Chapter 3

Conductive homogeneity and its consequences

3.1 Construction of p-energy: p > dimy g (K, d)

In this section, we are going to construct a p-energy on K as a scaling limit of the
discrete counterparts &,’s step by step under Assumption 3.2, which consists of the
following two requirements:

(3.1) Neighbor disparity constants and (conductance constants) ™! have the same
asymptotic behavior.

(3.2) Conductance constants have exponential decay.

Under these assumptions, the p-energy ép is constructed in Theorem 3.21. Further-
more, in the case p = 2, we construct a local regular Dirichlet form in Theorem 3.23.
The question when Assumption 3.2 is fulfilled will be addressed in Section 3.3.
As in the previous sections, we continue to suppose that Assumptions 2.6, 2.7,
2.10 and 2.12 hold. Moreover, throughout this section, we fix p > 1.

Definition 3.1. For M > 1,m > 0 and n > 1, define

EM,pomn = Max Ey pm (v, Tr).
veTy

Remark. Theorem 6.3 shows that Exs p m.» is finite.

Assumption 3.2. Let § be a covering system. There exist ¢1,c3 > 0 and o € (0, 1)
such that
c1 =< 8M*,p,m,n01}i,m,n = 3.1
and
8M,k,p,m,n =< C2am (3.2)
foranym > 0,n > 1.
Hereafter in this section, we fix a covering system § with covering numbers
(N1, Ng) and use op s, (r€sp. 0p,,) in place of CT;Zm’n (resp. oim) for simplicity of
notations.

By [34, Theorems 4.7.6 and 4.9.1], we have the following characterization of (3.2)
under Assumption 2.15.

Proposition 3.3. Under Assumption 2.15,
im (6, pm)™ <1 ifandonlyif p > dimgr(K.d).
m—00

In particular, (3.2) holds if and only if p > dimggr(K, d).



Conductive homogeneity and its consequences 36

Note that since K is assumed to be connected, we have dimgg (K, d) > 1, so that
p>1

In the following definition, we introduce the principal notion of this paper called
conductive homogeneity. Due to Theorem 3.5, conductive homogeneity yields (3.1).

Definition 3.4 (Conductive homogeneity). Define

EMpm = sup  Empm(w, Tiy)).
weT, |lw|>1

A compact metric space K (with a partition { Ky, },,er and a measure ) is said to be
p-conductively homogeneous if

SUp 0p,mEM,,pm < OO. (3.3)
m=>0

Remark. Asin the case of Eus,p m.n, Em,p,m is always finite due to Theorem 6.3.

Remark. As we will see in Theorem 3.33, if p > dimggr (K, d), then the conductive
homogeneity is solely determined by the conductance constants. Consequently, it is
independent of a choice of a covering system &. So, in the case p > dimgr(K, d),
the covering system J . is good enough in the end.

Theorem 3.5. If K is p-conductively homogeneous, then (3.1) holds.

A proof of Theorem 3.5 will be provided in Section 3.3.
Under conductive homogeneity, it will be shown in Theorem 3.30 that there exist
c1,c3 > 0and o > 0 such that

c10™ <opmn <c20™ and 107" < Em, pm(V. Tn) <207

foranym > 1,n > 0 and v € T},. This is why we have given the name “homogeneity”
to this notion.

Now we start to construct a p-energy under Assumption 3.2. An immediate con-
sequence of Assumption 3.2 is the following multiplicative property of 6p m.x.

Lemma 3.6. There exist c1,co > 0 such that
C10p.mn+kOp,nk = Opnt+mk = C20pm n+kOp,n.k
foranyk > 1, andm,n > Q.
Proof. By (2.14), we have
8M,.<,p,n~|-m,k = CgM*,p,m,n—i—kgM*,p,n,k-
This along with (3.1) shows
C10p,mn+kOpn,k = Opn+m,k-
The other half of the desired inequality follows from Lemma 2.34. |

Next, we study some geometry associated with the partition { Ky, }yper-
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Definition 3.7. Let L > 1. Define

nr(x,y) = max{n | there exist w, v € T, such that

x € Ky, ye Kyandv € I'p(w)}.
Furthermore, fix 7 € (0, 1) and define
8§r.(x,y) = &), (3.4)

Recall that 4,: T — (0, 1] is given as h,(w) = r'®!. Since A?r =T,ifr" ! >
s > r", where
Al ={w |weT, h(rw)) >s>h(w)}

8, is nothing but 82’ defined in [34, Definition 2.3.8].
By [34, Proposition 2.3.7] and the discussions in its proof, we have the following
fact.

Proposition 3.8. Suppose that d is a metric on K giving the original topology
of K. Let L > 1. There exists a monotonically non-decreasing function np: [0, 1] —
[0, 1] satisfying lim; | ny(t) = 0 and 6p.(x,y) < nr(d(x,y)) forany x,y € K.

Proof. Define

A ={vlveAlr xek) Ures= |J K

veA (x)

and
hr hy
Ures) = | Uy (y.9)
yeU(?" (x,s)

for s € (0, 1] and x € K. First we show that for any & > 0, there exists y, > 0 such
that 87 (x, y) < & whenever d(x, y) < y.. If this is not the case, then there exist
g0 > 0, {xy}n>1 and {y,}n>1 such that d(x,, y,) < % and &7, (xn, ) > €o. Since
K is compact, choosing an adequate subsequence {ny }x— o, We see that there exists
x € K such that x,, — x and y,, — x for k — oo. By [34, Proposition 2.3.7],
Ug” (x, £2) is a neighborhood of x. Hence both x,, and y,, belong to U(f" (x,22)
for sufficiently large k. So, there exist w,v € Aif(: /2.0 (x) such that x,, € Ky, and
Vni € Ky. Since x € Kyy N K, we see that y € Ulhr(x, £0), so that 87 (X, Yny) < 2.
This contradicts the assumption that 87 (x,, y,) > €o. Thus our claim at the beginning
of this proof is verified. Note that with a modification if necessary, we may assume
that y, is monotonically non-decreasing as a function of ¢ and lim, ¢ y, = 0. Define

nL(t) = infle | e > 0, < y,}.

Now it is routine to see that 7 is the desired function. |
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Let T, = {w(1),..., w(l)}, where | = #(T}). Inductively we define K, by

Kya) = Kway and Ky = w(k+l)\( U Kw(z))
i=1,.

Note that (2.4) implies that w(By,) = 0 for any w € T,, and hence we have
Ky 2 0y and u(Ky\Kyp) =0
for any w € T},. The latter equality is due to (2.4). Now define J,,: £(T,,) — RX by
Inf =" fwig, (3.5)

weTy

Since K,, is a Borel set, J, / is u-measurable for any f € £(T}). The definitions
of Ew and J, depend on an enumeration of T, but J, f stays the same in the u-a.e.
sense regardless of an enumeration.

Define

&3 (f) = opm-116] (/). (3.6)
N The next lemma yields the control of the difference of values of J, f through
&y (f).
Lemma 3.9. Suppose that Assumption 3.2 holds. There exists C > 0 such that for
anyn > 1, f €e {(T,)and x,y € K,

| ))@) = Un )] < CaBER ()7,
where m = min{nr (x,y),n}.

Proof. Let m = min{ny (x, y), n}. Then there exist w, w’ € T, v € S" ™ (w) and
u e S"™(w')suchthat x € Ky, y € Ky, (Jo f)(x) = f(v), (J», f)(y) = f(u) and
w' € T 42(w). By (2.19),

1£@) = Ol < ¢ Y Opnomim+i) 7 ELS)T. (3.7)
i=0

where ¢ = max{2(N«)?, Ng(L + 2)}. Lemma 3.6 shows that
C10p,m+i—1,10p.n—m—i,m+i = Op.n—1,1-
Combining this with Assumption 3.2, we obtain
. < m-+i
Opn—m—i,m+i = C3Q Op,n—1,1-

Using (3.7), we see
1) = f()] < caa?ER(f)7. "
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By this lemma, the boundedness of ég (fn) gives a kind of equicontinuity to the
family { f,}»>1 and hence an analogue of Arzela—Ascoli theorem, which we present
in Appendix 6.3, shows the existence of a uniform limit as follows.

Lemma 3.10. Suppose that Assumption 3.2 holds. Define t = llgi‘: Let f,, € £(Ty)
foranyn > 1. If

sup é;(fn) <oo and sup|(fu)T,| < 00,
n>1 n>1

then there exist a subsequence {ny }x>1 and f € C(K) such that {J,, fn,} converges
uniformly to f as k — oo, &,* (fny) is convergent as k — oo and

F@) = FOIP = Co(d(x, y)" Jim &3 (fo,),
where ng was introduced in Proposition 3.8.

Proof. Set Cx = sup,>, gl’,‘(fn). By Lemma 3.9, if n > np (x, y), then

ny(

[ fa0) = Jn fa )] < Ca™™ 5 (CF < Cop(d(x.y)F(C)F.  (3.8)

In the case n < ny(x, y), there exist w, w’ € T, such that x € Ky, J, fu(x) =
f(w),y € Ky, Jpfu(w') = f(w') and w’ € I'z42(w). So there exists an E, -path
(w(0), ..., w(L + 2)) satistying

w0)=w and w = w(L +2).

By Lemma A.1,

L+1

|fw) = f@NIP < (L +2)P71 Y | fw@) = f(wii + D)

i=0
< (L+2)P7'€)(fo)-
On the other hand, since g;} (fn) < Cx, Assumption 3.2 implies

€, (fu) = (Ul”n—lyl)_lc* < 26M, pn-1,1Cx = (c2)?a™1C,.

Thus we have ., .
| Jn fu(x) = Jn fu(P)| < car (Cy)7. (3.9

Making use of (3.8) and (3.9), we see that
T 1 n 1
[Jn fn(x) = Jn fn(P)] = Cnr(d(x, 9)) 7 (Cx) 7 + car (Cy) 7

forany x, y € K. Applying Lemma D.1 with X = K, Y =R, u; = J; f;, we obtain
the desired result. |
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Definition 3.11. Define P,: L'(K, u) — £(T,) by
1
(P = | fap
p(w) Jk,
forany n,m > 1. For f € £(Ty), we define

Pnf:Panf~

The next lemma is one of the keys to the construction of a p-energy. A counterpart
of this fact has already been used in Kusuoka—Zhou’s construction of Dirichlet forms
on self-similar sets in [36].

Lemma 3.12. Under Assumption 3.2, there exists C > 0 such that for any n,m > 1
and f € LY(K, ) U (Uks1 €(Tr)),

CEN(Puf) < EXT™(Pusm [)- (3.10)
In particular,

Csup M (P, f) < lim E"(P, f) < Tim EM(P,f) <sup&'(P,f)  (3.11)
n—oo n>0

n>0 n—o00
forany f € LY(K, ).
Remark. This lemma holds without (3.2).

Proof. Note that P, f = Py m(Prim f). Let N C ¢ be a covering of (T,, E,;) with
covering numbers (N7, Ng). By Lemma 2.27,

gg(Pnf) < C2.270p,m,n8;+m(Pn+mf)~

Hence

~ o} ~
E,(Pnf) < O e Ex" (Putm f).
Op,n—1,1 Opn+m—1,1

By Lemma 3.6, we have (3.10). ]

By virtue of the last lemma, we have a proper definition of the domain W? of
a p-energy given in Theorem 3.21 and its semi-norm N,.

Lemma 3.13. Define

WP ={f | f € LP(K.p).sup & (Puf) < +oo},
n>1

and

Mm=g@wﬂ%
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for f € WP Then WP is a normed linear space with norm || - ||p.,. + Np(-), where
|| - Ip, . is the LP -norm. Moreover, for any f € WP, there exists fi« € C(K) such that
f(x) = fu(x) for p-a.e. x € K. In this way, WP is regarded as a subset of C(K) and

|f(x) = fODIP = Cnr(d(x, y)* Np(f)P (3.12)

forany f € WP and x,y € K, where n, was introduced in Proposition 3.8. In par-
ticular, Np(f) = 0 ifand only if f is constant on K.

If no confusion may occur, we write || - ||, in place of || - [|5,,, hereafter.
In fact, (WP, || - ||, + Np(-)) turns out to be a Banach space by Lemma 3.16.

Proof. Note that
~ 1 ~ 1 ~ 1
E,(f +8)7 =&65()7 +&E5(8)7

and so & 5 ()% is a semi-norm. This implies that N, (-) is a semi-norm of ‘W?.
For f € ‘W7, by Lemma 3.10, there exist {ng }x>1 and fx € C(K) such that

as k — oo and

1) = fu0)IP = Crp(d(x, y)* Tim €3 (P, f).

Since [y Pny fdjt — [ frdpask — oo, it follows that [ fdu = [ fidu
forany w € T. Hence f = f for u-a.e. x € K. Thus we identify f, with f and so
f € C(K). Moreover, (3.12) holds for any x, y € K. By (3.12), N,(f) = 0 if and
only if f is constant on K. n

We now examine the properties of the normed space (W2, || - ||, + N, (-)). The
intermediate goals are to show its completeness (Lemma 3.16) and that it is dense
in C(K) with respect to the supremum norm (Lemma 3.19).

Lemma 3.14. Suppose that Assumption 3.2 holds. The identity map
I (WP - lp + Np () = (C(K), |- [loo)
is continuous.

Proof. Let { fu}n>1 be a Cauchy sequence in (W2, | - ||, + N,(-)). Fix xo € K and
set gn(x) = fu(x) — fu(xo). Then

122 (X) = gm(X)] = [(fn(x) = fon (X)) = (f(x0) = fon(x0))]
< Cnr(d(x,%0)) 7 Np(fo = fon)
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for any x € K and n,m > 1. Thus {g,},>1 is a Cauchy sequence in C(K) with
the norm || - ||co, SO that there exists g € C(K) such that ||g — gx]lco = 0 asn — oo.
On the other hand, since { f; }»>1 is a Cauchy sequence of L? (X, ), there exists f €
LP(X,p) suchthat || f, — f|l, = 0asn — oo. Thus f,(xo) = f» — gn converges
asn — ooin L? (K, ). Let ¢ be its limit. Then f = g 4 ¢ in L? (K, u). Therefore,
feC(K)and || fu — flloo > 0asn — oc. ]

Define W2 as the completion of (W2, || - | p + Np(-)). Then the map I is extended
to a continuous map from ‘W, — C(K), which is denoted by / as well for simplicity.

Lemma 3.15 (Closability). Suppose that Assumption 3.2 holds. The extended map
1:' WP — C(K) is injective. In particular, W? is identified with a subspace of C(K).

Proof. Let { fu}n>1 be a Cauchy sequence in (W2, || - ||, + Ny,(-)). Suppose that
limy,— 00 || fnlloo = 0. Note that

EX(Pic f — P fm) < sup EL(PL fu — Pifm) = Np(fu — f)?

for any k,n, m > 1. Hence, for any ¢ > 0, there exists N € N such that
EX(Pif— Pifm) <€
forany n,m > N and k > 1. As || filleo — 0 as m — oo, we see that
EX(Pef) <e

forany n > N and k > 1 and hence N, (f,)? < eforanyn > N.Thus, N,(f,) — 0
asn — oo, so that f, — 0in W? asn — oo. ]

Lemma 3.16. Suppose that Assumption 3.2 holds. Then
WP = WP,

Proof. Let{ f,}n>1 be a Cauchy sequence of W» and let f be its limit in WP 1t fol-
lows that | f — fulloo = 0 as n — oo. Using the same argument as in the proof of
Lemma 3.15, we see that for sufficiently large n,

CEX(Pifu—Pif) <e
for any k > 1. Since
Sk 1 Sk 1 Sk 1
E,(Prf)? <&, (Prf — Pefn)? + &5 (Pr fn)7,

it follows that supy -, éll,‘(Pkf) < oo and hence f € WP, ]
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Lemma 3.17. Suppose that Assumption 3.2 holds.

(1) Let {ng}x>1 be a monotonically increasing sequence of N. Suppose that
Sy € LTy ) for any k > 1, that supy Ep% (fn,) < 00 and that there exists
f € C(K) such that || Jy, fn, — flloo = 0ask — oo. Then f € WP,

(2) Let f,g € WP. Then f-g € WP,

Proof. (1) Set C1 = sup~ &* (f,)- By (3.10), if n < ny, then

CEJ(Pufu) < &' (fu)) =< C1.
Letting [ — o0, we obtain
CEH(Pnf) =Cy

for any k > 1. This implies f € W?.
(2) For any ¢, ¥ € £(T,),

1
E i) =2 Y leyw)—g®)y©)”

(w,v)EE
1
=272 Y (el () =y ) + o) — @) [y 0)]”)
(w,v)eE,;

<277 (llpllZ&7 (@) + V15,65 (¥)).

Hence if h, = P, f-P,g, then
€0 (hn) < 277 (1 FI12,E0(Pu f) + lIgIZER (Pug)).-

Since f, g € Wy, we see that sup,,- gl’,’(hn) < 00. Moreover, ||Jnhy — fglloo — 0
as n — oo. Using (1), we conclude that fg € WP, ]

Lemma 3.18. Suppose that Assumption 3.2 holds. There exist a monotonically in-
creasing sequence {m;}jeN and hy, ¢y . € WP forw € T such that

(@) Foranyw e T,

. * *
jlifgo ”Jm.i hM*,w,mj—lwl B hM*,w lloo

. * * —
B Jlggo ”Jm_/(pM*,w,mj—lw\ ~PMaw loo =0,

where hL* w.m and (p;“}* w.m are defined in Definition 2.20. For negative val-

* _ * * _
ues of m, we formally define hM*.w,k—IwI = Prhyy, .0 and P ] =
Pk(pj’f,l* wofork=0,1,... |w|

(b) {glr’nj(h;l*,w,m_,-—|w|)}./21 and{glr,nj((p;l*,wjmj_lw‘)}jzl converge as j — 00.
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(c) SerUpy(w) = UveFM(w) Ky. Foranyw € T, h;[*,w: K — [0, 1] and

1 ifx € Ky,

0 ifx ¢ Un,(w).

(d) Foranyw €T, ¢y 0 K — [0,1], supp(ey,, ) S Unm, (w), and
it () = (L)~

for any x € Ky,. Moreover, for any n > 1,

Z Orw = 1.

weTy

hM*,w (x) = {

(e) Foranyw € T and x € K,

hyg, 0 (X)

- .
veT\wl hM*,U(x)

wikl*,w (x) = Z

Remark. The family {¢y, . }wer, isa partition of unity subordinate to the covering
{UM* (w)}WETn .

Proof. For ease of notation, write @y, ,, = @pr o o and hy, . = hy, .
ma 2.19, (3.1) and Lemma 3.6, we see that

Erm(pr ) < (L)*MT + 120, 1wl 4m—1,18M,p.m (W, Tiw))

-1 /
= Cop,jwl+m—1,10p || = C Op,Jw|-1,1

By Lem-

forany w € T and m > 0. Similarly,
EYIT (M) < Clop 1,1

Hence Lemma 3.10 shows that, for each w, there exists {nj}x—o such that the
sequence {Jjy|+n; gy n, te=1 (€SP. {Jjw|+m; Poy.n, Jk=1) converges uniformly as
k — oo. Let h}, (resp. ¢,;) be its limit. Lemma 3.17 (1) implies that 4}, € ‘W? and
@y € WP, By the diagonal argument, we choose {m;};>; such that (a) and (b)
hold. Statements (c), (d) and (e) are straightforward from the properties of h:)’m
and @y, .- L]

Lemma 3.19. Under Assumption 3.2, WP is dense in (C(K), || - |loo)-

Proof. Choose xy, € Ky, foreachw € T. For f € C(K), define
Jn = Z f(xw)q)]t[*,w-

weTy,

Then by Lemma 3.18, it follows that || f;, — f ||cc — 0 as n — co. Hence 'W? is dense
in C(K). [
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Definition 3.20. For /' € LY (K, i), define f by

1 if f(x)>1,
Fx) =2 fx) if0< f(x) <1,
0 if f(x) <0
forx € K.

Now we construct the p-energy 3 » as a I'-cluster point of & » (P ). The use of
I'-convergence in the construction of Dirichlet forms on self-similar sets has been
around for some time. See [13,20] for example.

Theorem 3.21. Suppose that Assumption 3.2 holds. Then there exist SAP: WP —
[0, 00) and ¢ > 0 such that

AL .
(@) (&p)7 is a semi-norm on WP and

CNp(f) < Ep(1)7 < Np(f) (3.13)
forany f € WP,
(b) Forany f € WP, ]76 WP and
ép(f_) = é\p(f)

(c) Forany f € WP,

1f() = FOIP < enn(dx, 1) E,(f).

In particular, for p = 2, (éz, ‘W2) is a regular Dirichlet form on L*(K, jv) and the
associated non-negative self-adjoint operator has compact resolvent.

Property (b) in the above theorem is called the Markov property.

Theorem 3.22 (Shimizu [41]). Suppose that Assumption 3.2 holds. Then the Banach
space (WP, || - ||, + &,(°)) is reflexive and separable.

Remark. In [41], the reflexivity and separability are shown in the case of the planar
Sierpifiski carpet. His method, however, can easily be extended to our general case
and one has the above theorem.

Proof of Theorem 3.21. Define é"‘ L?(K, ) — [0,00) by é”(f) = é”(P f) for
f e LP(K ). Then by [12, Proposmon 2.14], there exists a I"-convergent subse-
quence {8 *}k>1. Define 8 as its limit. Let f € 'WP?. Then

E,(f) < lim &M (f) < sup EX(Paf) = Np(f)P.

k—o00
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Let { fu, }x>1 be a recovering sequence for f,i.e., | f — fu,llp = 0 as k — oo and
limg 00 6% (fu,) = Ep(f). By (3.12),if ng > n, then

CEM(Pn fu) < EMC(Puy fu) = €M% (fr)-
Letting k — oo, we obtain
CENPuf) < &5().

so that R
CNp(f)? < &p(f).

The semi-norm property of ép ()% is straightforward from basic properties of I'-
convergence. B
Next we show that €,(f) < &,(f) forany f € W?. Define

Onf =) (Paf) W)k, (3.14)

weTy

Then

[K ) = Ou f) P e(dy)

1
=2 | (aw | 0 = f@Ip) )

< ﬁ e | f() = I u(dx)pn(dy).
weTy wXBw

This shows that if f € C(K), then || f — Q, f|p, = 0asn — oo. Let { f5, }x>1 be
a recovering sequence for f. Since

If = 0nglpy <I1f = Qnfllp +10nf — Onglly
<If = Oufllp + 10nf — Onglly
<Nf=0nflp+ 1S =2l

it follows that || f — Oni fuillp = 0asn — oo. Then

Ep(f) < lim &M (Qny fny) = lim &M (Py fur)
— 00 — 00

k k
< lim &3 (P fuy) = lim E3(fu) = Ep(f)-
k—o0 0

Finally for p = 2, since a I'-limit of quadratic forms is a quadratic form, we see
that (éz, ‘W?) is a regular Dirichlet form on L?(K, u). Since the inclusion map from
(W2, || - l2 + Np(+) to (C(K), | - |loo) is @ compact operator, by [17, Exercise 4.2],
the non-negative self-adjoint operator associated with (&, W#) has compact resol-
vent. [
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For the case p = 2, due to the above theorem, W2 is separable. Hence, we may
replace ["-convergence by point-wise convergence as seen in the following theorem.
This enables us to obtain the local property of our Dirichlet form, which turns out to
be a resistance form as well.

Theorem 3.23. Suppose that Assumption 3.2 holds for p = 2. Then there exists a sub-
sequence {my }x>1 such that {&5 (P, f Pm, ) }k>1 converges as k — oo for any
f. g € W2, Furthermore, define &( £, g) as its limit. Then (€, W?) is a local regular
Dirichlet form on L?>(K, i), and there exist ¢y, c2, c3 > 0 such that

Mo (f) < E(f, )2 < cada(f) (3.15)

and

| /() = fODI? < eane(d(x, »))TE(S. f) (3.16)

forany f € W?and x,y € K. In particular, (€, W?) is a resistance form on K and
the associated resistance metric R gives the original topology O of K.

Proof. Existence of {my}r>1: By Lemma 3.21, the non-negative self-adjoint oper-
ator H associated with the regular Dirichlet form (éz, ‘W?) has compact resolvent.
Hence there exist a complete orthonormal basis {¢; };>1 of L?(K, ) and {A;};i>1 €
[0, 00) such that Hp; = A;j¢; and A; < Aj4; for any i > 1 and lim; 0 A; = 00.
Note that { —2—1};>1 is a complete orthonormal system of (W2, (-, )2, + ép -,*).

A 1+A;
Hence setting

{f’v:{aill/fil‘f_""i_aimwjm|le,i1,...,imZl,ail,...,aimEQ},
we see that ¥ is a dense subset of W?. For any f, g € ¥, since
~ = 1x 1
165 (Pn f. Png)| < €5 (Pn [)2E3(Png)? < Na(f)Na(g),

some subsequence of {gf(P,, /o Png)}n>1 is convergent. Since ¥ x F is countable,
the standard diagonal argument shows the existence of a subsequence {my }x>1 such
that g;"k (Pmy [, Pm, g) converges as k — oo for any f, g € ¥. Define &>(f, g) as
its limit. For f, g € W2, choose { f;}i>1 € ¥ and {g;}i>1 € ¥ such that f; — f and
gi — gasi — ooin W2, Write ék(u, V) = g;"k (Pmyu, Py, v) for ease of notation.
Then

1Ec(f,8) — &E1(f. 0)| < 1&k(f. ) — Ex(fi @) + €k (fiv 8) — Ek(fi, 80
+ 18k (fi-gi) — E1(fi gi)| + 1&1(fiv g1) — E1( i, 0]
+1&1(fi.8) —Ei(f9)]

<& (fi, &) — E1(fiv gi)| + 2N (fi) Na(g — £1)
F 2N (f — f)Ma(g).
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This shows that {ék (f.8)}k>1 is convergent as k — oo. The equivalence between N,
and &, (3.15), is straightforward.

Strongly local property: Let f, g € WP. Assume that there exists an openset U C K
such that supp(f) € U and g|y is a constant. Consequently, for sufficiently large &,

Ex(f.g) =0, 50 that &(f. ) = 0.
Markov property: By (3.13) and (3.15),

0<&(f f) < &(f 1)

forany f € W2, Since (éz, W2)isa regular Dirichlet form, by [16, Theorem 2.4.2],
we see that & ( f, g) = 0 whenever

fige W2 and f(x)g(x)=0

for u-a.e. x € K. Now by the same argument as in the proof of [7, Theorem 2.1], we
have the Markov property.

Resistance form: Among the conditions for a resistance form in [32, Definition 3.1],
(RF1), (RF2), (RF3), and (RF5) are immediate from what we have already shown.
(RF4) is deduced from (3.16). In fact, (3.16) yields that

R(x.y) < enp(d(x, )"

for any x, y € K. Assume that R(x,,x) — 0 as n — oo and lim,, o0 d(x, X,) > 0.
Note that the collection of

ULh’(x,r”)z U ( U KU)

weTy:xeKy velp(w)

for n > 1 is a fundamental system of neighborhoods of x by [34, Proposition 2.3.9].
Therefore, there exist n > 1 and {X,,, }x>1 such that x,,, ¢ ULh’ (x,r™) forany k > 1.
Choose w € T, such that x € K. Then x,,, belongs to K, for some v € I'z (w)°.
So,

hi (x) =1 and A7 , (xm,) = 0.

Hence 1
R(xy, ,x) > ———
(e ) g
for any k > 1. This contradicts the fact that R(x, X, ) — 0 as k — oo. Thus we
have shown d(x,, x) — 0 as n — oo. Hence the topology induced by the resistance
metric R is the same as the original topology . |
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3.2 Construction of p-energy: p < dimyg (K, d)

In this section, we will consider how much we can salvage the results in the pre-
vious section if p < dimggr(K, d). Honestly, what we will have in this section is
far from satisfactory mainly because we have no proof of the conjecture saying that
WP N C(K) is dense in C(K) with respect to the supremum norm. In spite of this,
we present what we have now for future study.

Throughout this section, we assume (3.1) and fix a covering system .

For p < dimygr(K, d), a choice of a covering system really matters. As we
have ogserved in Proposition 2.31, if {w,v} € g and K,, N K, is a single point,
then o

p>m,|w| — 1
EM,,pm,lw| < c2 for any m, so that lim,;, 00 (Epr,,,p,m)™ < 1. As long as

> 1 for any m > 1. However, since we assume (3.1), this yields that

p = dimyr(K, d),

this inequality does not cause any inconsistency with Proposition 3.3. On the con-
trary, if p < dimygr(K, d), then this seems troublesome. For example, in the case
of the unit square, a direct calculation shows that limyn— 00 (& M., p,m)% > 1 for any
p < dimyg([—1, 1]?) = 2. A similar situation is expected in other cases including
the Sierpinski carpet. So, for p < dimyg(K, d), one should carefully choose ¢ to
avoid a pair sharing only a single point. In the case of the unit square, §, given in
Example 2.32 works for p < 2.

As in the previous section, we use 0p,, (1€Sp. 0p m,n) in place of 01‘,1, m (reps.

&
Op,m,n)-

Under (3.1), it is straightforward to see that Lemma 3.12 still holds. Replacing
(C(K), || - loo) bY (LP(K, ), || - ||p) in the statements and proofs of Lemmas 3.15
and 3.16, we have the following statement.

Lemma 3.24. ‘'W? is a Banach space with the norm || - ||, + Ny (+).

Lemma 3.25. Let p > 1. If { fu}n>1 is a bounded sequence in the Banach space
‘WP, then there exist {ny }x>1 and f € WP such that f is the weak limit of { fn, }x>1
in LP(K, ),

£y = sup I fullp and  Np(f) < sup Np (fn)-
n> n=

Proof. Since L?(K, p) is reflexive, { f4}»>1 contains a weakly convergent sub-se-
quence { fn, }k>1. (See [46, Section V.2].) Let f € L?(K, 1) be its weak limit. Since
the map f — (Py, f)(w) is continuous, we see that Py, f,, — Py f as k — oo and
hence

~ o~ 1
81’;!(me) = klglgo 81’;n(menk) = ]Sclifl) Np(fnk)p- u
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Lemma 3.26. Let p > 1. Suppose that f, € £(T,) for any n > 1 and that

sup [|Jn full, < 00 and sup &2 (fy) < oo

n>1 n>1

Then there exist a subsequence {ni}r>1 and f € WP such that f is the weak limit
of {Jny fuy tik=1 in LP(K, ) and

1/ Mo < sup I nfully and  CNp(f)? < sup &, (fn)-
n>1 n>1
Proof. Since L?(K, ) is reflexive, {J, fn} possesses a weak convergent sub-se-

quence {J,, fn, }k>1. (See [46, Section V.2].) Let f € L?(K, 1) be its weak limit.
Lemma 3.12 shows that if n; > m, then

CEM (P fu) < M (P Iy fn) = EXF (fu) < sup EX ().
n>1

Letting k — oo, we see
CEM(Puf) < sup &y (fn)

forany m > 1. Thus f € W? and CN,(f)? < sup,>; gl’,‘(fn) [
Using this lemma, we have a counterpart of Lemma 3.18 as follows.
Lemma 3.27. There exist {h},}wer and {¢;, }wer S WP such that

(@) Set Un, (w) = Uyer,,, ) Kv- Foranyw € T, hy,: K — [0, 1] and

1 ifx € Ky,

) = {o iFx ¢ Unt, (w).

(b) Foranyw €T, ¢5: K — [0, 1], supp(ey) € U(w), and

0 (xX) = (Li) ™M

for any x € Ky,. Moreover, for any n > 1,

D en=1

weTy,
(¢c) Foranyw € T and x € K,
hy (x)
ZUETHU‘ h;’;(x)

By the above lemma, we have the next statement.

P (x) =
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Lemma 3.28. W? is dense in L? (K, ).

Finally, we have the following result on the construction of a p-energy.

~ ~L
Lemma 3.29. There exist §,: WP — [0,00) and c1, ¢ > 0 such that &7 is a semi-
norm,

ANy ()P < Ep(f) < aNp(f)? and €,(f) < &(f)
forany f € WP, In particular, for p = 2, (éz, 'W2) is a Dirichlet form on L>(K, 11).

3.3 Conductive homogeneity

In this section, we study the notion of conductive homogeneity, namely, its conse-
quence and how one can show it.

Throughout this section, we suppose that Assumptions 2.6, 2.7, 2.10 and 2.12
hold. Moreover, we fix a covering system ¢ with covering numbers (N7, Ng). As in
the previous sections, we omit ¢ in the notations of O’I‘:{ m,n and opg, m and use op m.n
and o0, n, respectively. In the end, we will see by Theorem 3.33 that the conductive
homogeneity is solely determined by the conductance constants and a choice of ¢
makes no difference.

The first theorem explains the reason why it is called “homogeneity”.

Theorem 3.30. A metric space A is p-conductively homogeneous if and only if there
exist cy,cp > 0 and o > 0 such that

10" < 8m,.pm(V, Ty) < c207™, (3.17)

and
c10™ < 0pman < c20™

foranym >0,n > landv € T,.
An immediate corollary of this theorem is Theorem 3.5.

Corollary 3.31 (Theorem 3.5). If K is p-conductively homogeneous, then (3.1) holds.

Proof of Theorem 3.30. Assume that K is p-conductively homogeneous. Then by
formula (2.18), there exists ¢; > 0 such that

c1 = O—p,mE’bM*,p,m-
Also by Lemma 2.34, there exists ¢, > 0 such that

Opmtn = C20p,mOp.n (3.18)
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for any n, m > 0. Moreover, by (2.14), there exists ¢z > 0 such that

EM.,pm+n < C3EM,,.pmEM..,p.n

for any n,m > 0. These inequalities along with (3.3) shows that there exist c4,c5 > 0
such that

C40p.mOp.n = Op.m+n = C50p mOp.n and ¢4 < O—p,mE’bM*,p,m =cs5
for any m,n > 0. From these, there exist cg,c7 > 0 and o > 0 such that
c60™ < 0pm <c70™ and ceo™ < (("211,1*,1,,,,,,)_1 < c70™
for any m > 0. Hence forany w € T and n > 1,
c60™ < (Epm) ™" < (EMepm(w, Tn)™" and  0pmp < c70™.
Making use of (2.18), we see that there exists cg > 0 such that
c60™ < (EMy.pm(W. Ty)) ™" < 80pmm < csc70™

foranym > 0,n > land w € T,.
The converse direction is straightforward. ]

Next, we show another consequence of conductive homogeneity. For simplicity,
we set &, (U, v, Sk(w)) = &pm{u}, {v}, S*(w)). (In other words, we deliberately
confuse u with {u}.)

Lemma 3.32. If K is p-conductively homogeneous, then there exists ¢33 > 0, de-
pending only on p, Ly, N, My, k, N7, Ng, such that

EM,pom < 3308pm (U, v, Sk(w))
foranym =0, w € T andu,v € S*(w) withu # v.
Proof. By (2.16), we see that
Ep.0(, v, S¥(W)) < €2270p mEpm(u, v, S¥(w)).
Using Theorem 6.3, it follows that
ce(Le, (NOF. p) < Ep0(u, 0. S (W) = €2210pmEp.m(u. v, S*(w)).
Now Theorem 3.30 suffices. |

When p > dimgr(K, d), the converse direction of the above lemma is actually
true.
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Theorem 3.33. Assume that there exist ¢ > 0 and o € (0, 1) such that
EM.,pm < ca™ (3.19)

Sfor any m > 0. Then K is p-conductively homogeneous if and only if for any k > 1,
there exists c(k) > 0 such that

& pm < c(k)Epm(u, v, S*(w)) (3.20)

foranym >0, w € T and u,v € SK¥(w) with u # v. In particular, under Assump-
tion 2.15, if p > dimyg(K, d), then whether K is p-conductively homogeneous or
not is independent of neighbor disparity constants and hence a choice of a covering
system &.

The last part of the theorem justifies the name “conductive” homogeneity.

In fact, (3.19) is the same as (3.2). Recall that, by Proposition 3.3, (3.19) holds if
and only if p > dimyg (K, d) under Assumption 2.15.

As was mentioned in the introduction, (3.20) is an analytic relative of the “knight
move” condition described in probabilistic terminologies in [36]. The name “knight
move” originated from the epoch-making paper [1] where Barlow and Bass con-
structed the Brownian motion on the Sierpifiski carpet.

The proof of the “only if” part of the above theorem is Lemma 3.32. A proof of
the “if” part will be given in Chapter 5.

In the next chapter, we are going to give examples for which one can show p-
conductive homogeneity by Theorem 3.33.

In the rest of this section, we study asymptotic behaviors of the heat kernel
associated with the diffusion process induced by the Dirichlet form (&, W?) under
Assumption 2.15. The next lemma shows that the associated resistance metric is bi-
Lipschitz equivalent to a power of the original metric.

Lemma 3.34. Suppose that Assumption 2.15 holds, p > dimyr(K, d) and K is p-

conductively homogeneous. Let o be the same as in Theorem 3.30 and set t, = — llzi ‘:
Then there exist c1, ¢ > 0 such that
_ p
c1d(x,y)” < sup If(x)A—f(y)I < cpd(x,y)%” (3.21)
FeWP Ey(f)#0 Ep(f)
forany x,y € K. In particular, if 2 > dimygr (K, d), then
c1d(x, )2 < R(x,y) < cad(x,y)™ (3.22)

forany x,y € K, where R(x, ) is the resistance metric associated with the resistance

form (€, W?).
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Proof. Since &} (hy, EmM.,p,m—lw| (W, Tjy|), we have

e m—lw]) =
clo_m+|w| < glr)n(h;l*,w,m—\m) < 020_”’+|w|
by (3.17). This shows
crol < ép(h&*,w) < covl,
Note that d is M- adapted to &, by Assumption 2.15. Hence by [34, (2.4.1)],
c1d(x,y) < dm.(x,y) < c2d(x,y) (3.23)

forany x,y € K. Choose n = np, (x,y) + 1. Let w € T, satisfying x € Ky,. Since
n > nyr, (x,), it follows that if v € T, and y € Ky, then v ¢ I'ps, (w). Hence

Ry, w(x) =1 and hy, ,(y)=0.
Therefore (3.4) and (3.23) yield

lfx) = FDI? 1
sup — >
rewr gy (N0 Ep(f) Ep(Mag, )

> c(0p) ™" = "M CN% > d(x, y).

On the other hand in this case, 1y, (t) = ¢ by (3.23). Hence Theorem 3.21 (c) implies
the other side of the desired inequality. |

Due to the general theory of resistance forms in [32], once we have (3.22), it is
straightforward to obtain asymptotic estimates of the heat kernel.

Theorem 3.35. Suppose that Assumption 2.15 holds, 2 > dimgr(K, d) and K is 2-
conductively homogeneous. Set 1. = 1. Then there exists a jointly continuous hear
kernel p, (t,x,y) on (0,00) x K x K associated with the diffusion process induced
by the local regular Dirichlet form (&, W?) on L?(K, i). Moreover,
(1) There exist B > 2, a metric p, which is quasisymmetric to d, and positive
constants c1, Ca, 3, C4 such that

exp (—CZ(M)BL]> (3.24)

pult,x,y) < .

—
w(Bp(x,17))
forany (t,x,y) € (0,00) x K x K and
C3

————— = pult,x,y) (3.25)
w(Bp(x,t8))

foranyy € Bp(x,C4t%).
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(2) Suppose that w is agr-Ahlfors regular with respect to the metric d. Set

ﬂ* = Tx +aH.

Then B« > 2 and there exist c7, cg, 9, 10 > 0 such that

_%H d(X, y)'B* B*l_l
B e (22
pult,x,y) < cet eXP( 67( ” ) ) (3.26)
forany (t,x,y) € (0,00) x K x K and
_oH
cot” Px < pul(t.x,y) (3.27)

oy
forany y € B;i(x,crot P~ ). In addition, suppose that d has the chain condi-
tion, i.e., forany x,y € K and n € N, there exist xo, ..., X, € K such that
X0 = X,X, =y and
Cd(x,y)

n

d(x;, xi41) <

where the constant C > 0 is independent of x, y and n. Then there exist c11,
c12 > 0 such that

0111_% exp (—clz (d(xt—y)ﬂ*yg*]_l) < pu(t,x,y). (3.28)

The exponent oy above is in fact the Hausdorff dimension of (K, d). The expo-
nents B and B are called the walk dimensions.

Proof. We make use of [32, Theorems 15.10 and 15.11]. Since p has the volume
doubling property with respect to d, (3.22) shows that u has the volume doubling
property with respect to R as well. Since K is connected, (K, R) is uniformly perfect.
Moreover, since (&, W?) has the local property, the annulus comparable condition
(ACC) holds by [32, Proposition 7.6]. Thus, (C1) of [32, Theorem 15.11] is verified
and so is (C3) of [32, Theorem 15.11]. Using [32, Theorem 15.11], we have (3.24).
Consequently, by [32, Theorem 15.10], we see (3.25). Thus we have shown the first
part of the statement. The fact that 8 > 2, which is beyond the reach of [32, Theo-
rem 15.10], is due to [25]. See also [33, Theorem 22.2].
About the second part, assuming « g -Ahlfors regularity, i.e., (2.9), we see that

ha(x,s) = gten — Sﬁ*,
where 4 (x,s) is defined as

ha(x,s) = sup R(x,y)- p(Ba(x,s)).
yeB;(x,s)
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Hence following the flow of exposition of [32, Theorem 15.10], we have
g(s) =sP* and @(s) = P71,

where g and ® appear in the statement of [32, Theorem 15.10]. Consequently, by
[32, Theorem 15.10], we obtain (3.26), (3.27) and (3.28). The fact that 8« > 2 can be
shown in the same way as we did for 8 above. ]



