and x 2 K, where Bd .x; r/ D ¹y j d.x; y/ < rº.

(2C) There exist c > 0 such that, for any n � 1 and w 2 Tn, there exists
x 2 Kw such that

Kw � Bd .x; cr
n/:

(3) � is a Borel regular probability measure on K. Moreover, � is exponential
and has the volume doubling property with respect to the metric d . Further-
more, � satisfies (2.4) for any w 2 T .

(4) There exists M0 such that (2.2) holds for any w 2 T , k � 1 and u 2 Sk.w/.

(5) For any w 2 T , �.�M�C1.w// � �M�
.�.w//.

Remark. In the terminology of [34], (2A) corresponds to the bi-Lipschitz equiva-
lence of d and hr , (2B) says that the metric d is M�-adapted to hr and (2C) together
with (2B) yields d being thick. The combination of (2A), (2B) and (2C) is equivalent
to that of (BF1) and (BF2) in [34, Section 4.3].



Conductance constant 21

Remark. Modifying the original partition ¹Kwºw2T , we may always obtain As-
sumption 2.15 (5) from Assumption 2.15 (1), (2), (3), and (4). Namely, by Propo-
sition 2.16, we have k� satisfying (2.1) under Assumption 2.15 (1), (2), (3) and (4).
So, replacing the original partition ¹Kwºw2T with ¹Kwºw2T .k�/ , we may suppose
k� D 1.

Proposition 2.16. Assumption 2.15 (1), (2), (3) and (4) suffice Assumptions 2.6, 2.10
and 2.12.

Proof. About Assumption 2.6, (1) and (3) are included in Assumption 2.15. Since d
isM�-adapted, [34, Proposition 4.4.4] shows the existence of k� required in Assump-
tion 2.6 (2). By (2C) and (2B), there exists m0 � 1 such that

Kw � Bd .x; cr
n/ � UM�

.x W nCm0/

for any n � 1 and w 2 Tn, where the point x 2 Kw is chosen as in (2C). So if v 2

TnCm0 and x 2 Kv , then Kv � Bd .x; cr
n/ and hence Kv \ Bw D ;. Therefore,

Assumption 2.10 is satisfied. Assumption 2.15 includes (2.4) and (2.5) follows from
the fact that � is exponential. Finally, (2.6) is a consequence of the volume doubling
property by [34, Theorem 3.3.4].

Under Assumption 2.15, we may suppose further properties of the metric d and
the measure �. Namely, if ˛ > dimAR.K; d/, then by (1.1), there exist an ˛-Ahlfors
regular metric d� which is quasisymmetric to d and a Borel regular measure � which
is ˛-Ahlfors regular with respect to d�, i.e., there exist c1; c2 > 0 such that

c1r
˛
� �.Bd�.x; r// � c2r

˛ (2.9)

for any x 2K and r 2 .0; 2diam.K;d/�. Replacing d and � by d� and �, respectively,
we may assume that d is ˛-Ahlfors regular. Note that if � is ˛-Ahlfors regular with
respect to d , then ˛ is the Hausdorff dimension of .K; d/.

2.2 Conductance constant

In this section, we introduce the conductance constant EM;p;m.w; A/ and show the
existence of a partition of unity whose p-energies are estimated by conductance con-
stants from above. In the next section, using the method of combinatorial modulus,
we will establish a sub-multiplicative inequality of conductance constants.

Through this section, T is a countably infinite set, � 2 T , .T;A/ is a locally finite
tree satisfying #.¹wj.w; v/ 2 Aº/ � 2 for any w 2 T , .K;O/ is a compact connected
metrizable space and ¹Kwºw2T is a partition of K parametrized by .T;A; �/. More-
over, hereafter in this paper, we always presume Assumptions 2.6, 2.7, 2.10 and 2.12.
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To begin with, we define p-energies of functions on graphs .Tn; E�
n / and the associ-

ated p-conductances between subsets.

Notation. Let A be a set. Set

`.A/ D ¹f j f WA! Rº: (2.10)

Definition 2.17. (1) Let A � Tn. For f 2 `.A/, define Enp;A.f / by

Enp;A.f / D
1

2

X
u;v2A;.u;v/2E�

n

jf .u/ � f .v/jp:

In particular, if A D Tn, we define Enp .f / D Enp;Tn.f / for f 2 `.Tn/.

(2) Let A � Tn and let A1; A2 � A. Define

Ep;m.A1; A2; A/ D inf
®
EnCm
p;Sm.A/

.f / j f 2 `.Sm.A//; f jSm.A1/ � 1;

f jSm.A2/ � 0
¯
:

(3) Let A � Tn. For w 2 A, define

EM;p;m.w;A/ D Ep;m.¹wº; An�
A
M .w/; A/;

which is called the p-conductance constant of w in A at level m.

For simplicity, we often denote a set consisting of a single point, ¹wº, by w.
For example, if A1 and A2 are single points u and v respectively, we sometimes write
Ep;m.u; v; A/ instead of Ep;m.¹uº; ¹vº; A/.

Remark. As we have mentioned in the introduction, the quantity EM;p;m.w;A/ can
be regarded as “p-capacity” from the viewpoint of the potential theory.

Lemma 2.18. For any w 2 T , k � 0 and u 2 Sk.w/,

EM0;p;m.u; S
k.w// � EM�;p;m.u; TjwjCk/:

Proof. This follows from Assumption 2.6 (3).

Remark. In the case M� D 1, we always have �A1 .w/ D �1.w/ \ A. Hence even
without (2.2),

E1;p;m.w; S
k.w// � E1;p;m.w; TjwjCk/

for any w 2 T , k � 0 and u 2 Sk.w/.

The following lemma shows the existence of a partition of unity.
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Lemma 2.19. Let p � 1 and let A � Tn. For any w 2 A, there exists 'w WSm.A/!
Œ0; 1� such thatX

w2A

'w � 1; 'w jSm.w/ � .L�/
�M ; 'w jSm.A/nSm.�A

M
.w// � 0

and
EnCm
p;Sm.A/

.'w/ � ..L�/
2MC1

C 1/p max
w02�A

2MC1
.w/

EM;p;m.w
0; A/:

Proof. Choose hw 2 `.Sm.A// such that hw jSm.w/ � 1, hw jSm.A/nSm.�A
M
.w// � 0,

and EM;p;m.w;A/ D EnCm
p;Sm.A/

.hw/. Define h 2 `.Sm.A// as

h.v/ D
X
w2A

hw.v/

for any v 2 Sm.A/. Note that 1 � h.v/ � .L�/
M . Set

'w D
hw

h
and EnCm.w/ D E�

nCm \ Sm.�AMC1.w//
2:

It follows that 'w.u/D 'w.v/D 0 for any .u;v/ …EnCm.w/. Let .u;v/ 2EnCm.w/.
Then hw.v/.hw0.v/ � hw0.u// D 0 for any w0 … �A2MC1.w/. Hence

j'w.u/ � 'w.v/j D
ˇ̌̌ 1

h.u/h.v/
.h.v/.hw.u/ � hw.v//C hw.v/.h.v/ � h.u///

ˇ̌̌
� jhw.u/ � hw.v/j C

X
w02�A

2MC1
.w/

jhw0.u/ � hw0.v/j:

Set C D .L�/
2MC1 C 1. Then the last inequality yields

EnCmp .'w/ D
1

2

X
.u;v/2EnCm.w/

j'w.u/ � 'w.v/j
p

�
Cp�1

2

X
.u;v/2EnCm.w/

�
jhw.u/ � hw.v/j

p

C

X
w02�A

2MC1
.w/

jhw0.u/ � hw0.v/jp
�

� Cp�1
�
EnCm
p;Sm.A/

.hw/C
X

w02�A
2MC1

.w/

EnCm
p;Sm.A/

.hw0/
�

� Cp max
w02�A

2MC1
.w/

EM;p;m.w
0; A/:

In particular, in the case A D Tn, the associated partition of unity defined below
will be used to show the regularity of the p-energy constructed in Section 3.1.
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Definition 2.20. For w 2 T , define h�M;w;m 2 `.TjwjCm/ as the unique function h
satisfying hjSm.w/ D 1, hjTjwjCmnSm.�M .w// D 0 and

E jwjCm
p .h/ D EM;p;m.w; Tjwj/:

Moreover, define '�
M;w;m 2 `.TjwjCm/ by

'�
M;w;m D

h�M;w;mP
v2Tjwj

h�M;v;m
:

By the proof of Lemma 2.19,

EnCmp .'�
M;w;m/ � ..L�/

2MC1
C 1/p max

v2Tn
EM;p;m.v; Tn/

for any w 2 Tn.

2.3 Combinatorial modulus

Another principal tool of this paper is the notion of combinatorial modulus of a path
family of a graph introduced in [11]. The general theory will be briefly reviewed in
Appendix 6.3. In this section, we introduce the notion of the p-modulus of paths
between two sets and show a sub-multiplicative inequality for them. As in the last
section, T is a countably infinite set, � 2 T , .T;A/ is a locally finite tree satisfying
#.¹wj.w; v/ 2 Aº/ � 2 for any w 2 T , .K;O/ is a compact connected metrizable
space and ¹Kwºw2T is a partition of K parametrized by .T;A; �/.

Definition 2.21. Let M;m 2 N.

(1) Define
E�
M;m D ¹.w; v/ j w; v 2 Tm; v 2 �M .w/º:

Note that E�
m D E�

1;m. Moreover, define

�m.w; v/ D min¹M j v 2 �M .w/º

for w; v 2 Tm. �m.w; v/ is called the graph distance of the graph .Tm; E�
m/.

(2) Let A � Tn and let A1; A2 � A. For k � 0, define

C .M/
m .A1; A2; A/ D ¹.v.1/; : : : ; v.l// j v.i/ 2 Sm.A/ for any i D 1; : : : ; l ;

there exist v.0/ 2 Sm.A1/ and v.l C 1/ 2 Sm.A2/ such

that .v.i/; v.i C 1// 2 E�
M;nCm for any i D 0; : : : ; lº;

A.M/
m .A1; A2; A/ D

®
f j f WTnCm ! Œ0;1/;

Pl
iD1 f .w.i// � 1

for any .w.1/; : : : ; w.l// 2 C .M/
m .A1; A2; A/

¯
(2.11)



Combinatorial modulus 25

and
M.M/
p;m .A1; A2; A/ D inf

f 2A
.M/
m .A1;A2;A/

X
u2TnCm

f .u/p: (2.12)

(3) For w 2 Tn, define

C
.M/
N;m.w/ D C .M/

m .¹wº; �N .w/
c ; Tn/;A

.M/
N;m.w/ D A.M/

m .¹wº; �N .w/
c ; Tn/

and
M
.M/
N;p;m.w/ D M.M/

p;m .¹wº; �N .w/
c ; Tn/:

The quantity M
.M/
p;m .A1; A2; A/ is called the p-modulus of the family of paths

between A1 and A2 inside A.

Remark. In (2.11) and (2.12), the domain of f is TnCm. However, since we only
use f .u/ for u 2 Sm.A/ in (2.11) and the sum in (2.12) becomes smaller by setting
f .u/ D 0 for u 2 TnCmnS

m.A/, we may think of the domain of f as Sm.A/.

As in the case of conductances, if A1 and A2 consist of single points u and v,
respectively, then we write C

.M/
m .u; v;A/, A

.M/
m .u; v;A/ and M

.M/
p;m .u; v;A/ instead

of C
.M/
m .¹uº; ¹vº; A/, A

.M/
m .¹uº; ¹vº; A/ and M

.M/
p;m .¹uº; ¹vº; A/, respectively.

In accordance with [34, Proposition 4.8.4], the following simple relation between
Ep;m.A1; A2; A/ and M

.1/
p;m.A1; A2; A/ holds. Hence to know M

.1/
p;m.A1; A2; A/ is

essentially to know Ep;m.A1; A2; A/.

Lemma 2.22. LetA� Tn and letA1;A2 �A withA1 \A2 D;. Then for anym� 1

and p > 0,

1

L�

Ep;m.A1; A2; A/ � M.1/
p;m.A1; A2; A/

� 2max¹1; .L�/
p�1

ºEp;m.A1; A2; A/: (2.13)

The following theorem is the main result of this section.

Theorem 2.23 (Sub-multiplicative inequality). Let k0; L;M 2 N. Suppose that

�k0.�LC1.u// � �M .�
k0.u//

for any u 2 T . Then

M
.1/

M;p;kCl
.w/ � c2.23M

.1/

M;p;k
.w/ max

v2Sk.�M .w//
M
.1/

L;p;l
.v/

for any l 2 N, k � k0, w 2 T and p > 0, where c2.23 depends only on p;L� and L.

Remark. If �k0.�LC1.u// � �M .�
k0.u//, then �k.�LC1.u// � �M .�

k.u// for
any k � k0.
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Similar sub-multiplicative inequalities for moduli of curve families have been
shown in [11, Proposition 3.6], [14, Lemma 3.8] and [34, Lemma 4.9.3].

By Assumption 2.7, the assumption �k0.�LC1.u// � �M .�
k0.u// is satisfied

withM DLDM� and k0D 1. This fact along with Lemma 2.22 shows the following
sub-multiplicative inequality of conductance constants.

Corollary 2.24. For any n; k; l � 1, w 2 Tn and p � 1.

EM�;p;kCl.w; Tn/ � c2.24EM�;p;k.w; Tn/ max
v2Sk.�M .w//

EM�;p;l.v; TnCk/; (2.14)

where the constant c2.24 D c2.24.p;L�;M�/ depends only on p, L� and M�.

The rest of this section is devoted to a proof of Theorem 2.23.

Lemma 2.25. Let A � Tn and let A1; A2 � A with A1 \ A2 D ;. Assume that
�M .u/\ S

m.A/ is connected for any u 2 Sm.A/. Then

M.1/
p;m.A1; A2; A/ � M.M/

p;m .A1; A2; A/ � .L�/
.pC1/MM.1/

p;m.A1; A2; A/:

Proof. By definition,

C .M/
m .A1; A2; A/ � C .1/m .A1; A2; A/ and A.M/

m .A1; A2; A/ � A.1/
m .A1; A2; A/:

This shows
M.1/
p;m.A1; A2; A/ � M.M/

p;m .A1; A2; A/:

Define Hu D �M .u/ for any u 2 TnCm. Then

#.Hu/ � .L�/
M and #.¹v j u 2 Hvº/ � .L�/

M :

Let .u.1/; : : : ;u.l//2C
.M/
m .A1;A2;A/. Then there exist u.0/2Sm.A1/\�M .u.1//

and u.l C 1/ 2 Sm.A2/\ �M .u.l//. Since u.0/ and u.1/ is connected by a chain in
�M .u.1// and u.i/ and u.i C 1/ is connected by a chain for i D 1; : : : ; l in �M .u.i//,
we have a chain belonging to C

.1/
m .A1;A2;A/ and contained in

S
iD1;:::;nHu.i/. Thus

Lemma C.4 shows

M.M/
p;m .A1; A2; A/ � .L�/

.pC1/MM.1/
p;m.A1; A2; A/:

Proof of Theorem 2.23. Let f 2A
.LC1/

M;k
.w/ and let gv 2A

.1/

L;l
.v/ for any v 2 TjwjCk .

Define hWTjwjCkCl ! Œ0;1/ by

h.u/ D max
®
f .v/gv.u/ j v 2 �L.�

l.u// \ Sk.�M .w//
¯
�SkCl .�M .w//.u/:

Claim 1. h 2 A
.1/

M;kCl
.w/.
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Proof. Let .u.1/; : : : ; u.m// 2 C
.1/

M;kCl
.w/. There exist such u.0/ 2 SkCl.w/ and

u.mC 1/2 TjwjCkClnS
kCl.�M .w// that u.0/2�1.u.1// and u.mC 1/2�1.u.m//.

Set v.i/ D � l.u.i// for i D 0; : : : ; mC 1. Let v�.0/ D v.0/ and let i0 D 0. Define
n�, v�.n/ and in for i D 1; : : : ; n� inductively as follows: If

max¹j j in � j � m; v.j / 2 �L.v�.n//º D m;

then n D n�. If

max¹j j in � j � m; v.j / 2 �L.v�.n//º < m;

then define

inC1 D max¹j j in � j � m; v.j / 2 �L.v�.n//º C 1 and v�.nC 1/ D v.inC1/:

The fact that �k.�LC1.v�.0///��M .�k.v.0/// implies n� � 1. Since v.inC1 � 1/2
�L.v�.n//, we have v�.nC 1/ 2 �LC1.v�.n//. Hence

.v�.1/; : : : ; v�.n�// 2 C
.LC1/

M;k
.w/:

Moreover, since v�.n � 1/ … �L.v�.n// for n D 1; : : : ; n�, there exist jn and mn
such that in�1 < jn �mn < in and .u.jn/; : : : ; u.mn// 2 C

.1/

L;l
.v�.n//. Since gv�.n/ 2

A
.1/

L;l
.v�.n//, we have

mnX
iDjn

h.u.i// �

mnX
iDjn

f .v�.n//gv�.n/.u.i// � f .v�.n//:

This and the fact that .v�.1/; : : : ; v�.n�// 2 C
.LC1/

M;k
.w/ yield

mX
iD1

h.u.i// �

n�X
jD1

f .v�.j // � 1:

Thus Claim 1 has been verified. �

Set C0 D max¹.L�/
L.p�1/; 1º. Then by Lemma A.1, for u 2 SkCl.�M .w//,

h.u/p �

� X
v2�L.�l .u//\Sk.�M .w//

f .v/gv.u/

�p
� C0

X
v2�L.�l .u//\Sk.�M .w//

f .v/pgv.u/
p:

The above inequality and Claim 1 yield

M
.1/

M;p;kCl
.w/ �

X
u2SkCl .�M .w//

h.u/p � C0
X

v2Sk.�M .w//

X
u2TjwjCkCl

f .v/pgv.u/
p:
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Taking infimum over gv 2 A
.1/

L;l
.v/ and f 2 A

.LC1/

M;k
.w/, we have

M
.1/

M;p;kCl
.w/ � C

X
v2Sk.�M .w//

f .v/pM
.1/

L;p;l
.v/

� C0
X

v2TjwjCk

f .v/p max
v2Sk.�M .w//

M
.1/

L;p;l
.v/

� C0M
.LC1/

M;p;k
.w/ max

v2Sk.�M .w//
M
.1/

L;p;l
.v/:

Finally, applying Lemma 2.25, we have the desired inequality. This completes the
proof of Theorem 2.23.

2.4 Neighbor disparity constant

Another important constant in this paper is �p;m.�/, which is called the neighbor
disparity constant. The neighbor disparity constant controls the differences between
means of a function on several cells via the p-energy of the function. For p D 2,
�2;m was introduced in [36] for the case of self-similar sets.

Notation. For A � Tn and f 2 `.A/, define

.f /A D
1P

v2A �.Kw/

X
v2A

f .w/�.Kw/:

Furthermore, set
E�
n .A/ D .A � A/ \E�

n : (2.15)

Definition 2.26. Let A � Tn.

(1) Define Pn;mW `.Sm.A//! `.A/ by

.Pn;mf /.w/ D .f /Sm.w/

for any f 2 `.Sm.A// and w 2 A.

(2) For m � 0 and p � 1, define

�p;m.A/ D sup
f 2`.Sm.A//

Enp;A.Pn;mf /

EnCm
p;Sm.A/

.f /
;

which is called the p-neighbor disparity constant of A at level m.

(3) Let ¹GiºiD1;:::;k be a collection of subsets of Tn. The family ¹GiºiD1;:::;k is
called a covering of .A;E�

n .A// with covering numbers .NT ; NE / if

A D

k[
iD1

Gi ; max
x2A

#.¹i j x 2 Giº/ � NT ;



Neighbor disparity constant 29

and for any .u; v/ 2 E�
n .A/, there exist l � NE and ¹w.1/; : : : ; w.l C 1/º � A such

that w.1/ D u, w.l C 1/ D v and .w.i/; w.i C 1// 2
S
jD1;:::;k E

�
n .Gj / for any

i D 1; : : : ; l .

Remark. The neighbor disparity constant �p;m.w; v/ defined in the introduction is
equal to �p;m.A/ with A D ¹w; vº.

One of the advantages of neighbor disparity constants is their compatibility with
the integral projection Pn;m from `.TnCm/ to `.Tn/ as follows.

Lemma 2.27 ([36, Lemma 2.12]). Let A be a connected subset of Tn, let m � 0 and
let ¹GiºkiD1 be a covering of .A;E�

n .A// with covering numbers .NT ; NE /. Then

Enp;A.Pn;mf / � c2.27 max
iD1;:::;k

�p;m.Gi /E
nCm
p;Sm.A/

.f /

for any f 2 `.Sm.A//, where c2.27 D .L�/
NE .NE /

p�1NT , and

�p;m.A/ � c2.27 max
iD1;:::;k

�p;m.Gi /:

In particular, if A1; A2 � A, then

Ep;0.A1; A2; A/ � c2.27 max
iD1;:::;k

�p;m.Gi /Ep;m.A1; A2; A/ (2.16)

for any m � 0.

Proof. For .w; v/ 2 E�
n , set

Dl.w; v/ D ¹.u1; u2/ j .u1; u2/ 2 E
�
n ; there exists .w.1/; : : : ; w.l/; w.l C 1//

such that w.1/ D u1; w.l C 1/ D u2

and .w.i/; w.i C 1// D .w; v/ for some i D 1; : : : ; lº:

If .u1; u2/ 2 Dl.w; v/, then u1 2 �l�1.w/ and u2 2 �1.u1/. Hence

#.Dl.w; v// � .L�/
l :

Since ¹GiºiD1;:::;k is a covering of A with covering numbers .NT ; NE /, we have

Enp;A.Pn;mf / D
1

2

X
.u1;u2/2E

�
n .A/

jPn;m.f /.u1/ � Pn;m.f /.u2/j
p

� .NE /
p�1 max

.w;v/2E�
n

#.DNE .w; v//
kX
iD1

Emp;Gi .Pn;mf /

� .L�/
NE .NE /

p�1

kX
iD1

�p;m.Gi /E
nCm
p;Sm.Gi /

.f /

� c2.27 max
iD1;:::;k

�p;m.Gi /E
nCm
p;Sm.A/

.f /:
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Next, choose f such that f jA1 � 1, f jA0 � 0 and Ep;m.A1; A2; A/ D EnCm
p;Sm.A/

.f /.
Then

Ep;0.A1; A2; A/ � Enp;A.Pn;mf /:

So we have (2.16).

Lemma 2.28 ([36, Proposition 2.13 (3)]). Let p � 1 and let A � Tk . If ¹BiºiD1;:::;l
is a covering of .Sn.A/;E�

kCn
.Sn.A/// with covering number .NT ; NE /, then

�p;nCm.A/ � c2.27�p;n.A/ max
iD1;:::;l

�p;m.Bi /:

Proof. By Lemma 2.27, for any f 2 `.TkCnCm/,

Ekp;A.Pk;n.PkCn;mf // � �p;n.A/E
kCn
p;Sn.A/

.PkCn;mf /

� �p;nc2.27�p;n.A/ max
iD1;:::;l

�p;m.Bi /E
kCnCm

p;SmCn.A/
.f /:

Due to Theorem 3.33, we will see that if p > dimAR.K; d/, then it is enough to
consider neighbor disparity constants for a family J� D ¹¹w;vºj.w; v/ 2

S
n�0E

�
nº.

As we will mention right after Example 2.30, however, allowing all the pairs in J�

might cause a trouble, so that we need the following notion of a covering system in
general.

Definition 2.29. Let J �
S
n�0¹A j A � Tnº. The collection J is called a covering

system with covering numbers .NT ; NE / if the following conditions are satisfied:

(1) supA2J #.A/ <1.

(2) For any w 2 T and m � 1, there exists a finite subset N � J such that N is
a covering of .Sm.w/;E�

nCm.S
m.w/// with covering numbers .NT ; NE /.

(3) For any G 2 J andm � 0, if G � Tn, then there exists a finite subset N � J

such that N is a covering of .Sm.G/; E�
nCm.S

m.G/// with covering numbers
.NT ; NE /.

For a covering system J, set

�J
p;m;n D max¹�p;m.A/ j A 2 J; A � Tnº and �J

p;m D sup
n�0

�J
p;m;n:

Remark. By (2.6), applying Theorem 6.10, we see that

0 < �J
p;m;n <1 and 0 < �J

p;m <1:

Example 2.30. Define

J� D ¹¹w; vº j .w; v/ 2 E�
n for some n � 0º:

Then J� is a covering system with covering numbers .L�; 1/.

If we allow all the pairs in J�, we may end up with the following situation.
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Proposition 2.31. Let J be a covering system and let ¹w; vº 2 J. Assume Kw \Kv
is a single point ¹xº, and for anym� 0, there existw0 2 Sm.w/ and v0 2 Sm.v/ such
that ¹w0; v0º D ¹u j u 2 TnCm; x 2 Kuº. Then

�
J

p;m;jwj
� 1 and �J

p;m � 1

for any p > 0 and m � 0.

Proof. Set n D jwj. Let f D �Sm.w/. Then Pn;mf D �¹wº. Hence

EnCm
p;Sm.w/[Sm.v/

.f / D 1 and Enp;¹w;vº.Pn;mf / D 1;

so that �p;m.¹w; vº/ � 1.

As we will observe in the following sections, the consequence of the above propo-
sition should be avoided if p < dimAR.K; d/ because we expect (but do not have
a proof in general) that limm!0 �

J
p;m D 0 for p < dimAR.K; d/. For example, a suit-

able substitute of J� for the unit square described in Example 2.4 is given as follows.

Example 2.32. Let K be the unit square Œ�1; 1�2 treated in Example 2.4. Define

J` D ¹¹w; vº j ¹w; vº 2 J�; Kw \Kv is a line segmentº;

where the subscript ` in J` represents the word “line”. Then J` is a covering system
with covering numbers .4; 2/. Note that no ¹w; vº 2 J` satisfies the assumption of
Proposition 2.31.

Similar modification of J� can be made in the case of subsystems of cubic tilings
studied in Section 4.3 including the Sierpiński carpet. See (4.15) for details.

Now, we start to investigate the properties of the neighbor disparity constants of
a fixed covering system.

The following lemma is a consequence of Lemma 2.27 connecting the conduc-
tance constants with the neighbor disparity constants.

Lemma 2.33. Let J be a covering system with covering numbers .NT ; NE /. Let
p � 1 and let w 2 T . For any k � 1, m; l � 0 and v 2 Sk.w/,

EM;p;m.v; S
k.w// � c2.27�

J

p;l;jwjCkCm
EM;p;mCl.v; S

k.w//: (2.17)

In particular, there exists c2.33, depending only on NT ; NE , M;p and L�, such that
if Sk.w/ ¤ �

Sk.w/
M .v/, then

c2.33 � �
J

p;l;jwjCk
EM;p;l.v; S

k.w// (2.18)

for any n � 1 and l � 0.
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Proof. Let AD SkCm.w/ and choose a covering N � J of SkCm.w/ with covering
number .NT ; NE /. Then by (2.16),

Ep;0.S
m.v/; Sm.�

Sk.w/
M .v/c/; SmCk.w//

� c2.27 max
G2N

�p;l.G/Ep;l.S
m.v/; Sm.�

Sk.w/
M .v/c/; SmCk.w//:

This implies (2.17). To obtain (2.18), letting m D 0 in (2.17), we have

EM;p;0.v; S
k.w// � c2.27�

J

p;l;jwjCk
EM;p;l.v; S

k.w//:

According to Theorem 6.3, cE.L�; .L�/
M�1; p/ � EM;p;0.v; S

k.w//. This immedi-
ately implies (2.18).

Another important consequence of Lemma 2.27 is a sub-multiplicative inequality
of neighbor disparity constants.

Lemma 2.34. Let J be a covering system with covering numbers .NT ; NE / and let
p � 1. Then

�
J

p;nCm;k
� c2.27�

J

p;n;k
�

J

p;m;kCn

for any n;m; k 2 N.

Proof. This is straightforward by Lemma 2.28.

In the rest of this section, we study an estimate of the difference f .u/� f .v/ for
f W Tn ! R and u; v 2 T by means of the p-energy Enp .f / and neighbor disparity
constants.

Lemma 2.35. Let J be a covering system with covering numbers .NT ; NE /. Let
w 2 T and let m � 1. For any f 2 `.Sm.w// and u 2 S.w/,

j.f /Sm.w/ � .f /Sm�1.u/j � N�.�
J

p;m�1;jwjC1
/
1
pE

jwjCm

p;Sm.w/
.f /

1
p :

Proof. Let N � J be a covering of .S.w/; E�
jwjC1

.S.w/// with covering numbers
.NT ;NE /. For any v 2 S.w/, there exist v1; v2; : : : ; vk 2 S.w/ and G1; : : : ;Gk 2 N

such that k � N�, v1 D v, vk D u and .vi ; viC1/ 2 E�
n .Gi / for any i D 1; : : : ; k � 1.

Hence

j.f /Sm�1.v/ � .f /Sm�1.u/j

�

k�1X
iD1

j.f /Sm�1.vi /
� .f /Sm�1.viC1/

j �

k�1X
iD1

E
jwjC1
p;Gi

.PjwjC1;m�1f /
1
p

� .�
J

p;m�1;jwjC1
/
1
p

k�1X
iD1

E
jwjCm

p;Sm�1.Gi /
.f /

1
p �N�.�

J

p;m�1;jwjC1
/
1
pE

jwjCm

p;Sm.w/
.f /

1
p:
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Combining this with

.f /Sm.w/ � .f /Sm�1.u/ D
1

�.w/

X
v2S.w/

..f /Sm�1.v/ � .f /Sm�1.u//�.v/;

we obtain the desired inequality.

Lemma 2.36. Suppose that J is a covering system with covering numbers .NT ;NE /.
For any u; v 2 Tn and f 2 `.TnCm/,

j.f /Sm.u/ � .f /Sm.v/j � NE�n.u; v/
�
�J
p;m;nEnCmp .f /

� 1
p :

Proof. Suppose that N � J is a covering of Tn with covering number .NT ; NE /.
Set N D �n.u; v/ and g D Pn;mf . There exists .u.1/; : : : ; u.N C 1// � Tn such
that u.1/ D u; u.N C 1/ D v and .u.i/; u.i C 1// 2 E�

n for any i D 1; : : : ; N . For
any i , there exist Gi;1; : : : ; Gi;NE 2 H and .u.i; 1/; : : : ; u.i; NE C 1// such that
u.i; 1/ D u.i/; u.i; NE C 1/ D u.i C 1/ and .u.i; j /; u.i; j C 1// 2 E�

n .Gi;j / for
any j D 1; : : : ; NE . Then,

jg.u/ � g.v/j �

NX
iD1

jg.u.i// � g.u.i C 1//j

�

NX
iD1

�
.NE /

p�1

NEX
jD1

jg.u.i; j // � g.u.i; j C 1//jp
� 1
p

�

NX
iD1

�
.NE /

p�1

NEX
jD1

Enp;Gi;j .Pn;mf /
� 1
p

�

NX
iD1

�
.NE /

p�1�J
p;m;n

NEX
jD1

Enp;Sm.Gi;j /.f /
� 1
p

�

NX
iD1

�
.NE /

p�1�J
p;m;nNEEnCmp;TnCm

.f /
� 1
p

� NNE
�
�J
p;m;nEnCmp .f /

� 1
p :

Lemma 2.37. Let J be a covering system with covering numbers .NT ; NE /. Let
n � m. Then, for any u; v 2 Tn and f 2 `.Tn/,

jf .u/ � f .v/j �
�
NE�m.�

n�m.u/; �n�m.v//.�J
p;n�m;m/

1
p

C 2N�

n�mX
iD1

.�
J
p;n�m�i;mCi /

1
p

�
Enp .f /

1
p : (2.19)
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Proof. Set v.i/ D �n�m�i .v/ for i D 0; : : : ; n �m. Then by Lemma 2.35,

jf .v/ � .f /Sn�m.�n�m.v//j �

n�mX
iD1

j.f /Sn�m�i .v.i// � .f /Sn�m�iC1.v.i�1//j

� N�

n�mX
iD1

.�
J
p;n�m�i;mCi /

1
pEnp .f /

1
p : (2.20)

The same inequality holds if we replace v by u. Set v0 D �n�m.v/ and u0 D �n�m.u/.
Applying Lemma 2.36, we obtain

j.f /Sn�m.u0/ � .f /Sn�m.v0/j � NE�m.u
0; v0/.�J

p;n�m;m/
1
pEnp .f /

1
p : (2.21)

By (2.20) and (2.21), we have (2.19).


