
Chapter 3

Conductive homogeneity and its consequences

3.1 Construction of p-energy: p > dimAR.K; d/

In this section, we are going to construct a p-energy on K as a scaling limit of the
discrete counterparts Enp ’s step by step under Assumption 3.2, which consists of the
following two requirements:

(3.1) Neighbor disparity constants and .conductance constants/�1 have the same
asymptotic behavior.

(3.2) Conductance constants have exponential decay.

Under these assumptions, the p-energy yEp is constructed in Theorem 3.21. Further-
more, in the case p D 2, we construct a local regular Dirichlet form in Theorem 3.23.

The question when Assumption 3.2 is fulfilled will be addressed in Section 3.3.
As in the previous sections, we continue to suppose that Assumptions 2.6, 2.7,

2.10 and 2.12 hold. Moreover, throughout this section, we fix p � 1.

Definition 3.1. For M � 1;m � 0 and n � 1, define

EM;p;m;n D max
v2Tn

EM;p;m.v; Tn/:

Remark. Theorem 6.3 shows that EM;p;m;n is finite.

Assumption 3.2. Let J be a covering system. There exist c1; c2 > 0 and ˛ 2 .0; 1/

such that
c1 � EM�;p;m;n�

J
p;m;n � c2 (3.1)

and
EM�;p;m;n � c2˛

m (3.2)

for any m � 0; n � 1.

Hereafter in this section, we fix a covering system J with covering numbers
.NT ;NE / and use �p;m;n (resp. �p;m) in place of �J

p;m;n (resp. �J
p;m) for simplicity of

notations.
By [34, Theorems 4.7.6 and 4.9.1], we have the following characterization of (3.2)

under Assumption 2.15.

Proposition 3.3. Under Assumption 2.15,

lim
m!1

.EM�;p;m/
1
m < 1 if and only if p > dimAR.K; d/:

In particular, (3.2) holds if and only if p > dimAR.K; d/.
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Note that sinceK is assumed to be connected, we have dimAR.K; d/ � 1, so that
p > 1.

In the following definition, we introduce the principal notion of this paper called
conductive homogeneity. Due to Theorem 3.5, conductive homogeneity yields (3.1).

Definition 3.4 (Conductive homogeneity). Define

EM;p;m D sup
w2T; jwj�1

EM;p;m.w; Tjwj/:

A compact metric space K (with a partition ¹Kwºw2T and a measure �) is said to be
p-conductively homogeneous if

sup
m�0

�p;mEM�;p;m <1: (3.3)

Remark. As in the case of EM;p;m;n, EM;p;m is always finite due to Theorem 6.3.

Remark. As we will see in Theorem 3.33, if p > dimAR.K; d/, then the conductive
homogeneity is solely determined by the conductance constants. Consequently, it is
independent of a choice of a covering system J. So, in the case p > dimAR.K; d/,
the covering system J� is good enough in the end.

Theorem 3.5. If K is p-conductively homogeneous, then (3.1) holds.

A proof of Theorem 3.5 will be provided in Section 3.3.
Under conductive homogeneity, it will be shown in Theorem 3.30 that there exist

c1; c2 > 0 and � > 0 such that

c1�
m
� �p;m;n � c2�

m and c1�
�m

� EM�;p;m.v; Tn/ � c2�
�m

for anym� 1, n� 0 and v 2 Tn. This is why we have given the name “homogeneity”
to this notion.

Now we start to construct a p-energy under Assumption 3.2. An immediate con-
sequence of Assumption 3.2 is the following multiplicative property of �p;m;n.

Lemma 3.6. There exist c1; c2 > 0 such that

c1�p;m;nCk�p;n;k � �p;nCm;k � c2�p;m;nCk�p;n;k

for any k � 1, and m; n � 0.

Proof. By (2.14), we have

EM�;p;nCm;k � cEM�;p;m;nCkEM�;p;n;k :

This along with (3.1) shows

c1�p;m;nCk�p;n;k � �p;nCm;k :

The other half of the desired inequality follows from Lemma 2.34.

Next, we study some geometry associated with the partition ¹Kwºw2T .
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Definition 3.7. Let L � 1. Define

nL.x; y/ D max¹n j there exist w; v 2 Tn such that

x 2 Kw ; y 2 Kv and v 2 �L.w/º:

Furthermore, fix r 2 .0; 1/ and define

ıL.x; y/ D rnL.x;y/: (3.4)

Recall that hr W T ! .0; 1� is given as hr.w/ D r jwj. Since ƒhrs D Tn if rn�1 >
s � rn, where

ƒhrs D ¹w j w 2 T; hr.�.w// > s � hr.w/º;

ıL is nothing but ıhrL defined in [34, Definition 2.3.8].
By [34, Proposition 2.3.7] and the discussions in its proof, we have the following

fact.

Proposition 3.8. Suppose that d is a metric on K giving the original topology O

of K. Let L � 1. There exists a monotonically non-decreasing function �LW Œ0; 1�!
Œ0; 1� satisfying limt# �L.t/ D 0 and ıL.x; y/ � �L.d.x; y// for any x; y 2 K.

Proof. Define

ƒ
hr
s;0.x/ D ¹v j v 2 ƒhrs ; x 2 Kvº; U

hr
0 .x; s/ D

[
v2ƒ

hr
s;0
.x/

Kv

and
U
hr
1 .x; s/ D

[
y2U

hr
0
.x;s/

U
hr
0 .y; s/

for s 2 .0; 1� and x 2 K. First we show that for any " > 0, there exists 
" > 0 such
that ıL.x; y/ � " whenever d.x; y/ � 
". If this is not the case, then there exist
"0 > 0, ¹xnºn�1 and ¹ynºn�1 such that d.xn; yn/ � 1

n
and ıL.xn; yn/ > "0. Since

K is compact, choosing an adequate subsequence ¹nkºk!1, we see that there exists
x 2 K such that xnk ! x and ynk ! x for k ! 1. By [34, Proposition 2.3.7],
U
hr
0 .x; "0

2
/ is a neighborhood of x. Hence both xnk and ynk belong to U hr0 .x; "0

2
/

for sufficiently large k. So, there exist w; v 2 ƒ
hr
"0=2;0

.x/ such that xnk 2 Kw and
ynk 2Kv . Since x 2Kw \Kv , we see that y 2U hr1 .x; "0

2
/, so that ıL.xnk ;ynk /�

"0
2

.
This contradicts the assumption that ıL.xn; yn/� "0. Thus our claim at the beginning
of this proof is verified. Note that with a modification if necessary, we may assume
that 
" is monotonically non-decreasing as a function of " and lim"#0 
" D 0. Define

�L.t/ D inf¹" j " > 0; t � 
"º:

Now it is routine to see that � is the desired function.
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Let Tn D ¹w.1/; : : : ; w.l/º, where l D #.Tn/. Inductively we define zKw by

zKw.1/ D Kw.1/ and zKw.kC1/ D Kw.kC1/n
� [
iD1;:::;k

zKw.i/

�
:

Note that (2.4) implies that �.Bw/ D 0 for any w 2 Tn and hence we have

zKw � Ow and �.Kwn zKw/ D 0

for any w 2 Tn. The latter equality is due to (2.4). Now define JnW `.Tn/! RK by

Jnf D

X
w2Tn

f .w/� zKw
: (3.5)

Since zKw is a Borel set, Jnf is �-measurable for any f 2 `.Tn/. The definitions
of zKw and Jn depend on an enumeration of Tn but Jnf stays the same in the �-a.e.
sense regardless of an enumeration.

Define
zEmp .f / D �p;m�1;1E

m
p .f /: (3.6)

The next lemma yields the control of the difference of values of Jnf through
zEnp .f /.

Lemma 3.9. Suppose that Assumption 3.2 holds. There exists C > 0 such that for
any n � 1, f 2 `.Tn/ and x; y 2 K,

j.Jnf /.x/ � .Jnf /.y/j � C˛
m
p zEnp .f /

1
p ;

where m D min¹nL.x; y/; nº.

Proof. Let m D min¹nL.x; y/; nº. Then there exist w;w0 2 Tm, v 2 Sn�m.w/ and
u 2 Sn�m.w0/ such that x 2 Kv , y 2 Ku, .Jnf /.x/ D f .v/, .Jnf /.y/ D f .u/ and
w0 2 �LC2.w/. By (2.19),

jf .u/ � f .v/j � c

n�mX
iD0

.�p;n�m�i;mCi /
1
pEnp .f /

1
p ; (3.7)

where c D max¹2.N�/
2; NE .LC 2/º. Lemma 3.6 shows that

c1�p;mCi�1;1�p;n�m�i;mCi � �p;n�1;1:

Combining this with Assumption 3.2, we obtain

�p;n�m�i;mCi � c3˛
mCi�p;n�1;1:

Using (3.7), we see
jf .u/ � f .v/j � c4˛

m
p zEnp .f /

1
p :
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By this lemma, the boundedness of zEnp .fn/ gives a kind of equicontinuity to the
family ¹fnºn�1 and hence an analogue of Arzelà–Ascoli theorem, which we present
in Appendix 6.3, shows the existence of a uniform limit as follows.

Lemma 3.10. Suppose that Assumption 3.2 holds. Define � D
log˛
log r . Let fn 2 `.Tn/

for any n � 1. If

sup
n�1

zEnp .fn/ <1 and sup
n�1

j.fn/Tn j <1;

then there exist a subsequence ¹nkºk�1 and f 2 C.K/ such that ¹Jnkfnk º converges
uniformly to f as k ! 1, zEnkp .fnk / is convergent as k ! 1 and

jf .x/ � f .y/jp � C�L.d.x; y//
� lim
k!1

zEnkp .fnk /;

where �L was introduced in Proposition 3.8.

Proof. Set C� D supn�1 zEnp .fn/. By Lemma 3.9, if n � nL.x; y/, then

jJnfn.x/ � Jnfn.y/j � C˛
nL.x;y/

p .C�/
1
p � C�L.d.x; y//

�
p .C�/

1
p : (3.8)

In the case n < nL.x; y/, there exist w; w0 2 Tn such that x 2 Kw , Jnfn.x/ D
f .w/, y 2 Kw0 , Jnfn.w0/ D f .w0/ and w0 2 �LC2.w/. So there exists an E�

n -path
.w.0/; : : : ; w.LC 2// satisfying

w.0/ D w and w0
D w.LC 2/:

By Lemma A.1,

jf .w/ � f .w0/jp � .LC 2/p�1
LC1X
iD0

jf .w.i// � f .w.i C 1//jp

� .LC 2/p�1Enp .fn/:

On the other hand, since zEnp .fn/ � C�, Assumption 3.2 implies

Enp .fn/ � .�p;n�1;1/
�1C� � c2EM�;p;n�1;1C� � .c2/

2˛n�1C�:

Thus we have
jJnfn.x/ � Jnfn.y/j � c˛

n
p .C�/

1
p : (3.9)

Making use of (3.8) and (3.9), we see that

jJnfn.x/ � Jnfn.y/j � C�L.d.x; y//
�
p .C�/

1
p C c˛

n
p .C�/

1
p

for any x; y 2 K. Applying Lemma D.1 with X D K, Y D R, ui D Jifi , we obtain
the desired result.
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Definition 3.11. Define PnWL1.K;�/! `.Tn/ by

.Pnf /.w/ D
1

�.w/

Z
Kw

f d�

for any n;m � 1. For f 2 `.Tk/, we define

Pnf D PnJkf :

The next lemma is one of the keys to the construction of a p-energy. A counterpart
of this fact has already been used in Kusuoka–Zhou’s construction of Dirichlet forms
on self-similar sets in [36].

Lemma 3.12. Under Assumption 3.2, there exists C > 0 such that for any n;m � 1

and f 2 L1.K;�/ [ .
S
k�1 `.Tk//,

C zEnp .Pnf / �
zEnCmp .PnCmf /: (3.10)

In particular,

C sup
n�0

zEnp .Pnf / � lim
n!1

zEnp .Pnf / � lim
n!1

zEnp .Pnf / � sup
n�0

zEnp .Pnf / (3.11)

for any f 2 L1.K;�/.

Remark. This lemma holds without (3.2).

Proof. Note that Pnf D Pn;m.PnCmf /. Let N � J be a covering of .Tn; E�
n / with

covering numbers .NT ; NE /. By Lemma 2.27,

Enp .Pnf / � c2.27�p;m;nEnCmp .PnCmf /:

Hence
1

�p;n�1;1
zEnp .Pnf / � c2.27

�p;m;n

�p;nCm�1;1

zEnCmp .PnCmf /:

By Lemma 3.6, we have (3.10).

By virtue of the last lemma, we have a proper definition of the domain Wp of
a p-energy given in Theorem 3.21 and its semi-norm Np .

Lemma 3.13. Define

Wp
D

®
f j f 2 Lp.K;�/; sup

n�1

zEnp .Pnf / < C1
¯
;

and
Np.f / D sup

n�1

zEnp .Pnf /
1
p
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for f 2 Wp . Then Wp is a normed linear space with norm k � kp;� C Np.�/, where
k � kp;� is the Lp-norm. Moreover, for any f 2 Wp , there exists f� 2 C.K/ such that
f .x/D f�.x/ for �-a.e. x 2K. In this way, Wp is regarded as a subset of C.K/ and

jf .x/ � f .y/jp � C�L.d.x; y//
�Np.f /

p (3.12)

for any f 2 Wp and x; y 2 K, where �L was introduced in Proposition 3.8. In par-
ticular, Np.f / D 0 if and only if f is constant on K.

If no confusion may occur, we write k � kp in place of k � kp;� hereafter.
In fact, .Wp; k � kp C Np.�// turns out to be a Banach space by Lemma 3.16.

Proof. Note that
zEnp .f C g/

1
p � zEnp .f /

1
p C zEnp .g/

1
p

and so zEnp .�/
1
p is a semi-norm. This implies that Np.�/ is a semi-norm of Wp .

For f 2 Wp , by Lemma 3.10, there exist ¹nkºk�1 and f� 2 C.K/ such that

kJnkPnkf � f�k1 ! 0

as k ! 1 and

jf�.x/ � f�.y/j
p
� C�L.d.x; y//

� lim
n!1

Enp .Pnf /:

Since
R
Kw

Pnkfd�!
R
Kw

f� d� as k ! 1, it follows that
R
Kw

fd� D
R
Kw

f� d�

for any w 2 T . Hence f D f� for �-a.e. x 2 K. Thus we identify f� with f and so
f 2 C.K/. Moreover, (3.12) holds for any x; y 2 K. By (3.12), Np.f / D 0 if and
only if f is constant on K.

We now examine the properties of the normed space .Wp; k � kp C Np.�//. The
intermediate goals are to show its completeness (Lemma 3.16) and that it is dense
in C.K/ with respect to the supremum norm (Lemma 3.19).

Lemma 3.14. Suppose that Assumption 3.2 holds. The identity map

I W .Wp; k � kp C Np.�//! .C.K/; k � k1/

is continuous.

Proof. Let ¹fnºn�1 be a Cauchy sequence in .Wp; k � kp C Np.�//. Fix x0 2 K and
set gn.x/ D fn.x/ � fn.x0/. Then

jgn.x/ � gm.x/j D j.fn.x/ � fm.x// � .fn.x0/ � fm.x0//j

� C�L.d.x; x0//
�
pNp.fn � fm/
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for any x 2 K and n; m � 1. Thus ¹gnºn�1 is a Cauchy sequence in C.K/ with
the norm k � k1, so that there exists g 2 C.K/ such that kg � gnk1 ! 0 as n! 1.
On the other hand, since ¹fnºn�1 is a Cauchy sequence of Lp.X;�/, there exists f 2

Lp.X; �/ such that kfn � f kp ! 0 as n! 1. Thus fn.x0/ D fn � gn converges
as n! 1 in Lp.K;�/. Let c be its limit. Then f D g C c in Lp.K;�/. Therefore,
f 2 C.K/ and kfn � f k1 ! 0 as n! 1.

Define xWp as the completion of .Wp;k � kpCNp.�//. Then the map I is extended
to a continuous map from xWp ! C.K/, which is denoted by I as well for simplicity.

Lemma 3.15 (Closability). Suppose that Assumption 3.2 holds. The extended map
I W xWp ! C.K/ is injective. In particular, xWp is identified with a subspace of C.K/.

Proof. Let ¹fnºn�1 be a Cauchy sequence in .Wp; k � kp C Np.�//. Suppose that
limn!1 kfnk1 D 0. Note that

zEkp .Pkfn � Pkfm/ � sup
l�1

zE lp.Plfn � Plfm/ D Np.fn � fm/
p

for any k; n;m � 1. Hence, for any " > 0, there exists N 2 N such that

zEkp .Pkfn � Pkfm/ � "

for any n;m � N and k � 1. As kfmk1 ! 0 as m! 1, we see that

zEkp .Pkfn/ � "

for any n � N and k � 1 and hence Np.fn/
p � " for any n � N . Thus, Np.fn/! 0

as n! 1, so that fn ! 0 in Wp as n! 1.

Lemma 3.16. Suppose that Assumption 3.2 holds. Then

xWp
D Wp:

Proof. Let ¹fnºn�1 be a Cauchy sequence of Wp and let f be its limit in xWp . It fol-
lows that kf � fnk1 ! 0 as n! 1. Using the same argument as in the proof of
Lemma 3.15, we see that for sufficiently large n,

C zEkp .Pkfn � Pkf / � "

for any k � 1. Since

zEkp .Pkf /
1
p � zEkp .Pkf � Pkfn/

1
p C zEkp .Pkfn/

1
p ;

it follows that supk�1 zEkp .Pkf / <1 and hence f 2 Wp .
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Lemma 3.17. Suppose that Assumption 3.2 holds.

(1) Let ¹nkºk�1 be a monotonically increasing sequence of N. Suppose that
fnk 2 `.Tnk / for any k � 1, that supk�1 zE

nk
p .fnk / <1 and that there exists

f 2 C.K/ such that kJnkfnk � f k1 ! 0 as k ! 1. Then f 2 Wp .

(2) Let f; g 2 Wp . Then f �g 2 Wp .

Proof. (1) Set C1 D supk�1 zE
nk
p .fnk /. By (3.10), if n � nl , then

C zEnp .Pnfnl / �
zEnlp .fnl / � C1:

Letting l ! 1, we obtain
C zEnp .Pnf / � C1

for any k � 1. This implies f 2 Wp .
(2) For any '; 2 `.Tn/,

Enp .'� / D
1

2

X
.w;v/2E�

n

j'.w/ .w/ � '.v/ .v/jp

� 2p�1
1

2

X
.w;v/2E�

n

.j'.w/jpj .w/ �  .v/jp C j'.w/ � '.v/jpj .v/jp/

� 2p�1.k'kp1Enp .'/C k kp1Enp . //:

Hence if hn D Pnf �Png, then

zEnp .hn/ � 2p�1
�
kf kp1

zEnp .Pnf /C kgkp1
zEnp .Png/

�
:

Since f; g 2 Wp , we see that supn�1 zEnp .hn/ <1. Moreover, kJnhn � fgk1 ! 0

as n! 1. Using (1), we conclude that fg 2 Wp .

Lemma 3.18. Suppose that Assumption 3.2 holds. There exist a monotonically in-
creasing sequence ¹mj ºj2N and h�M�;w

; '�
M�;w

2 Wp for w 2 T such that

(a) For any w 2 T ,

lim
j!1

kJmj h
�
M�;w;mj�jwj

� h�M�;w
k1

D lim
j!1

kJmj '
�
M�;w;mj�jwj

� '�
M�;w

k1 D 0;

where h�M�;w;m
and '�

M�;w;m
are defined in Definition 2.20. For negative val-

ues of m, we formally define h�
M�:w;k�jwj

D Pkh
�
M�;w;0

and '�
M�;w;k�jwj

D

Pk'
�
M�;w;0

for k D 0; 1; : : : ; jwj.

(b) ¹ zE
mj
p .h�

M�;w;mj�jwj
/ºj�1 and ¹ zE

mj
p .'�

M�;w;mj�jwj
/ºj�1 converge as j!1.
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(c) Set UM .w/ D
S
v2�M .w/

Kw . For any w 2 T , h�M�;w
WK ! Œ0; 1� and

hM�;w.x/ D

´
1 if x 2 Kw ,

0 if x … UM�
.w/.

(d) For any w 2 T , '�
M�;w

WK ! Œ0; 1�, supp.'�
M�;w

/ � UM�
.w/, and

'�
M�;w

.x/ � .L�/
�M�

for any x 2 Kw . Moreover, for any n � 1,X
w2Tn

'�
M�;w

� 1:

(e) For any w 2 T and x 2 K,

'�
M�;w

.x/ D
h�M�;w

.x/P
v2Tjwj

h�M�;v
.x/

:

Remark. The family ¹'�
M�;w

ºw2Tn is a partition of unity subordinate to the covering
¹UM�

.w/ºw2Tn .

Proof. For ease of notation, write '�
w;m D '�

M�;w;m
and h�w;m D h�M�;w;m

. By Lem-
ma 2.19, (3.1) and Lemma 3.6, we see that

zE jwjCm
p .'�

w;m/ � ..L�/
2MC1

C 1/p�p;jwjCm�1;1EM;p;m.w; Tjwj/

� C�p;jwjCm�1;1�
�1
p;m;jwj

� C 0�p;jwj�1;1

for any w 2 T and m � 0. Similarly,

zE jwjCm
p .h�w;m/ � C 0�p;jwj�1;1:

Hence Lemma 3.10 shows that, for each w, there exists ¹nkºk!1 such that the
sequence ¹JjwjCnkh

�
w;nk

ºk�1 (resp. ¹JjwjCmj '
�
w;nk

ºk�1) converges uniformly as
k ! 1. Let h�w (resp. '�

w ) be its limit. Lemma 3.17 (1) implies that h�w 2 Wp and
'�
w 2 Wp . By the diagonal argument, we choose ¹mj ºj�1 such that (a) and (b)

hold. Statements (c), (d) and (e) are straightforward from the properties of h�w;m
and '�

w;m.

Lemma 3.19. Under Assumption 3.2, Wp is dense in .C.K/; k � k1/.

Proof. Choose xw 2 Kw for each w 2 T . For f 2 C.K/, define

fn D

X
w2Tn

f .xw/'
�
M�;w

:

Then by Lemma 3.18, it follows that kfn � f k1 ! 0 as n!1. Hence Wp is dense
in C.K/.
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Definition 3.20. For f 2 LP .K;�/, define xf by

xf .x/ D

8̂̂<̂
:̂
1 if f .x/ � 1;

f .x/ if 0 < f .x/ < 1,

0 if f .x/ � 0

for x 2 K.

Now we construct the p-energy yEp as a �-cluster point of zEnp .Pn � /. The use of
�-convergence in the construction of Dirichlet forms on self-similar sets has been
around for some time. See [13, 20] for example.

Theorem 3.21. Suppose that Assumption 3.2 holds. Then there exist yEpW Wp !

Œ0;1/ and c > 0 such that

(a) . yEp/
1
p is a semi-norm on Wp and

cNp.f / � yEp.f /
1
p � Np.f / (3.13)

for any f 2 Wp .

(b) For any f 2 Wp , xf 2 Wp and

yEp. xf / � yEp.f /:

(c) For any f 2 Wp ,

jf .x/ � f .y/jp � c�L.d.x; y//
� yEp.f /:

In particular, for p D 2, . yE2;W2/ is a regular Dirichlet form on L2.K; �/ and the
associated non-negative self-adjoint operator has compact resolvent.

Property (b) in the above theorem is called the Markov property.

Theorem 3.22 (Shimizu [41]). Suppose that Assumption 3.2 holds. Then the Banach
space .Wp; k � kp C yEp.�// is reflexive and separable.

Remark. In [41], the reflexivity and separability are shown in the case of the planar
Sierpiński carpet. His method, however, can easily be extended to our general case
and one has the above theorem.

Proof of Theorem 3.21. Define yEnp WL
p.K; �/ ! Œ0;1/ by yEnp .f / D

zEnp .Pnf / for
f 2 Lp.K; �/. Then by [12, Proposition 2.14], there exists a �-convergent subse-
quence ¹ yE

nk
p ºk�1. Define yEp as its limit. Let f 2 Wp . Then

yEp.f / � lim
k!1

yEnkp .f / � sup
n�1

zEnp .Pnf / D Np.f /
p:
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Let ¹fnk ºk�1 be a recovering sequence for f , i.e., kf � fnkkp ! 0 as k ! 1 and
limk!1

yE
nk
p .fnk / D Ep.f /. By (3.12), if nk � n, then

C zEnp .Pnfnk / �
zEnkp .Pnkfnk / D

yEnkp .fnk /:

Letting k ! 1, we obtain

C zEnp .Pnf / �
yEp.f /;

so that
CNp.f /

p
� yEp.f /:

The semi-norm property of yEp.�/
1
p is straightforward from basic properties of �-

convergence.
Next we show that yEp. xf / � yEp.f / for any f 2 Wp . Define

Qnf D

X
w2Tn

.Pnf /.w/�Kw : (3.14)

Then Z
K

jf .y/ �Qnf .y/j
p�.dy/

�

X
w2Tn

Z
Kw

� 1

�.w/

Z
Kw

jf .y/ � f .x/j�.dx/
�p
�.dy/

�

X
w2Tn

1

�.w/

Z
Kw�Kw

jf .y/ � f .x/jp�.dx/�.dy/:

This shows that if f 2 C.K/, then kf �Qnf kp ! 0 as n! 1. Let ¹fnk ºk�1 be
a recovering sequence for f . Since

k xf �Qngkp � k xf �Qnf kp C kQnf �Qngkp

� kf �Qnf kp C kQnf �Qngkp

� kf �Qnf kp C kf � gkp;

it follows that k xf �Qnkfnkkp ! 0 as n! 1. Then

yEp. xf / � lim
k!1

yEnkp .Qnkfnk / D lim
k!1

zEnkp .Pnkfnk /

� lim
k!1

zEnkp .Pnkfnk / D lim
k!1

yEnkp .fnk / D
yEp.f /:

Finally for p D 2, since a �-limit of quadratic forms is a quadratic form, we see
that . yE2;W2/ is a regular Dirichlet form on L2.K;�/. Since the inclusion map from
.W2; k � k2 C Np.�// to .C.K/; k � k1/ is a compact operator, by [17, Exercise 4.2],
the non-negative self-adjoint operator associated with .E2;Wp/ has compact resol-
vent.
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For the case p D 2, due to the above theorem, W2 is separable. Hence, we may
replace �-convergence by point-wise convergence as seen in the following theorem.
This enables us to obtain the local property of our Dirichlet form, which turns out to
be a resistance form as well.

Theorem 3.23. Suppose that Assumption 3.2 holds for pD 2. Then there exists a sub-
sequence ¹mkºk�1 such that ¹Emk2 .Pmkf; Pmkg/ºk�1 converges as k ! 1 for any
f; g 2 W2. Furthermore, define E.f; g/ as its limit. Then .E;W2/ is a local regular
Dirichlet form on L2.K;�/, and there exist c1; c2; c3 > 0 such that

c1N2.f / � E.f; f /
1
2 � c2N2.f / (3.15)

and
jf .x/ � f .y/j2 � c3�L.d.x; y//

�E.f; f / (3.16)

for any f 2 W2 and x; y 2 K. In particular, .E;W2/ is a resistance form on K and
the associated resistance metric R gives the original topology O of K.

Proof. Existence of ¹mkºk�1: By Lemma 3.21, the non-negative self-adjoint oper-
ator H associated with the regular Dirichlet form . yE2;W

2/ has compact resolvent.
Hence there exist a complete orthonormal basis ¹'iºi�1 of L2.K; �/ and ¹�iºi�1 �

Œ0;1/ such that H'i D �i'i and �i � �iC1 for any i � 1 and limi!1 �i D 1.
Note that ¹ 'ip

1C�i
ºi�1 is a complete orthonormal system of .W2; .�; �/2;� C yEp.�; �//.

Hence setting

F D ¹ai1 i1 C � � � C aim im j m � 1; i1; : : : ; im � 1; ai1 ; : : : ; aim 2 Qº;

we see that F is a dense subset of Wp . For any f; g 2 F , since

j zEn2 .Pnf; Png/j �
zEn2 .Pnf /

1
2 zEn2 .Png/

1
2 � N2.f /N2.g/;

some subsequence of ¹ zEn2 .Pnf; Png/ºn�1 is convergent. Since F � F is countable,
the standard diagonal argument shows the existence of a subsequence ¹mkºk�1 such
that zE

mk
2 .Pmkf; Pmkg/ converges as k ! 1 for any f; g 2 F . Define E2.f; g/ as

its limit. For f;g 2 W2, choose ¹fiºi�1 � F and ¹giºi�1 2 F such that fi ! f and
gi ! g as i ! 1 in W2. Write zEk.u; v/ D zE

mk
2 .Pmku;Pmkv/ for ease of notation.

Then

j zEk.f; g/ � zEl.f; g/j � j zEk.f; g/ � zEk.fi ; g/j C j zEk.fi ; g/ � zEk.fi ; gi /j

C j zEk.fi :gi / � zEl.fi ; gi /j C j zEl.fi ; gi / � zEl.fi ; g/j

C j zEl.fi ; g/ � zEl.f; g/j

� j zEk.fi ; gi / � zEl.fi ; gi /j C 2N2.fi /N2.g � gi /

C 2N2.f � fi /N2.g/:
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This shows that ¹ zEk.f;g/ºk�1 is convergent as k!1. The equivalence between N2

and E , (3.15), is straightforward.

Strongly local property: Let f;g 2 Wp . Assume that there exists an open set U � K

such that supp.f / � U and gjU is a constant. Consequently, for sufficiently large k,
zEk.f; g/ D 0, so that E.f; g/ D 0.

Markov property: By (3.13) and (3.15),

0 � E.f; f / � yE2.f; f /

for any f 2 W2. Since . yE2;W2/ is a regular Dirichlet form, by [16, Theorem 2.4.2],
we see that E.f; g/ D 0 whenever

f; g 2 W2 and f .x/g.x/ D 0

for �-a.e. x 2 K. Now by the same argument as in the proof of [7, Theorem 2.1], we
have the Markov property.

Resistance form: Among the conditions for a resistance form in [32, Definition 3.1],
(RF1), (RF2), (RF3), and (RF5) are immediate from what we have already shown.
(RF4) is deduced from (3.16). In fact, (3.16) yields that

R.x; y/ � c�L.d.x; y//
�

for any x; y 2 K. Assume that R.xn; x/! 0 as n! 1 and limn!1 d.x; xn/ > 0.
Note that the collection of

U
hr
L .x; rn/ D

[
w2TnWx2Kw

� [
v2�L.w/

Kv

�
for n � 1 is a fundamental system of neighborhoods of x by [34, Proposition 2.3.9].
Therefore, there exist n� 1 and ¹xmk ºk�1 such that xmk … U

hr
L .x; rn/ for any k � 1.

Choose w 2 Tn such that x 2 Kw . Then xmk belongs to Kv for some v 2 �L.w/
c .

So,
h�L;w.x/ D 1 and h�L;w.xmk / D 0:

Hence
R.xmk ; x/ �

1

E.h�L;w/

for any k � 1. This contradicts the fact that R.x; xmk / ! 0 as k ! 1. Thus we
have shown d.xn; x/! 0 as n! 1. Hence the topology induced by the resistance
metric R is the same as the original topology O.
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3.2 Construction of p-energy: p � dimAR.K; d/

In this section, we will consider how much we can salvage the results in the pre-
vious section if p � dimAR.K; d/. Honestly, what we will have in this section is
far from satisfactory mainly because we have no proof of the conjecture saying that
WP \ C.K/ is dense in C.K/ with respect to the supremum norm. In spite of this,
we present what we have now for future study.

Throughout this section, we assume (3.1) and fix a covering system J.
For p < dimAR.K; d/, a choice of a covering system really matters. As we

have observed in Proposition 2.31, if ¹w; vº 2 J and Kw \ Kv is a single point,
then �J

p;m;jwj
� 1 for any m � 1. However, since we assume (3.1), this yields that

EM�;p;m;jwj � c2 for any m, so that limm!1.EM�;p;m/
1
m � 1. As long as

p � dimAR.K; d/;

this inequality does not cause any inconsistency with Proposition 3.3. On the con-
trary, if p < dimAR.K; d/, then this seems troublesome. For example, in the case
of the unit square, a direct calculation shows that limm!1.EM�;p;m/

1
m > 1 for any

p < dimAR.Œ�1; 1�2/ D 2. A similar situation is expected in other cases including
the Sierpiński carpet. So, for p < dimAR.K; d/, one should carefully choose J to
avoid a pair sharing only a single point. In the case of the unit square, J` given in
Example 2.32 works for p < 2.

As in the previous section, we use �p;m (resp. �p;m;n) in place of �J
p;m (reps.

�
J
p;m;n/.

Under (3.1), it is straightforward to see that Lemma 3.12 still holds. Replacing
.C.K/; k � k1/ by .Lp.K; �/; k � kp/ in the statements and proofs of Lemmas 3.15
and 3.16, we have the following statement.

Lemma 3.24. Wp is a Banach space with the norm k � kp C Np.�/.

Lemma 3.25. Let p > 1. If ¹fnºn�1 is a bounded sequence in the Banach space
Wp , then there exist ¹nkºk�1 and f 2 Wp such that f is the weak limit of ¹fnk ºk�1
in Lp.K;�/,

kf kp � sup
n�1

kfnkp and Np.f / � sup
n�1

Np.fn/:

Proof. Since Lp.K; �/ is reflexive, ¹fnºn�1 contains a weakly convergent sub-se-
quence ¹fnk ºk�1. (See [46, Section V.2].) Let f 2 Lp.K;�/ be its weak limit. Since
the map f ! .Pmf /.w/ is continuous, we see that Pmfnk ! Pmf as k ! 1 and
hence

zEmp .Pmf / D lim
k!1

zEmp .Pmfnk / � sup
k�1

Np.fnk /
1
p :
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Lemma 3.26. Let p > 1. Suppose that fn 2 `.Tn/ for any n � 1 and that

sup
n�1

kJnfnkp <1 and sup
n�1

zEnp .fn/ <1:

Then there exist a subsequence ¹nkºk�1 and f 2 Wp such that f is the weak limit
of ¹Jnkfnk ºk�1 in Lp.K;�/ and

kf kp � sup
n�1

kJnfnkp and CNp.f /
p
� sup
n�1

zEnp .fn/:

Proof. Since Lp.K; �/ is reflexive, ¹Jnfnº possesses a weak convergent sub-se-
quence ¹Jnkfnk ºk�1. (See [46, Section V.2].) Let f 2 Lp.K; �/ be its weak limit.
Lemma 3.12 shows that if nk � m, then

C zEmp .PmJnkfnk / �
zEnkp .PnkJnkfnk / D

zEnkp .fnk / � sup
n�1

zEnp .fn/:

Letting k ! 1, we see

C zEmp .Pmf / � sup
n�1

zEnp .fn/

for any m � 1. Thus f 2 Wp and CNp.f /
p � supn�1 zEnp .fn/.

Using this lemma, we have a counterpart of Lemma 3.18 as follows.

Lemma 3.27. There exist ¹h�wºw2T and ¹'�
wºw2T � Wp such that

(a) Set UM�
.w/ D

S
v2�M� .w/

Kv . For any w 2 T , h�w WK ! Œ0; 1� and

h�w.x/ D

´
1 if x 2 Kw ;

0 if x … UM�
.w/:

(b) For any w 2 T , '�
w WK ! Œ0; 1�, supp.'�

w/ � U.w/, and

'�
w.x/ � .L�/

�M�

for any x 2 Kw . Moreover, for any n � 1,X
w2Tn

'�
w � 1:

(c) For any w 2 T and x 2 K,

'�
w.x/ D

h�w.x/P
v2Tjwj

h�v.x/
:

By the above lemma, we have the next statement.
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Lemma 3.28. Wp is dense in Lp.K;�/.

Finally, we have the following result on the construction of a p-energy.

Lemma 3.29. There exist yEpWW
p ! Œ0;1/ and c1; c2 > 0 such that yE

1
p
p is a semi-

norm,
c1Np.f /

p
� yEp.f / � c2Np.f /

p and yEp. xf / � yEp.f /

for any f 2 Wp . In particular, for p D 2, . yE2;W2/ is a Dirichlet form on L2.K;�/.

3.3 Conductive homogeneity

In this section, we study the notion of conductive homogeneity, namely, its conse-
quence and how one can show it.

Throughout this section, we suppose that Assumptions 2.6, 2.7, 2.10 and 2.12
hold. Moreover, we fix a covering system J with covering numbers .NT ; NE /. As in
the previous sections, we omit J in the notations of �J

p;m;n and �J
p;m and use �p;m;n

and �p;m, respectively. In the end, we will see by Theorem 3.33 that the conductive
homogeneity is solely determined by the conductance constants and a choice of J

makes no difference.
The first theorem explains the reason why it is called “homogeneity”.

Theorem 3.30. A metric space A is p-conductively homogeneous if and only if there
exist c1; c2 > 0 and � > 0 such that

c1�
�m

� EM�;p;m.v; Tn/ � c2�
�m; (3.17)

and
c1�

m
� �p;m;n � c2�

m

for any m � 0, n � 1 and v 2 Tn.

An immediate corollary of this theorem is Theorem 3.5.

Corollary 3.31 (Theorem 3.5). IfK is p-conductively homogeneous, then (3.1) holds.

Proof of Theorem 3.30. Assume that K is p-conductively homogeneous. Then by
formula (2.18), there exists c1 > 0 such that

c1 � �p;mEM�;p;m:

Also by Lemma 2.34, there exists c2 > 0 such that

�p;mCn � c2�p;m�p;n (3.18)
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for any n;m � 0. Moreover, by (2.14), there exists c3 > 0 such that

EM�;p;mCn � c3EM�;p;mEM�;p;n

for any n;m � 0. These inequalities along with (3.3) shows that there exist c4; c5 > 0
such that

c4�p;m�p;n � �p;mCn � c5�p;m�p;n and c4 � �p;mEM�;p;m � c5

for any m; n � 0. From these, there exist c6; c7 > 0 and � > 0 such that

c6�
m
� �p;m � c7�

m and c6�
m
� .EM�;p;m/

�1
� c7�

m

for any m � 0. Hence for any w 2 T and n � 1,

c6�
m
� .Ep;m/

�1
� .EM�;p;m.w; Tn//

�1 and �p;m;n � c7�
m:

Making use of (2.18), we see that there exists c8 > 0 such that

c6�
m
� .EM�;p;m.w; Tn//

�1
� c8�p;m;n � c8c7�

m

for any m � 0, n � 1 and w 2 Tn.
The converse direction is straightforward.

Next, we show another consequence of conductive homogeneity. For simplicity,
we set Ep;m.u; v; S

k.w// D Ep;m.¹uº; ¹vº; S
k.w//. (In other words, we deliberately

confuse u with ¹uº.)

Lemma 3.32. If K is p-conductively homogeneous, then there exists c3.32 > 0, de-
pending only on p, L�, N�, M�, k, NT , NE , such that

EM�;p;m � c3.32Ep;m.u; v; S
k.w//

for any m � 0, w 2 T and u; v 2 Sk.w/ with u ¤ v.

Proof. By (2.16), we see that

Ep;0.u; v; S
k.w// � c2.27�p;mEp;m.u; v; S

k.w//:

Using Theorem 6.3, it follows that

cE.L�; .N�/
k; p/ � Ep;0.u; v; S

k.w// � c2.27�p;mEp;m.u; v; S
k.w//:

Now Theorem 3.30 suffices.

When p > dimAR.K; d/, the converse direction of the above lemma is actually
true.
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Theorem 3.33. Assume that there exist c > 0 and ˛ 2 .0; 1/ such that

EM�;p;m � c˛m (3.19)

for any m � 0. Then K is p-conductively homogeneous if and only if for any k � 1,
there exists c.k/ > 0 such that

EM�;p;m � c.k/Ep;m.u; v; S
k.w// (3.20)

for any m � 0, w 2 T and u; v 2 Sk.w/ with u ¤ v. In particular, under Assump-
tion 2.15, if p > dimAR.K; d/, then whether K is p-conductively homogeneous or
not is independent of neighbor disparity constants and hence a choice of a covering
system J.

The last part of the theorem justifies the name “conductive” homogeneity.
In fact, (3.19) is the same as (3.2). Recall that, by Proposition 3.3, (3.19) holds if

and only if p > dimAR.K; d/ under Assumption 2.15.
As was mentioned in the introduction, (3.20) is an analytic relative of the “knight

move” condition described in probabilistic terminologies in [36]. The name “knight
move” originated from the epoch-making paper [1] where Barlow and Bass con-
structed the Brownian motion on the Sierpiński carpet.

The proof of the “only if” part of the above theorem is Lemma 3.32. A proof of
the “if” part will be given in Chapter 5.

In the next chapter, we are going to give examples for which one can show p-
conductive homogeneity by Theorem 3.33.

In the rest of this section, we study asymptotic behaviors of the heat kernel
associated with the diffusion process induced by the Dirichlet form .E;W2/ under
Assumption 2.15. The next lemma shows that the associated resistance metric is bi-
Lipschitz equivalent to a power of the original metric.

Lemma 3.34. Suppose that Assumption 2.15 holds, p > dimAR.K; d/ and K is p-
conductively homogeneous. Let � be the same as in Theorem 3.30 and set �p D�

log�
log r .

Then there exist c1; c2 > 0 such that

c1d.x; y/
�p � sup

f 2Wp ; yEp.f /¤0

jf .x/ � f .y/jp

yEp.f /
� c2d.x; y/

�p (3.21)

for any x; y 2 K. In particular, if 2 > dimAR.K; d/, then

c1d.x; y/
�2 � R.x; y/ � c2d.x; y/

�2 (3.22)

for any x;y 2K, whereR.x;y/ is the resistance metric associated with the resistance
form .E;W2/.
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Proof. Since Emp .h
�
M�;w;m�jwj

/ D EM�;p;m�jwj.w; Tjwj/, we have

c1�
�mCjwj

� Emp .h
�
M�;w;m�jwj

/ � c2�
�mCjwj

by (3.17). This shows

c1�
jwj

� yEp.h
�
M�;w

/ � c2�
jwj:

Note that d is M�- adapted to hr by Assumption 2.15. Hence by [34, (2.4.1)],

c1d.x; y/ � ıM�
.x; y/ � c2d.x; y/ (3.23)

for any x; y 2 K. Choose n D nM�
.x; y/C 1. Let w 2 Tn satisfying x 2 Kw . Since

n > nM�
.x; y/, it follows that if v 2 Tn and y 2 Kv , then v … �M�

.w/. Hence

h�M�;w
.x/ D 1 and h�M�;w

.y/ D 0:

Therefore (3.4) and (3.23) yield

sup
f 2Wp ; yEp.f /¤0

jf .x/ � f .y/jp

yEp.f /
�

1

yEp.h
�
M�;w

/

� c.�p/
�n

� c0rnM� .x;y/�p � c00d.x; y/�p :

On the other hand in this case, �M�
.t/D t by (3.23). Hence Theorem 3.21 (c) implies

the other side of the desired inequality.

Due to the general theory of resistance forms in [32], once we have (3.22), it is
straightforward to obtain asymptotic estimates of the heat kernel.

Theorem 3.35. Suppose that Assumption 2.15 holds, 2 > dimAR.K; d/ and K is 2-
conductively homogeneous. Set �� D �2. Then there exists a jointly continuous hear
kernel p�.t; x; y/ on .0;1/ �K �K associated with the diffusion process induced
by the local regular Dirichlet form .E;W2/ on L2.K;�/. Moreover,

(1) There exist ˇ � 2, a metric �, which is quasisymmetric to d , and positive
constants c1, c2, c3, c4 such that

p�.t; x; y/ �
c1

�.B�.x; t
1
ˇ //

exp
�
�c2

��.x; y/ˇ
t

� 1
ˇ�1

�
(3.24)

for any .t; x; y/ 2 .0;1/ �K �K and

c3

�.B�.x; t
1
ˇ //

� p�.t; x; y/ (3.25)

for any y 2 B�.x; c4t
1
ˇ /.
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(2) Suppose that � is ˛H -Ahlfors regular with respect to the metric d . Set

ˇ� D �� C ˛H :

Then ˇ� � 2 and there exist c7; c8; c9; c10 > 0 such that

p�.t; x; y/ � c6t
�
˛H
ˇ� exp

�
�c7

�d.x; y/ˇ�
t

� 1
ˇ��1

�
(3.26)

for any .t; x; y/ 2 .0;1/ �K �K and

c9t
�
˛H
ˇ� � p�.t; x; y/ (3.27)

for any y 2 Bd .x; c10t
˛H
ˇ� /. In addition, suppose that d has the chain condi-

tion, i.e., for any x; y 2 K and n 2 N, there exist x0; : : : ; xn 2 K such that
x0 D x; xn D y and

d.xi ; xiC1/ �
Cd.x; y/

n
;

where the constant C > 0 is independent of x; y and n. Then there exist c11,
c12 > 0 such that

c11t
�
˛H
ˇ� exp

�
�c12

�d.x; y/ˇ�
t

� 1
ˇ��1

�
� p�.t; x; y/: (3.28)

The exponent ˛H above is in fact the Hausdorff dimension of .K; d/. The expo-
nents ˇ and ˇ� are called the walk dimensions.

Proof. We make use of [32, Theorems 15.10 and 15.11]. Since � has the volume
doubling property with respect to d , (3.22) shows that � has the volume doubling
property with respect toR as well. SinceK is connected, .K;R/ is uniformly perfect.
Moreover, since .E;W2/ has the local property, the annulus comparable condition
(ACC) holds by [32, Proposition 7.6]. Thus, (C1) of [32, Theorem 15.11] is verified
and so is (C3) of [32, Theorem 15.11]. Using [32, Theorem 15.11], we have (3.24).
Consequently, by [32, Theorem 15.10], we see (3.25). Thus we have shown the first
part of the statement. The fact that ˇ � 2, which is beyond the reach of [32, Theo-
rem 15.10], is due to [25]. See also [33, Theorem 22.2].

About the second part, assuming ˛H -Ahlfors regularity, i.e., (2.9), we see that

hd .x; s/ D s��C˛H D sˇ� ;

where hd .x; s/ is defined as

hd .x; s/ D sup
y2Bd .x;s/

R.x; y/ � �.Bd .x; s//:
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Hence following the flow of exposition of [32, Theorem 15.10], we have

g.s/ D sˇ� and ˆ.s/ D sˇ��1;

where g and ˆ appear in the statement of [32, Theorem 15.10]. Consequently, by
[32, Theorem 15.10], we obtain (3.26), (3.27) and (3.28). The fact that ˇ� � 2 can be
shown in the same way as we did for ˇ above.


