Chapter 4

Conductive homogeneity of self-similar sets

4.1 Self-similar sets and self-similarity of energy

In this section, we consider the case where K is a self-similar set with rationally
related contraction ratios and construct self-similar energies under conductive homo-
geneity. Throughout this section, we fix a self-similar structure

£ = (K,S,{fs)ses).

The notion of the self-similar structure was introduced to give a purely topological
description of self-similar sets. See [29, Section 1.3] for details.

Definition 4.1. Let K be a compact metrizable space, let S be a finite set, and let
{ fs}ses be a family of continuous injective maps from K to itself.

(1) The triple (K, S, {fs}ses) is called a self-similar structure if there exists
a continuous surjective map y: SN — K such that

x(s152...) = fs; (x(s253...))

for any 515, ... € SN, where SY is equipped with the product topology.

(2) Define W, = Unzo S”, where S = {¢}. An element (wy, ..., w,) € S" is
denoted by wy ... w,. Forw; ... w, € §", set

fw = fw1 o"'ofwn and K, = fw(K)

In particular, fy is an identity map and Ky = K.

Hereafter in this section, (K, S, { fs}ses) is a self-similar structure.
By [29, Proposition 3.3, if (K, S, { f;}ses) is a self-similar structure, y: SN — K
is uniquely given by

(15293 = () Ksvosm

m=>0

for any 51855 ... € SN,

Typically, an example of self-similar structures is given by a self-similar set with
respect to a family of contractions. Let (X, d) be a complete metric spaces and let
{fi}i=1,.,~ be afamily of contractions of (X, d), i.e., fi: X — X and

W Ui fG)
p <

1
x,y€X,x#£y d(x’Y)
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foranyi € {1,..., N}. Then it is known that there exists a unique non-empty compact
subset K of X satisfying

N
K =] f(K). (4.1)
i=1
See [29, Theorem 1.1.4] for example. The set K is called a self-similar set with re-
spectto{ fi}i=1,..~.By[29, Theorem 1.2.3],if S ={1,..., N}, then (K, S,{fi}ies)
is a self-similar structure.
Definition 4.2. Letr € (0,1) and let j; € N fors € S.
(1) Define
m .
jw)=>"ju, and gw)=r/® (42)
i=1
forw = wy ... wy, € S™. (In particular, j(¢) =0, g(¢) = 1.) Define 7 (wy ... wy) =
Wi...Wpo1forw =wi...wy, € S™ and

A, ={w|w=wi...wy € Wi, g(@(W)) >r" > g(w)}. 4.3)

(2) Set
Ty ={(n.w)|weAm}, T=|]JT,

n>0

and define 1: T — W* as ((n, w) = w. Moreover, define
A={((n,v),m+1Lw))|n=>0,v=worv=mr(w)}

Note that A%, N Afn 41 can be non-empty. (See Section 4.5 for example.) Thus
to distinguish w € A%, and w € Afn 11, we have introduced T}, in the above definition.
The following proposition is straightforward.

Proposition 4.3. The triple (T, A, ¢) is a rooted tree and {Ky, }wer is a minimal
partition of K parametrized by (T, A, ¢).

In the rest of this section, we fix {js}ses and the associated partition (7', 4, ¢).
Furthermore, we presume the following assumption.

Assumption 4.4. There exists a metric d on K giving the original topology of K and
Assumption 2.15 holds with the metric d.

If this assumption is satisfied, we say that { f;}ses has rationally related contrac-
tion ratios {r’s }ses.

In fact, under this assumption, in particular, by Assumption 2.15 (3), there exist
c1, ¢ > 0 such that

c1r’® < diam(Ky. d) < cr’™ (4.4)
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for any w € T'. This enable us to regard the contraction ratio of f; as r/s. This is why
we say that contraction ratios of { fs}ses are rationally related.
Combining (4.4) with Assumption 2.15 (2B), we obtain the following proposition.

Proposition 4.5. Define oy to be the unique number satisfying

ersaH =1

seS

and let | be the self-similar measure on K with weight {r’s®H \¢cs. Then [ is op-
Ahlfors regular with respect to the metric d and ag coincides with the Hausdorff
dimension of (K, d).

Under our assumptions, let o be the same constant as in Theorem 3.30. Note that
even if we replace the definition of & (u), (3.6), by

EM(u) = o™EM (), (4.5)

all the arguments in Section 3.1 work and the results are unchanged. Our goal in this
section is the next theorem.

Theorem 4.6. Let (K, S, { fs}ses) be a self-similar structure and let (T, A, ¢) be
given in Definition 4.2. Suppose that Assumption 4.4 is satisfied and that K is p-
conductively homogeneous for some p € (dimgr(K, d), 00).

(1) Forany w € Wy and f € WP,
fofwe WP
(2) There exists &,: WP — [0, 00) satisfying

1, . .
(@) (&p)7 is asemi-norm on WP and there exist ¢y, c2 > 0 such that

ANy (f) < Ep(f)7 < caNp(f)
and

c1d(x,y)” < sup M
T v, E0(f)

forany f € WP andx,y € K.
(b) Forany f € WP, f € WP and

817(J7) < & (f).

< C2d(-x’ y)‘fp

(¢) Forany f € W2,
Ep(f) =) 0 Ey(fofs).

seS

In particular, for p = 2, (&2, W?) is a local regular Dirichlet form on L?>(K, ).
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Proof. Define

U= {A(~) | A(-) is a semi-norm on ‘W?, there exist ¢, ¢ > 0 such that
Ny (f) = A(f) < caNp(f) forany f € WP}

For Ay, A, € U, we write A1 < A, ifand only if A;(f) < A>(f) forany f € WP,
We give U the point-wise convergence topology, i.e., {A,}n>1 € U is convergent to
A€ Uasn — ooifand only if A, (f) — A(f) asn — oo for any f € WP, Then
due to the separability of ‘W?# described in Theorem 3.22, U is an ordered topological
cone in the sense of [28].

Letw € Wi. Forany v = vy...vx € A,n—jw), since

gwvy...ve—1) = g(w)g(vy ... ve—1) > g(w)r"_j(w) =r" > g(wv),

it follows that wv € A,n. This shows that {(n, wv)|v € A,n—jw } C Ty. In fact,

T, = U {(n,wv) | v e Anjwm},

wesm

which is a disjoint union. This yields

> eIy (fofuw) < EF(Puf)
weSsm
forany f € L?(K, u). Therefore,
> oI WETIW(fofy) < E)(S).

wesm

This inequality implies that /W) SUDP, > j(w) é”‘j(w)(fofw) < Np(f)? < oo for
any f € WP so that fof, € WP. Thus we have verified the statement (1). Again
by the above inequality,

¢ D N (fofu)’ = Y o lim EMI(fofy)

wes” wesm n=eo
< supo E,(f) = Mp(f)P. (4.6)
n>
Note that
Y. VETV(fef) = Y oM WEHTIW (fo ).
(n,v)eTy wesm

By (3.11), taking lim in the left-hand side and sup in the right-hand side, we see that

c Z oj(v)d\/p(fofu)p < Z Uj(w)Np(fOfw)p. 4.7

(n,v)eTy wesSm
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On the other hand, for any (n,v) € T,, and x € K, the self-similarity of u and (3.21)

show

|(Pn )W) = f(X)] = /K | fofu(y) = fofu(xo)| u(dy)

<c /K d(x0. )% 1(d) Ny (fofu) < ' No(fo fo).

where xo = (f,)"!(x). Hence if (1, v), (n,u)) € E}, then
[(Pn )W) = (Pu )@)] = " (Np(fofo) + Np(fofw)).

This along with (4.7) yields

EN=5 X IBHO=E)

((n,v),(nu))EE;

<C Y TN (fofy)? <C" Y T N,(fofu).

(n,v)eTy, weSsm

Taking sup in the right-hand side, we have

Np(f)? <C" Y7 TNy (fofuw)?.

wesm

Now for A € U, define F (A) by

F) = (Lo Afeso?).

seS

For any A € U, since A < ¢ N,, (4.6) implies
F(A) < 2F (Ny) < Np.
On the other hand, the fact ¢; N, < A4 and (4.8) yield
F(A) = c1F (Np) = " Np.
Thus £ (A) € U and F: U — U. It is easy to see that U is continuous and
F(A+ B)<¥F(A)+ F(B).
Combining (4.6) and (4.8), we see that there exist C;, C; > 0 such that

c1Np < ﬁj(wp) <N,

(4.8)

for any j > 1. So, by [28, Theorem 1.5], there exists &« € U such that F (Ex) = Ex.

Define
Uy = {A| A €U A(f) < A(f) forany f € WF}.
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Then ép € Up and Uy is a closed subset of U. Hence by [28, Corollary 1.6], we
see there exists & € Uy such that ¥ (&) = &’. Letting & = (&’)?, we have the
desired &. In the case p = 2, define

Upr ={A | A € U, A satisfies the parallelogram law, the resulting
quadratic form has both Markov and local property}.

Then Upr is a closed subspace of U and Theorem 3.23 ensures that Upr # @.
So again by [28, Corollary 1.6], we have the desired local regular Dirichlet form. m

4.2 Conductive homogeneity of self-similar sets

In this section, we present a sufficient condition for conductive homogeneity of self-
similar sets. The idea originated from [11], where the authors used symmetries of
the spaces to show the combinatorial Loewner property of the Sierpifski carpet and
the Menger curve, also known as the Menger sponge. Our sufficient condition, Theo-
rem 4.8, will be used in Sections 4.3 and 4.6.

Throughout this section, we assume that (K, S, { fs}ses) is a self-similar structure
and adopt the setting in Section 4.1, i.e., let (T, 4, ¢) be given in Definition 4.2 and we
suppose that Assumption 4.4 is satisfied. For simplicity, we also assume that j; = 1
for any s € S, so that g(w) = r*! and 7,,, = S™.

Definition 4.7. (1) For any e = (w,v) € (J,,», E,,, define
X(e) = (fuw) ™' (fu(K) N fu(K))

and @,: X(e) — X(e") by we = (fv) o fulx(e), where ¢ = (v, w) for e = (w, v).
Furthermore, define

IT(K,T)={(X(e),X(€"),pe) |m=>1,e € E,}.

An element of I7 (K, T) is called an intersection type of (K, T).

(2) A homeomorphism g: K — K is said to be a symmetry of (K, T) if there
exists g*: T — T such that [g*(w)| = |w| and g(Ky) = Kgx() for any w € T.
Define §(k,r) as the collection of symmetries of (K, T').

(3) Forany n > 0, define ¥: 50 Tntm — T by ¥n(v) = uif v € Ty4m and
v=na"()u.

Remark. The notion of intersection types and the set I7 (K, T') were introduced
in [31].

Note that Y (Ty4m) = T and (frm @)~ (Ky) = Ky, (v) forany v € Tppm.
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Notation. For A C T, set
K4) = | J K. (4.9)

vEA
Theorem 4.8. Suppose that there exist a finite subset I C IT (K, T) and finite sub-
groups §o and Gy of § k) satisfying the following properties:

@) (T, ED) is connected for any m > 1, where
Ey=felecEy. (X(e).X(e").ge) € I},

(b) Forany (X,Y,@) € I and x € X, there exists g € §p such that g(x) = ¢(x).

(c) Foranyn>1,weT,andpe t’]&})m (w), there exists Up Ugeﬁl g*Wn(p)
such that K(Up) is connected and g(K(Up)) N X # @ and g(K(Up)) N
Y £ @ forany (X,Y,¢) € I and g € 5.

Thenforany p > 1,n,k > 1, m > 1, ux,v4x € Ty, and w € Ty,

o)

Mopm (W) < (LM #EG)PTH(T)? ML), (. va Ti). (4.10)

Furthermore, if Assumption 4.4 holds with M, = M, then K is p-conductively homo-
geneous for any p > dimygr (K, d).

Remark. Strictly, a path p = (w(1),...,w(k)) of a graph is not a subset of vertices
but a sequence of them. However, we use p to denote a subset {w(1), ..., w(k)} if
no confusion may occur. For example, in the expression v, (p) above, we regard p as
a subset of Ty 4.

Proof of Theorem 4.8. Foru € S™(I'ps(w)), define Hy, € Ty, by
Hy = {vg"(Yn(u)) | g € G1,v € T}

Then we have that #(H,) < #(Ty)#(%,) for any u € S"™(I'1(w)) and #({u | v €
Hy}) < #(Thg (w))#(%1) for any v € Ty ym.

Now, since (7, E]‘CT) is connected, there exists (w(0), w(1),...,w{),w(l + 1)) €
(Tx)"+2 such that w(0) = uy, w(l + 1) = vy, (W), w(i + 1)) € E]f for any i =
0,1,...,1.Sete; = (w(i), w(i + 1)). Then (X(e;), X((ei)"), @e,;) € I.

Claim. There exist A; C Ty, x; € K and gi, h; € &y fori = 1,2,...,1 such that

@) A = (hl)*(up) and K(Ai) n X(ei) 75 @,

(i) x; € K(Ai) N X(e;) and gi(xi) = @e; (xi),

(i) A1 = (gi)* (Ai).

Proof. Fori = 1, let h; be the identity map. Then 4 = U,. Since by (c) K(+41) N
X(e1) # @, we may choose x; € K(471) N X(e1). By (b), there exists g1 € Gy such
that g1(x1) = @e, (x1).
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Assume that we have the desired objects for i € {1,...,/ — 1}. Letting h;+; =
gioh; € §y and A;1+1 = (g;)*(+A;), we obtain

Air1 = (81)"(hi)"(Up) = (hi1)" (Up).

Using (c), we see that K(sA;+1) N X(e;j+1) 7# 0. Choose x;+1 € K(sAi+1) N X(ei+1).
By (b), there exists g;+1 € §o such that g;+1(Xi+1) = @e; | (Xi+1)-
Thus by induction, the claim has been proven. O

Now, by (¢), X(eo) N K(A1) # @ and X((e;)") N K(A;) # @. This implies
Sw@)(K(A1) N Ky) #9 and  fi,)(K(A)) N Ky #9.  (4.11)
Next, (ii) yields fu(i+1)(gi (xi)) = fuw()(x:). Since
gi(xi) € K((g:)" (A1) = K(Ai1),

we have
Jw@)(K(A:) N fruir1)(K(Air1) # 0 4.12)

fori =1,...,1. Since A; = (h;))*(Up) € Ugeg, & (¥n(p)), we see that

l

Jw@)A < | H.

i=1 UEP

Note that K(|J!_,w(i)4A;) = ' _, fw) (). By formulas (4.12) and (4.11), we see
that K ( U£=1w(i )#A;) is connected and intersects with K,y and Ky, (741). There-
fore, there exists pg € f,f,l)(u*, Vs, Ty ) included in Ule w(i)A; € Uuep H,. Con-
sequently, Lemma C.4 shows (4.10). The conductive homogeneity follows from Lem-
ma 2.22 and Theorem 3.33. =

4.3 Subsystems of (hyper)cubic tiling

In this section, we present three classes of hypercube-based self-similar sets as ex-
amples of conductively homogeneous spaces. The first one given in Theorem 4.13
includes generalized Sierpinski carpets studied in the series of papers [ 1-6] by Barlow
and Bass, the Menger curves (also known as the Menger sponge), and the hypercubes
[—1, 1]% for L > 1. Unlike those examples, however, our examples also contain self-
similar sets with fewer, or even no, symmetries of a hypercube. See Section 4.4, where
we present explicit examples of self-similar sets belonging to the classes given in this
section.

We start with basic notations on the hypercube [—1, 1]% and its symmetry group.
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Definition 4.9. Let L € N and let CL = [—1, 1]E. Moreover, let By be the L-
dimensional hyperoctahedral group, that is,

BL ={g|geO(L) g(Ck) =CL},

where O(L) is the collection of orthogonal transformations of RZ. For the case
L =2, B, is often denoted by D4 in a literature. Define

Bji = {(x1,....x0) | (x1,...,x1) € [, 1]F, x; = i}
for j ={1,...,L} and i € {—1,0, 1}. Then the boundary of [—1, 1]¥ consists of
{Bji}je,...L},ie{i,—1}- Fors = (s1,...,51) € {1,.. .. N}t define
L
2si —2—N 2s; — N
ctN =TI !
i=1_[1 N N
L’N=(2s1—1—N 2sL—1—N)
N N .

. . L L
If no confusion may occur, we use Cx, Cy and ¢ instead of C*L, C; N and Cs N

respectively hereafter.
In the course of this section, we are going to deal with particular elements of By .

Definition 4.10. Define R; € By as the reflection in the hyperplane Bj o for j €
{1,..., L}. Furthermore, define Rj.] _j, as the reflection in the hyperplane

Jell'l,_iz = {(xl,...,xL) | Xj, = isz}

for ji. ja € {1,..., L} with j; # j,andi € {1,—1}.

In the next definition, we introduce key notions of this section.
Throughout this section, we fix L > 1 and N > 2.

Definition 4.11. (1) A self-similar structure (K, S, { f}ses) is called a subsystem of
L-dimensional hypercubic tiling, or a subsystem of cubic tiling for short, if K C Ci,
Sc{l,..., N}L and, for any s € S, fs is a restriction of a similitude from RZL to
itself satisfying f;(Cx) = Cs, i.e., there exists ®5 € By, such that

1
fs(x) = Nq)sx + ¢

for any x € RL. A subsystem of cubic tiling (K, S, { f; }ses) is called non-degenerate
itKNB;; #Pforany j € {1,...,L}andi € {I,—1}.

(2) A continuous map ¢: Cx — C, is called an N -folding map if and only if, for
any s € {1,..., N}L, there exists A; € By, such that

o(x) = NAs(x —cy) 4.13)
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for any x € Cs. If no confusion may occur, we omit N in the expression of an “N -
folding” map and say a “folding map” for simplicity.

(3) Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. We use the frame-
work of Section 4.1 to define (T, #4, ¢) with r = % and j; = 1 forany s € S. In this
case, T, = S” for any n > 1. Define a graph (7, Ef;) by

Ef ={w.v) [ w,veThw#v, fu(C) N f1(Cy) = fu(Bjs)
for some j € {I,...,L}andi € {1,—1}}.

The subsystem of cubic tiling £ is said to be strongly connected if (T, Ef;) is con-
nected for any n > 1.

(4) Let £ = (K, S,{fs}ses) be a subsystem of cubic tiling. £ is called locally
symmetric if Ky, U K, is invariant under the reflection in the hyperplane including
Jw(Cyx) N fu(Cy) forany n > 1 and (w, v) € Eﬁ.

Remark. Let &£ be a subsystem of cubic tiling which is non-degenerate and locally
symmetric. Then E,f C E; by the following arguments. Assume that (w, v) € Eﬁ.
Set

Ew,v = fw (C*) N fv(c*)- (4-14)

By non-degeneracy, K,, N £y, # @ and by local symmetry, Ky, N £y = Ky N
Ly v # 0. Hence (w,v) € E;. Note thateven if (w,v) € T, and fy, (C+) N f,(Cx) # 9,
it may happen that K, N K, = 0.

Remark. Let £ be a subsystem of cubic tiling which is non-degenerate, locally sym-
metric, and strongly connected. As in the case of the unit square in Example 2.32,
define

fo = {tw.v} | w,v) € | EL}. (4.15)

n>0

For explicit examples in the next section except for the chipped Sierpinski carpet,
¢ is a covering system and is a good substitute for g in the case p < dimgr(K, d).

By properties of cubic tiling, it is easy to see that Assumption 2.15 holds. In sum-
mary, we have the next proposition. Recall that the edges of 7, are given not by Ef;
but by E; as it has always been in the previous sections.

Proposition 4.12. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Then the
Sfamily {Ky}wer is a partition of K parametrized by the tree (T, A, ¢). Let dx be
the restriction of the Euclidean metric on K and let | be the self-similar measure
satisfying L(Ky) = #(S)) ™! for any w € T. Then Assumption 2.15 is satisfied
withd = dy, r = 3, My =1, My = 1, Ny = #(S) and L < 3L — 1. In this case,

W is ag -Ahlfors regular with respect to d«, where ag = loliggg).




Subsystems of (hyper)cubic tiling 67

The exponent oy coincides with the Hausdorff dimension of (K, d«). Note that
#(S) < NL.Since #(S) = NL implies K = C,, we see that ey < L unless K = Ci.
The following theorems are the main results of this section.

Theorem 4.13. Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. Assume
that £ is non-degenerate, locally symmetric, and strongly connected. Moreover, sup-
pose that the following condition (SDR) is satisfied:

(SDR) For any j1, j» € {1,..., L} with j1 # Ja, there exists i € {1,—1} such

that R;-l o S g(K,T)~

Then K is p-conductively homogeneous for any p > dimyg (K, dy).

The name (SDR) represents “symmetric with respect to diagonal reflections”
as R;l J is the reflection in the diagonal hyperplane Jr’f}l - For generalized Sier-
pifiski carpets, the Menger curve and the hypercube, it follows that §x 7y = By and
(SDR) is satisfied. However, ¥k, 1) does not necessarily coincide with By, to satisfy
(SDR). For example, the group generated by {R}1 g L j2 €41, LY, i # J2)
is (isomorphic to) the symmetric group of order L, Sy, which is a proper subgroup
of Bz, and if §; C 9(k,T), then (SDR) is satisfied. See Example 4.30.

In the case L = 2, the advantage of being planar gives another two classes having

conductive homogeneity.

Theorem 4.14. Let L = 2 and let £ = (K, S, { fs}ses) be a subsystem of 2-dimen-
sional cubic tiling. Assume that £ is non-degenerate, locally symmetric, and strongly
connected. Moreover, assume one of the following two conditions (RS) or (NS):

(RS) 8% € §,T), where ®% is the rotation by % around (0, 0).
(NS) Foreachi,j €{l,...,N — 1}, there exist iy, j1 € {1,..., N} such that

{(l9jl)v(l + ]’jl)i(ihj),(l'hj + 1)}0 S = 0.

Then K is p-conductively homogeneous for any p > dimyg (K, dy).

The expressions (RS) and (NS) represent “rotational symmetry” and “no symme-
try”, respectively.

At a glance at definitions, it may look difficult to verify the conditions like “non-
degenerate”, “strongly continuous”, and “locally symmetric”. In the course of the
discussion, however, we will show useful criteria concerning only the first iteration
{ fs(Cx)}ses to check those conditions.

Proofs of the above theorems will be given later in this section after necessary pre-
parations. The main idea of the proof is to construct a family of paths required (c) of
Theorem 4.8 by using local symmetry and an additional geometric condition (SDR),
(RS), or (NS). Such an idea was used in [11] and can be traced back to the “knight
move” argument by Barlow—Bass [1]. In those previous works, however, the full By -
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symmetry of the space was required but we find that weaker (or even no) symmetry
is good enough under the presence of local symmetry.

Now we start to study the conditions “non-degenerate”, “strong continuous”, and
“locally symmetric”. First, we study the nature of folding maps, which turns out to
be closely related to the local symmetry.

Lemma 4.15. Let ¢: Cx — Cx be a folding map characterized as (4.13). Then for
any s,t € {1,...,N}L,

1
As = AR ifC;NCy = NBj’i + ¢5 for some i € {1,—1}.

Proof. Assume that C; N C; = %B]’,i + c¢s. Then C;, N Cy = %B]‘,_i + ¢; as well
and x — ¢; = Rj(x —¢s) for any x € Cs; N C;. On the other hand, as ¢ is a folding
map, we see that

NAs(x —cs) = NA;(x —¢y)
for any x € C; N C;. Hence As(x —¢5) = A:Rj(x —¢5) for any x € Cy N C;. This
immediately implies Ay = A; R;. |

Note that Rj, Rj, = Rj, Rj, forany ji, j» €{1,..., L}. So, by the above lemma,
we can determine all the folding maps as follows.

Lemma 4.16. Fixs* = (s},...,s7) €{l,.. ., N}t For A € By, define gg+ 4:Cy —
Cy by

L
peea(x) = NATT(R) 7 (x = cff ;)
j=1
for any x € Cs, .5, Then @y 4 is a folding map. Moreover, {¢s+ 4 | A € BL} is
the totality of folding maps for any s* € {1,..., N}E.

Examples of folding maps in the case of L = 2 are given in Figure 4.1. In each
example, s* = (1,1) and A = I. The element of B, in each square indicates the
corresponding A(R;)!! _sfl(Rz)lsTS;l.

Notation. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Set

K™ = U Juw(Cy).

weTyy,

Due to the next lemma, one can easily determine the non-degeneracy of K by
examining K (.

Lemmad4.17. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Then £ is non-
degenerate if and only if KM N Bji #@forany j € {l,...,L}andi € {1,—1}.
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/ R, / Ry | —1| Ry | —1I
I | R | T | Ry
R, | =1 | Ry
Ry | —1| Ry | —1I
1 Ry 1 I | R | I | R
N =3 N =4

Figure 4.1. Folding maps.

Proof. Since K € KM, the “only if” part is obvious. Assume that KV N B;; # @
forany j € {l,...,L}andi € {l,—1}. We are going to show that K®* N B;; # @
forany j € {l,...,L},i € {1,—1},and k € {1,...,n} by induction on n. Assume
that the claim holds for n. Let w € T, satisfying f,,(C«) N Bj; # @. Since

(fw) ™ (fw(Cs) N Bji) = Bjy i,
for some j; € {1,...,L}and i; € {1, —1}, there exists s € 7} such that

S5(C) N (fuw) ™' (fu(Ce) N Bjy) # 9.

This implies that f,,5(Cx) N B;; # . Thus we have shown the desired statement for
n + 1. Now by induction,
K® n Bj; <0

forany j € {1,...,L},i € {l1,—1}. Since K™ is monotonically decreasing and K =
Mus1 K@, it follows that K N Bj; # @ forany j € {1,...,L}andi € {1,—1}. =

The locally symmetric property can also be determined by the first step of the
iteration as follows.

Lemma 4.18. Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. Then £ is
locally symmetric if and only if Ky U K, is invariant under the reflection in {s; for
any (s,t) € Ef

Proof. The “only if” part is obvious. We show the following statement by induction
onn > 1.

Forany k € {1,...,n}and (w,v) € E¢, Ky, U K, is invariant under the reflection
infy .

The case n = 1 is exactly the assumption of the lemma. Suppose that the statement
holds for n. Let (w,v) € E,fﬂ. In the case 7" (w) = 7" (v), lets = 7 (w). Then w =
sw’ and v = sv’ for some w’, v’ € Ty,. Since f,(Cs) = f5(fu(Cy)) and f,(Cy) =
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f5(for(Cx)), we see £y € EL. By induction hypothesis, K, N K, is invariant
under the reflection in £, .. Applying f, we see that K, U K, is invariant under the
reflection in £, 5. In the case 7" (w) # 7" (v), let s = #" (w) and let = 7" (v). Since
Ly CSlss = fs(Bj,;)forsome j €{l,...,L}andi € {1,—1}, we obtain (s,) € Ef.
So, K5 U K; is invariant under the reflection in £, ;. Denoting this reflection by R,
we see that R coincides with the reflection in £y, 5. Since R(fi(Cx)) = fu(Cy), it
follows that R(Ky) = R(K; N fu(Cy)) = K; N f,(Cx) = K. So we have verified

the statement for n + 1. Thus by induction, we have the desired result. [
Next, we consider the strong connectedness.

Lemma 4.19. Let £ = (K, S, {fs}ses) be a locally symmetric subsystem of cubic
tiling. If £ is non-degenerate and (T, E f) is connected, then £ is strongly connected.

Proof. By the non-degeneracy, we see that K™ N Bi; #@forany j € {l,...,L}
andi € {1,—1}.

We are going to show that (7%, E,f) is connected for any k € {1,...,n} by
induction on n > 1. Assume that w,v € Ty41. If 7”7 (w) = 7" (v), then there exist
w’,v" € T, such that w = sw’ and v = sv’, where s = 7" (w). Since w’ and v’ are con-
nected by an E’-path, w and v are connected by an Eﬁ 41-path. In the case 7" (w) #
a"(v), let s = 7™ (w) and let t = 7" (v). Then w = sw’ and v = v’ for some
w’, v’ € T,. Since (11, Ef) is connected, there exists an Ef-path (s(0),...,s(m))
such that s(0) = s, s(m) =t and (s(i),s(i + 1)) € Ef foranyi =0,...,m — 1. For
eachi =0,...,m—1,since U, er, fu(Cs) N Bj; #@forany j ={1,...,L}and
i €{l,—1}, there exists u(i) € T, such that fs(,-)u(,-)(C*) N Es(i),s(i-i—l) Z# 0. Since £
is locally symmetric, there exists v(i) € T, such that fg41)»@)(Cx) is the image of
Js@yu()(Cx) by the reflection in €4y 5(i+1)- Define v(—1) = w” and u(m) = v’. Then
w = s(0)v(—1) and v = s(m)u(m). Since (T, Eﬁ) is connected, v(i — 1) and u(i)
are connected by an Eﬁ-path forany i = 0,...,m — 1. Adding s(i) at the top, we
obtain an Efl 4 1-path between s(i)v(i — 1) and s(i)u(i). Combining all these Eﬁ e
paths, we obtain an E* 4 1-path between w and v. Thus (7}, +1, E! 4+1) 1s connected.
By induction, we see that £ is strongly connected. u

Lemma 4.20. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Assume that

K Nint(Cy) # 0. Forany s € {1,...,N™L if K N int(CsL’Nm) % (0, then there

exists w € Ty, such that fy, (Cy) = CSL’Nm.

Proof. Suppose that f,,(Cx) # C;V" for all w € Tyy. Then f£,,(C.) N G s
included in the boundary of CSL N and hence Jw(Cx) N int(CsL N ) = @. So,

K™ ain(CFN") = | (fw(Co) nin(CEN™)) = 0.

weTm

Since K € K™ | it follows that K N int(CEN") = g. n
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The following relation between a folding map and a subsystem of cubic tiling will
be used to characterize local symmetry.

Lemma 4.21. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Assume that
K Nint(Cyx) # @. Let ¢ be a folding map. Then the following four statements are
equivalent:

(@ ¢(K) =K.

(b) @o fo(K™) = K™ foranys € S and m > 0.
(c) gofs(K)= K foranys € S.

d) oK™y = K™ for any m > 0.

Proof. (a) = (b): Lets € S. Then ¢o fs(K) C K. For any w € T, there exists T =
(t1,....t) € {1,..., N™}L such that po f;( fi (Cx)) = CEN" . Now

K 2 9o fs(fu(K Nint(Cy))) = ¢o fyo fu (K) M int(CLN™).

Since K Nint(Cy) # @, this implies K N int(C,L’Nm) # . Lemma 4.20 shows that
90 fi(fw(Ci)) = CEN" € K 50 that

po fs(K™) = ) gofs(fu(Cx)) < K™.

weTy,

As o f; € By, preserves the Lebesgue measure of a set, we see (pofs(K(m)) = Km
(b) = (c): Since ()20 Km = K,

pofs(K) = ¢°fs( N K(’")) =) K™ =K.

m=0 m=>0

(c) = (a): Since K = (J g f5(K),

oK) =o(|J 1(K)) = K.

seS

(b) = (d): Since | J,cg fs(K™M) = KOm+D),

oK) = o( | fi(k™)) = K.

seS
(d) = (a): Since (=0 Km = K,
p(K) = gg( ﬂ K(m—i—l)) — m Km — g -
m>0 m>0

The next theorem tells that a locally symmetric subsystem of cubic tiling is almost
an inverse of a folding map.
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Theorem 4.22. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling.

(1) If £ is strongly connected and locally symmetric, then there exists a folding
map satisfying
¢" o fu(K™) = K™

foranyn > 1, m > 0and w € T,. In particular,
(p"(K("+m)) - gm

foranyn > 1, m > 0and

¢"(K) =K
for any n > 1. Furthermore, define Fs: C. — Cs by Fy = (p|c,)”! for each
s € S. Then
K = | J Fs(K)
SES

and (K, S, {Fs}ses) is a self-similar structure.
(2) Suppose that K N int(Cy) # Q. If there exists a folding map ¢ such that
¢(K) = K, then £ is locally symmetric.

Proof. (1) Fix s € §. Recall that there exists &y € B, such that
1
fs(x) = NCDSX + ¢

for any x € Cy. Set Ay = (®5)~! and define ¢ = gy, 4, Since o f; = I, it follows
that " o(fs)" = I forany n > 1. Thus letting

Sp = 8§58,

n-times
we see that "o f;, (K) = K. Choose T = (ty,...,71) € {I,..., N"}¥ such that
cEN" = fs5,(Cx). Letw € T,,. Choose £ = (£;,...,&) € {1,..., N"}L such that
CEL N = fw(Cx). Since & is strongly connected, there exists an E%-path (w(0),
..., w(m)) between s, and w. Following this path and applying the reflections in
Lw(i),w(i+1), We see that

L,N" L,N"
Ky —c = R(Ks, — BN,

where R = ]_[jLzl(R j)|’-/ —& 1. Note that ¢” is an N"-folding map. Hence, for any
y €{1,..., N"}L, there exists A, € By, such that

(pn(x) — N"Ay(x _CJE"NH)
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for any x € C,,L’Nn. Applying Lemma 4.16 to ¢”, we see that

¢"0 fu(K) = ¢" (Ky) = N" Ag(Kyy — cf M)

= NnArRR(KSn - C‘f‘,Nn) = gon(Ksn) = K

Hence

¢"o fi,(K) = K
forany n > 1 and w € T,. Since K € K _ it follows that ¢"o f,, (K™) D K. Note
that ¢"o f,, (K™ = U, e C,{"Nn for some subset B C {1,..., N"}£ and K™ is
the minimal of such unions containing K. This shows ¢"o f,, (K™) 2 K Since
"o fp preserves the Lebesgue measure of a set, we conclude that

9" fu(K™) = K.

Since K™+ = |, 1, fw(K™), we obtain o™ (K" ™) = K™ Note that K =
Uwer, fw(K). Hence ¢"(K) = K. Moreover, if p(x) = NA;(x — ¢5) for x € Cy,
then by Lemma 4.21 (c), we have K = NA;(K;s — cs). This implies

1 _
Ks = N(As) 'K + ¢s.

Hence letting Fg(x) = ﬁ(As)_lx + c5, wesee K = | J g Fs(K).
(2) Suppose that (s,t) € Ef Then by Lemma 4.16, there exist A; € By and
j €{1,..., L} such that
@(x) = NAg(x —cs)
for any x € C; and
@(x) = NAsR; (x — ;)

for any x € C;. Since go f;(K) = K and go f;(K) = K by Lemma 4.21, it follows
that

1 _ 1 _
Ky —cs =N(As) 'K and K;—c; =NR]~(AS) K.

Therefore,
1 _
R(Ks —cg) = RN(AS) 'K = K; — ¢y,

so that K; U Kj is invariant under the reflection in £ ;. Thus Lemma 4.18 shows that
£ is locally symmetric. |

By (2) of the above theorem, we immediately have the following sufficient con-
dition for the local symmetry.
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Corollary 4.23. Let S € {1,..., N}t Assume that B;; N (Uses Cs) # @ for any
je{l,...,L}andi € {1,—1}. Let ¢ be an N -folding map. Define

fs = @le)™
forany s € S. Let K be the unique non-empty compact set satisfying
K =] £(K).
sES

Then, £ = (K, S,{fs}ses) is non-degenerate and locally symmetric.

Proof. Since Bi; N (|Useg Cs) # @ forany j e {l,..., L} and i € {I,—1}, Lem-
ma 4.17 shows that £ is non-degenerate and hence K N int(Cy) # @. Moreover, it is
immediate to see that ¢(K) = K. Now Theorem 4.22 (2) suffices. ]

Note that by Theorem 4.22 (1), if a subsystem of cubic tiling is locally symmetric
and strongly connected, then it is given by a inverse of a folding map described in
Corollary 4.23.

Now we are ready to give a proof of Theorem 4.13.

Proof of Theorem 4.13. By Theorem 4.22, we may assume that £ is given by an
inverse of a folding map described in Corollary 4.23 without loss of generality. Note
that

@ fwic)™ = fu (4.16)
foranym > 1and w € Tp,,. Foranym > 1 and e = (w, v) € Ef;,,by (4.16),

9" € s = () " awcon s = (o) iw@onsfuc-

Hence X(e) = X(e") and ¢, = I, where [ is the identity map. Now let

I= {(X(e),X(e’),fﬂe) lec U Eﬁ’}’

m>1

and set § = {/} and §; = G k.1 N BL. We are going to make use of Theorem 4.8.
By the fact that &£ is strongly connected, we have (a) of Theorem 4.8. Since ¢, = 1
forany e € | J,,.-, EL,, (b) of Theorem 4.8 is obvious.

Now it only_ remains to show (c) of Theorem 4.8. Let w € T,. Suppose that
Jw(Cy) = HiL=1 [, 0 + %] Then every path p € 15’1(1,21 (w) contains a path between
hyperplanes

{(x1,....x) | xj =aj} and {(xl,...,xL)|Xj = —m}

or

2 4
—} and {(xl,...,xL) | x; =« +W}

{(xl,...,xL)|xj =o; + N7
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for some j € {1,..., L}. This implies that there exists j« € {1,..., L} such that
¢"(K(p)) N Bj,; # @ foranyi € {1,—1}. Note that ¢ (K(p)) = K(¥»(p)). Hence
there exists a path p;, € ¥, (p) between Bj, _; and B}, 1. By (SDR), for any j; # Jjs,
there exists ix € {1, —1} such that RJ , €8«k.1). Setpj, = (R;* 11) (pj,)- Then
K(pj,) N Bj, i # 9 for any i € {l,—1}. Moreover, K(p;,) and K(p;,) intersects at
H;: j,- Thus set px = Uk 1 Px. Then py is connected and K(p«) N Bx; N K # @
forany k € {1,...,L} and i € {1, —1}. Moreover, px C Ugeﬁ(K,T)OIBL g*(Wn(p)).

Thus we have verified (c¢) of Theorem 4.8. ]

Proof of Theorem 4.14. The arguments are the same as in the proof of Theorem 4.13
except the deduction of (c) of Theorem 4.8.

In the case of (RS), to construct p;, from p;, , we use (t*)% in place of R;: i Then
the advantage of being planar yields K(pj,) N K(p;) # 9. The rest is the same as in
the proof of Theorem 4.8.

Next, assume (NS). Let w € T,, and let p = (w(1),...,w(k)) € ‘GIS)m (w) with
M = 4N — 3. Note that ’

#({x" D), .... 7" (wk)}) = M
We are going to show that
K(Yn(p)) N Bji # 0 (4.17)

forany je{l1,2}andie {1, —1} Suppose K (¥, (p)) N B1,1 =90. As ¢~ "(By,1) forms
vertical lines at intervals of we see that K(p) is contained in the interior of

Nn ’
a vertical strip (J; —y_yn C(zi*l\;) U Cé:fil j)» Which is denoted by Z;,, for some i.
Let Cy, ..., C; be the collection of connected components of
weTy
and set

Di ={v|veTy, fu(Cs) € Ci}
fori = 1,...,[. Then by (NS), we see that
#(D;) <2(2N —2).
Note that Ule Jam (i) (Cx) C C;, for some i,. Hence
AN — 4> #(D;,) > #({x™(w(@)) |i =1,...,k}) > M = 4N — 3.

This contradiction shows (4.17). Thus setting U, = ¥, (p), we have (c) of Theo-
rem 4.8. ]

To conclude this section, we present a useful criterion to determine if g € By is
a symmetry of (K, T') or not.



Conductive homogeneity of self-similar sets 76

Lemma4.24. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Assume that £
is non-degenerate, locally symmetric and strongly connected. Let ¢ be the folding
map satisfying Theorem 4.22 (1). Then for g € By, if there exists a map g«. S — S
such that, for any s € S, g(Cs) = Cq,(s) and Ag, (58(As)™! = g* for some k > 0,
then g € g(K,T)-

Recall that A € B, is given in Definition 4.11 (2).

Proof. We are going to show that g(K™) = K™ for any n > 1 by induction. For
n = 1,since g(Cy) = Cg,(5), it follows g(K) = K. Next assume that

g(K(”)) = K™
Then by Theorem 4.22, go fy(K™) = K™ so that A;®;(K™) = K™ Hence
1 _
S(K®) = S (A)THE™) + 5.

Sett = g«(s). Then

g(fs(K™))

1 _ 1 _ -
FEAITHEK®) + e = ()T Arg(A) T K D) + ¢

FADT D) e = f(K)

Since K"+ = | J, .5 fs(K™), this yields g(K®*V) = K@+ Thus using induc-
tion, we see that g(K™) = K® for any n > 1. Since (=1 K™ = K, we obtain
g(K) = K. Now, since g(K™) = K® it follows that, for_any w € T,, there exists
v € Ty such that g(fy (Cx)) = fu(Cx). Set v = g« (w). Then g«: T, — T,. Since
g(fw(Cx)) = fe.(v)(Cx) and g(Ky) € K, we see that

g(Ky) Cg(fu(Cy)NK = fg*(w)(c*) NK=K NME

Using g~ ! in place of g in the arguments above, we obtain g_l(Kg*(w)) C Ky as

well. Thus we have shown g(Ky) = Kg, ), so that g € Gk 1). m

4.4 Examples: subsystems of (hyper)cubic tiling

In this section, we present examples of subsystems of cubic tiling having conductive
homogeneity.

We begin with planar examples where dimg g (K, dx) < dimpg (K, dx) < 2, so that
they are 2-conductively homogeneous and have self-similar local regular Dirichlet
forms constructed in Theorem 4.6.
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R, 1
R, R,
I Ry I

Figure 4.2. Chipped Sierpiriski carpet.

Example 4.25 (Chipped Sierpinski carpet). Let L = 2 and let N = 3. Let S be the
set of squares in the right figure of Figure 4.2 where one of Ry, R, or I is written.
The corresponding f; is given by

1
fs(x) = NqDSX + CS’

where @ € B, is indicated in Figure 4.2. Note that if the upper-left square belonged
to S as well, then K would be the Sierpinski carpet. Lemma 4.17 and Corollary 4.23
show that £ is non-degenerate and locally symmetric, respectively. Then using Lem-
ma 4.19, we see that £ is strongly connected. Finally, Lemma 4.24 shows that Rl_a €
9k, so0 that (SDR) is satisfied. Thus we have confirmed all the assumptions in
Theorem 4.13. Note that K N dCy has two different ingredients, the line segment, and
the Cantor set. The lack of rotational symmetry enables such a phenomenon. Another
unique feature is the “countably ramified” property, that is, after removing a certain
countable set, every remaining point becomes a connected component. Because of
this property, J, introduced in (4.15) is not a covering system. Furthermore, no matter
how we choose a covering system § C g, we cannot avoid a pair {w, v} € § where
Ky N K, consists of a single point. It is our conjecture that dimgg (K, d) = 1 for the
chipped Sierpinski gasket. In this example, since there are enough number of straight
lines inside K, (K, d«) has the chain condition and hence the heat kernel associated
with (&, W?) satisfies (3.26) and (3.28).

Example 4.26. Let L = 2 and let N = 4. As in Example 4.25, S and {®;}ses are
indicated in the right figure of Figure 4.3. It is easy to see that the corresponding
self-similar structure is non-degenerate, locally symmetric, and strongly connected in
the same way as Example 4.25. Moreover, Lemma 4.24 shows that R%J € $k.,T), 50
that (SDR) is satisfied. Thus we have confirmed all the assumptions of Theorem 4.13.
Unlike the chipped Sierpinski carpet, this example is not “countably ramified”. In this
example, like the chipped Sierpifiski carpet, K contains enough straight lines. This
implies that (K, d«) has the chain condition, so that the heat kernel associated with
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3 £ : Ry| —I| Ry| -1

Figure 4.3. Non-countably ramified example.

(&, W?) satisfies (3.26) and (3.28). In this example, g, given by (4.15) is a covering
system with covering numbers (4, 2).

Example 4.27 (Moulin/Pinwheel). Let L = 2 and let N = 5. As in the above exam-
ples, S and {®;}ses are indicated in the right figure of Figure 4.4. The assumptions
of Theorem 4.14 are verified in exactly the same way as before including (RS), i.e.,
®% € Yk,1)- In this example, unlike previous ones, (K, dx) does not have the chain
condition and hence we have (3.26) and (3.27). In this example, J, given by (4.15) is
a covering system with covering numbers (4, 2).

1| R, I
E“E‘}ﬁ : —I|Ry| 1| R,
i wl [

B i“ ”éhﬁg
¥ BB Ry|—1T|Ry|—1
oagy

¥ B & I Ri| 1

Figure 4.4. Moulin/Pinwheel.

The next two examples satisfy (NS) and have no B,-symmetry. Furthermore,
¢ given by (4.15) is a covering system with covering numbers (4, 2).

Example 4.28. Let L =2 andlet N = 6. As in the previous examples, S and {®; }ses
are indicated in the right figure of Figure 4.5. In the same manner as before, we verify
local symmetry, non-degeneracy and strongly connectedness. By the right figure of

Figure 4.5, we verify (NS). We have #(S) = 23, so that dimg (K, dy) = lffgzg.

Example 4.29. Let L =2 andlet N = 7. As in the previous examples, S and {®; }ses
are indicated in the right figure of Figure 4.6. In the same manner as before, we verify
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I | Ri| 1 |Ry

Ry Ry|—-1|R>

I |\R| 1 [|Ry

Figure 4.5. Non-symmetric example 1.

local symmetry, non-degeneracy and strongly connectedness. By the right figure of
Figure 4.6, we verity (NS). In this example #(S) = 30, so that dimg (K, dx) = %.
Note that

log 5 log4

hile di KNRy_1)= .
log7 while dim ( 2.-1) log7

dimg (K N Ra,1) =

I |(Ri| 1 1 R||
R> R>|—I| R>
1] | [1]
Ry | -1 —I|R>|—1|R>
I (R
—I|R>|—I| R> R_2
1 I |Ri| 1

Figure 4.6. Non-symmetric example 2.

In the following examples, we may choose an arbitrary L > 2.

Example 4.30. Let S = {1,..., N}X\{s.}, where s, = (1,...,1). Alsoletp = gy, 1,
i.e., ¢ is a folding map given by

@(x) = NAs(x —c5)

for any s = (s1,...,s2) € {1,..., N}* and x € Q;, where A; = ]_[jLzl(Rj)|sf_1|.
Note that (45)~! = A;. Define

1
fs(x) = WASX + cs
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and let K be the unique non-empty compact set satisfying
K = fu(K).
SES

Then £ = (K, S, {fs}ses) is a self-similar structure. According to Corollary 4.23,
&£ is non-degenerate and locally symmetric. Moreover, Lemma 4.19 shows that &£
is strongly connected. Additionally, using Lemma 4.24, we see that §(g ) is gener-
ated by {R}l o 1. j2€{l,.... L}, j1 # j2} and it is isomorphic to the symmetric
group of order L. Hence by Theorem 4.13, K is p-conductively homogeneous for any
p > dimyr(K, dy). Note that §(g 7y is a proper subgroup of By in this case. In this
example, ¢ given by (4.15) is a covering system with covering numbers (2L, L).

Example 4.31 (Hypercube). Let S = {1,..., N}% and let fi(x) = %x + ¢ for
any s € S and x € [-1,1]F. Set K = [—1,1]%. Then (K, S, { f;}ses) is a self-similar
structure. Obviously, £ is non-degenerate, strongly connected and locally symmetric.
Moreover, 9,7y = By . In this case, , is a covering system with covering numbers
(2L, L).By Theorem 4.13, K is p-conductively homogeneous for any p > L. In fact,
for any p > L, we see that W1?(K) = WP and there exist ¢ > 0 such that

c&p(f) = [ VF1Pdx =6 () (4.18)
K
for any f € WLP(K), where &, is the self-similar p-energy constructed in Sec-
tion 4.1. The rest of this example is devoted to showing these facts. Let
A={w(), w?),w@)} < T,
Then Ky, (1), Ky (2) and Ky, (3) are three consecutive cubes in x-direction, i.e.,

Kway N Kyey) = fwu@)(B1,1) = fwe)(Bi,-1).
Koy N Ky@) = fwe)(B1,1) = fwue) (Bi,-1).

Let A7 = {w(1)} and let A; = {w(3)}. Then, the function attaining the infimum in the
definition of &, ,,,(A1, A2, A) depends only on the first variable x; and is a piecewise
linear function in the direction of x;. Consequently, we see that

gﬁ,m(Al,Az, A) > 2mL=p)=1
On the other hand, the comparison of moduli shows
1
M (Ay, Az, A) < M) L (w)
for any w € T. Therefore, there exists ¢, > 0 such that

c22m(L—p) = 81,p,m(w7 lel)

foranym > landw € T.
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Now, for f: K — R, we define ﬁn: Tm — T by ﬂ,,(w) = f(fw(0)). Then there
exists ¢ > 0 such that

mr=Dg o (fn) = c/ |V f|Pdx (4.19)
K

asm — oo forany f € C*°(K). So there exists ¢z > 0 such that &1 (W, Tyy|) <
¢32™(L=P) for any w € T. Thus the scaling exponent of ¢ appearing in (3.17) is
2L=P_ Combining this fact and arguments analogous to those in [41, Section 5.3], we
have the following Korevaar—Shoen type expression of W?:

J— 1 — p
'W":{f’fGLP(K,dx),lim/—Lf Mdydx<oo}.
r40 Jk 1% JBy, (x.r) re
This expressing enable us to identify W2 with W17 (K). By (4.19), we see that (4.18)
holds for any f € C*°(K). Since C*°(K) is dense in W 7 (K), (4.18) holds for any
fewr,

4.5 Rationally ramified Sierpinski crosses

In this section, we present another class of conductively homogeneous spaces called
rationally ramified Sierpifiski crosses. This example is a planar square-based self-
similar set as those in the last section but the sizes of the squares constituting it are
not one but two. See Figure 4.7. Consequently, although it has full B,-symmetry, we
should make a little more complicated discussion than that of the previous section to
show the conductive homogeneity.

The family of Sierpinski crosses was introduced in [31, Example 1.7.5].

Definition 4.32. Let r1,r, € (0, 1) satisfying 2r; + r, = 1 and r; > rp. Let p; =

(_lv _1)9 P2 = (07_1)’ pP3 = (17_1)? P4 = (130)’ pPs = (1’ 1)’ Pe = (Ov 1)’ P71 =
(—1,1) and pg = (—1,0). Set S = {1,...,8}. Fors € §, define F;: Cx, — Cx as

- if s is odd,
Fs(x):{rl(x ps) + ps ifsiso

ra(x — ps) + ps if s is even.

The self-similar set K with respect to the family of contractions { Fs }ses is called the
(r1)-Sierpiriski cross. Define

b, ={-1} x[-1,1], fLg={1}x[-1,1],

by =[-1,1] x{-1}, £r=[-1,1]x {1},

where the symbols, L, R, B, and T correspond to left, right, bottom, and top, respec-
tively.
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{r
Ke
K; [ ] Ks
0L |Kg Ka| lr
Ki || Kj
K>
{p

Figure 4.7. The p.-Sierpifiski cross: ps« = +/2 — 1.

In this section, we will show that if an (ry)-Sierpiriski cross K is rationally ram-
ified, then it is p-conductively homogeneous for any p > dimyg(K, dx). Roughly
speaking an (rq)-Sierpinski cross is rationally ramified if Uven () Kv, which repre-
sents the local geometry around w € T, has finite types of variety up to the isometries
when w € T varies. See [31] for the exact definition. In fact, in [31, Proposition 1.7.6],
it is shown that an (r1)-Sierpiniski cross is rationally ramified if and only if 1 —r; =
(r1)™ for some m > 2. For simplicity of arguments, we confine ourselves to the case
m = 2 hereafter in this section. The generalization to other values of m is a little
complicated but the essential idea is the same.

In the case m = 2, the value of r; equals +/2 — 1. Set px = +/2 — 1. Our main
object of study is now the p,-Sierpinski cross. We take advantage of the framework
of Section 4.1 with r = p, and

. 1 if s is odd,

Jo = 2 ifsiseven
to define (7, +, ¢) and the associated partition of K. In this case, g(w) is the con-
traction ratio of the map Fy, = Fy, 0---0 Fy,,, forw = w; ... w, € S™. Note that
g(w) = (ps)" or (ps)" 1 for any (n, w) € T),. For example, A5, = S and

Ag

(0r)2 = {1s,3s,55,7s | s € S,s:even} U {ls,3s,5s,7s | s € S,s:0dd}

U{2,4,6,8).

Note that g(1s) = (p«)? if s is even and g(1s) = (p«)? if 5 is odd. Moreover, A5, N
Afp*)z # @ in this case. Let d, be the restriction of the Euclidean metric to K. Let
hp,(n, w) = (ps)" for (n,w) € Ty,. It is straightforward to see that d is 1-adapted
to the weight function £, , i.e., Assumption 2.15 (2B) holds with M, = 1.

For simplicity, to denote an element in 7},, we use w in place of (n, w) hereafter
as long as no confusion may occur.
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The Hausdorff dimension of (K, dx) is given by the unique number o g satisfying
4(ps ) 4 4(ps)*H = 1.
Consequently, we see that
log?2
log (1 +v/2)
Let u be the self-similar measure with weight (i;);ecs, where

) ()™ ifi s odd,
l (p«)%%H if i is even.

g =

Then p is the normalized o g -dimensional Hausdorff measure and is o7 -Ahlfors reg-
ular with respect to d,. After those observations, it is easy to see that Assumption 2.15
is satisfied with M, = My = 1, N, = 8. Moreover, we see that L, < 8.

The main result of this section is as follows.

Theorem 4.33. Forany p >0, n,m,k > 1, w € T, andu,v € Ty,

M(l)

1y (W) < 8QHPTH#(Ti )P M), (v, Tp).

An immediate consequence of the above theorem is the conductive homogeneity
of the Sierpifiski cross.

Corollary 4.34. The ps«-Sierpiriski cross K is p-conductively homogeneous for any
p > dimyr(K, d«). Moreover, there exists a self-similar p-energy &, on W?. In par-
ticular, there exists a local regular Dirichlet form (&, W?) on L*(K, j1) whose asso-
ciated heat kernel satisfies (3.26) and (3.28).

Note that due to the two different values of js, the self-similarity of the p-
energy &, is given as

Ep(f) =0 E(foFy) +02 > E(foFy)

s:odd s:even

for any f € WP,
Proof. By (2.13), it follows that
E1.pm(w, Ty) < Cp#(Tk-H)pSp,m(u, v, Tk)

foranyn,m,k > 1, w € T,, and u, v € Ty.. Moreover, since p > dimyg(K, d«), there
exist ¢ > 0 and @ € (0, 1) such that

E1,pm < ca™
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for any m > 1. Thus we have obtained (3.19) and (3.20), so that K is p-conductively
homogeneous by Theorem 3.33. In particular, since ey < 2, K is 2-conductively
homogeneous and we have (€, W?). Since (K, dx) has the chain condition, by The-
orem 3.35, we have (3.26) and (3.28). ]

To show Theorem 4.33, we need to prepare several notions.

Definition 4.35. (1) Set
U ={(2,13),(2,31), (4,35),(4,53),(6,57),(6,75),(8,17), (8,71)}.

For (i, jk)e U, define R; jr: K; — K as the reflection in the line segment K; N K.
Moreover, define R;"jk(w) forw € T(i) U T(jk) as the unique v € T(i) U T (jk)
satisfying R; jx(Ky) = Ky. R;kjk is amap from 7(i) U T (jk) to itself.

(2) For g € B,, define g*: T — T by
g w) =v,
where v is the unique v € T with g(Ky,) = K,. Note that g*|r,,: T, — T.
(3) Forw e T,ifw ¢ T(2)UT(4)UT(6)U T(8), then define
Hw ={g"(v) | g € Ba}.
Otherwise, if w € T (i) fori = 2,4, 6,8, then define
Hw = {8 (v) | g € B2} U{g«(R] ;1 (v)) | g € B2, (i, jk) € U}

Note that #(H#y,) < 24 for any w € T,.
By the construction of T, we see that g(w) = (p«)" or g(w) = (p«)" ! for any
w € T,}. In fact, we immediately obtain the following lemma.

Lemma 4.36. Set T = {w | w € T, g(w) = (p«)"} and T'! = {w | w € Ty,
g(w) = (0«)" '} Then

(1) Forany w € T,}, wv € Ty if and only if v € T,

(2) Forany w € T, wv € Tyim if and only if v € Ty—1.

B) we T,:’:ll if and only if w € T'"*! or w = tj for some T € T and j €
{1,3,5,7}.

4 we T,:’j_'lz ifand only if w = tj for some v € T,} and j € {2,4,6,8}.
Definition 4.37. (1) Define ¥, ,,: S™(T,) — T by

w:,m(wv) =7

forw e T)) and v € Ty,.
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(2) For w € T, define #2 C T by

w

70 — {{w,R;].k(w)} if w e T(jk) for some (i, jk) € U,

{w} otherwise.
For w € T”“Ll1 and u € T, define

n {{‘L’U|UEJ€]OM} ifw = 1tj forsomet € T and j € {1,3,5,7},

v {wu} ifwe Tr+L

(3) Define
Ko= | J Ks (4.20)
5€8,KsNloy 70
for % € {T,B, R, L}. For example, Kg = K; U K, U K3.

Note that if w € T}, then #; 0 ¢ T, and that if w € T:j:ll and u € Ty,—1, then
f}(ﬂ,u - Tn+m-

Lemma 4.38. Assume that there exists a path p = (w(l),...,w()) of Tyy—1 con-
tained in Ky such that K,y N4 # 0, Kyqy) N Ly # 0, and p is R;-invariant.

Set
Jf: — U U Jfk-i—l

k+1 ved,
weTk_H u

foru € Ty,—1. Then for any uy,u, € Ty, there exists pg € ‘(f,(,,l)({ul}, {uz}, Ty) such

that
l

po S |J %5 )- (4.21)
i=1
Remark. Strictly, po is not a subset but a sequence of points. However, in (4.21), we
use po to denote a subset consisting of the points in the sequence. We use such abuse
of notations if no confusion may occur.

Proof. Set
Y =pUO%(p)UB;(p)U O3 n(p)

ThenY = g*(Y) forany g € B,. Let

aorwy=J Yk

k+1veY
weTk_H

See Figure 4.8 for an illustration paths ¢ and Y along with a part of H*(Y). It
follows that K(H*(Y)) is a connected set intersecting K,, for any u € Tj. Therefore,
we can choose a path po connecting K,,, and Ky, from J*(Y). Since #*(Y) C
Ule Hy, (i)» We have the desired statement. n
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Figure 4.8. Paths ¢ and Y, and a part of J*(Y).

Proof of Theorem 4.33. Let w € T,, and let u;,u, € Ty. Forany p € ‘61(’1,)”(11)), set

Jem—l(p) = U Hu.

UEY L1 ey NS D)

Then Hyu—1(p) € Tin—1 and g* (Hpm—1(p)) = Hm—1(p) for any g € B,.
Claim 1. There exists a path p* contained in H,,—1(p) such that one of the following
four statements is true:

(@ K(p*) Nl # 0 and K(p*) N K1 # 0,

(b) K(p*) Ner # @ and K(p*) N Kg # 9,

() K(p*) N4y # 0 and K(p*) N Kr # 9,

(d) K(@p*)N4Lg # B and K(p*) N KL # 0.

Proof. Let Fy,(Cy) = [a,a + h] x [b,b + h], where h = (p«)" if w € T, and h =
(ps)"tlif w € TP T, Define

Awy =la—y.a+h+ylx[b—yb+h+y]
and A, = K N (Ay, (o) +1 \ Ay (p,n+2)- Two typical examples of Ay, is illustrated
in Figure 4.9. Since Ky (1) N Ky # @ and Ky ) N Ay, (p,)n+1 = @, a part of p con-
tained in Zw connects
{(@a=(p)"*, y) |y € [1,1]} and {(@ — (p)"*2, ) | y € [-1,1]},
{(@a+h,y+(p)"?) |y e[=1L 1} and {(a + h + (p)"* 1, y) | y € [-1, 1]},
{6, b= (p)") [ x € [=1, 1]} and {(x, b — (px)"?) | x € [=1, 1]},
or
{5, b+ 1+ (p)"?) | x € [=1, 1]} and {(x,b + A + (p«)" 1) [ x € [-1, 1]},
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Figure 4.9. Two examples of Ay (dark grey regions are Ky, light grey regions are Aw).

According to the four possibilities above, we have (a), (b), (c) or (d), where the
exact correspondence depends on w. O

Hereafter we assume the first case (a) in Claim | in the course of discussion.
Other cases may be treated exactly in the same manner. In the following claims, we
are going to modify the initial path p* step by step. This process of modification is
illustrated in Figure 4.10.

Claim 2. The union p* U R} (p*) contains an R,-symmetric path
p1 = (v(0),...,v(/1))
between Ly and Lr, i.e., Kyoy N g # 0, R3(v(i)) =v(ly —i) fori =1,....1;.

Proof. Let px = (w(1),...,w(l)). By (a), K(p*) intersects with the line segment
[—1,1] x {0}. Setix, = min{i | w(i) N [—1, 1] x {0} # @}. Then connecting (w(1),...,
w(ix)) and its image by R}, we obtain a desired path. O

Claim 3. The union R} (p1) U p1 contains an R,-symmetric path p such that
K(p2) € [-1,0] x [-1,1].

Proof. 1If py or R} (p1) is contained in the left half of Cy, then choose p; or RY(p1)
accordingly as our path. Otherwise, applying R; to K(p1) N[0, 1] x [—1, 1], we obtain
a desired path. O

Claim 4. Set Hp« = (U, ep+ Hu- Then there exists an R;-symmetric path p3 S Hyx
contained in Ky, such that K(p3) N €y # @ and K(p3) N {g # 0.



Conductive homogeneity of self-similar sets 88

Sk -
e e
ﬁﬁ%cn%ﬁ% ﬁgﬁﬁ e

%5%% G

K(p*): initial path K(p*) U R2(K(p™)) K(p1)
between £ and Kt Claim 3

Re.75 L] e
e
Pk

Claim 4 % Claim 3
R> 13 ?F

K(p3) K(p2) K(p1) U R1(K(p1))

it
i
i

E
e

G e

<4

g

SR
ik

i

Figure 4.10. Modifications of a path.

Proof. 1If K(p2) € KL, then we set p, = p3. Otherwise, use R} ;3 (resp. R ;) to
reflect the part K(p2) N K5 (resp. K(p2) N Kg) into K;3 (resp. K75). Then we obtain
a desired path. O

Now we have a path p3 satisfying all the assumptions of Lemma 4.38. Apply-
ing Lemma 4.38 with p = p3, we obtain a path pg € ‘6,(,,1)({u1}, {uz}, Ty). Foru €
S™(T1(w)), define

F* ifu e S™Y (T,
Hu — UUEJ(‘/’;_H,m_ﬂ”) v ( n+1)
] otherwise.

Then it follows that po € | J, <, Hy. Since #(H,) < 24 and #(I'y (w)) < 8,

veEp

#(Hy) < 48#(Tiy1) and #({v |u € H,}) <248,

So, Lemma C .4 suffices. n

4.6 Nested fractals

In this section, we show conductive homogeneity of a class of self-similar sets, called
strongly symmetric self-similar sets, that are highly symmetric and finitely ramified.
This class is a natural extension of nested fractals introduced by Lindstrgm [37],
where Brownian motions were constructed on them. In [29, Section 3.8], Lindstrgm’s
results were extended to strongly symmetric self-similar sets. Typical examples of
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strongly symmetric self-similar sets are the Sierpifiski gasket, the pentakun (“Kun”
means “Mr.” in Japanese), and the snowflake, whose definitions are given below.

Let p € (0,1) and let S be a finite subset of R for some L € N. Foreachg € S,
let fg: RL — RL be a p-similitude whose fixed point is g, i.e., there exists U,€0(L)
such that

Jq(x) = pUq(x —q) +q
for any x € RL. Let K be the self-similar set with respect to the family of con-
tractions { f;}4es. Then the triple (K, S, { f;}qes) is a self-similar structure as is
explained in Section 4.1. Throughout this section, we consider a self-similar structure
(K, S, {fq}ses) given in this way.

Assumption 4.39. (1) If p,q € S and p # q, then p & f,(K).
(2) There exists U C S such that
U 7 Fa (K) N f(K)) = U

q1,92€S
91792

(3) K is connected.
For purposes of normalization, we assume ) c;; ¢ = 0 hereafter.

Proposition 4.40. Under Assumption 4.39, (K, S, { f4}qes) is a post critically finite
self-similar structure with
Vo = U. (4.22)

Moreover; define {Vy}m>1 inductively by
Vi1 = | i (Vi)

ieS
Then
Vin C I/m—i—l (423)

foranym > 0.

The definitions of post critically finite (p.c.f. for short) self-similar structures
and V, along with the proof of (4.22) is given in Appendix 6.3. Inclusion (4.23)
is due to [29, Lemma 1.3.11].

For the self-similar structure (K, S, { f;}4es), we adopt the framework in Sec-
tion 4.1 withr = p and j;, = 1 for any g € S. In this case,

Tn=8S"={wy...wy |w; € Sforanyi =1,...,m}.

Then we see that

Vo= X

ecEf
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where X(e) is defined in Definition 4.7. Moreover, by [29, Proposition 1.3.5 (2)], it
follows that
Ky NK, = fw (VO) N fv(VO) C Vn (4.24)

for any w, v € T,, with w # v. This implies that

Vo = U X. (4.25)
(X,Y,p)elIT (K,T)

Letayg = — 1100 gg IZ . Note that Np®H = 1. Let i be the self-similar measure with weight

(p%H, ..., p“H). Basic properties of u are given in Appendix 6.3. Also, let dy be the
restriction of the Euclidean metric to K.

The following assumption is an equivalent condition of Assumption 2.15 (2B)
when d is the (restriction of) Euclidean metric. Essentially, the same assumptions
have been around from time to time for almost 30 years. See [35, Assumption 2.2]
and [38, Assumption (P)]. The assumption is believed to be true for nested fractals
but we have no proof so far. In [38], it was shown that this assumption is true if U, is
the same for any ¢ € S. In Appendix 6.3, this assumption is shown to be true if U, is
the identity map for any g € V5.

Assumption 4.41. There exists ¢ > 0 such that d(Ky,, Ky) > cp™! foranyn > 1, and
(w,v) € (T, x T))\E,;, where d(A, B) = infxe4,yeB |x — y| for subsets A, B C RL.

Proposition 4.42. Under Assumptions 4.39 and 4.41, Assumption 2.15 is satisfied
withd = ds, r = p, and My, = My = 1.

The above proposition is proven in Appendix 6.3.

Definition 4.43. (1) Let m, = #{|x — y| | x,y € Vy, x # y}, where |x| is the Eu-
clidean length of x € RZ. Define

lo = min{|x — y| | x,y € Vo, x # y}.
Moreover, define /; fori = 0, 1,...,ms — 1 inductively by
lit1 =min{|lx — y| | x,y € Vo, x # y, |x — y| > Li}.

(2) A sequence (X;);=1,.x S Vi is called an m-walk if there exists w(i) € T,
such that x;, x; 41 € fya)(Vo) foranyi =1,...,k — 1.

(3) A O0-walk (x;);=1,.. x is called a strict 0-walk (between x; and xi) if |x; —
Xiy1| =lpforanyi =1,...,k— 1.

(4) Define

9 ={g|geO(),gVy) =V and there exists g*: T — T such that
g(fw (Vo)) = fexw)(Vo) forany w € T}.
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(5) For any x,y € RE with x # y, define
Hyy={z |z eRL |x—z] = ly —z1}.

(Hyy is the hyperplane bisecting the line segment xy.) Also let gyy: RL — RL be
reflection in Hyy.

Definition 4.44. A self-similar structure (K, S, { f;}4es) is said to be strongly sym-
metric if Assumption 4.39 is satisfied and there exists a finite subgroup g, of § such
that the following properties hold:

(1) Forany x, y € Vy with x # y, there exists a strict O-walk between x and y.

2) If x,y,z € Vg and |x — y| = |x — z|, then there exists g € &« such that
g(x)=xand g(y) = z.

(3) Foranyi = 1,...,m4« — 2, there exist x, y and z € V{ such that |[x — y| = [},
|x —z| =1I;+1 and g,; € Gs.

(4) Vy is G.-transitive, i.e., for any x, y € Vp, there exists g € G, such that
glx) =y.
Remark. By Definition 4.44 (4), |q1| = |q2| for any ¢, g2 € Vp.

Definition 4.45. A self-similar structure (K, S, { f;}4es) is called a nested fractal if
Assumption 4.39 holds and g, € ¢ forany x, y € V, with x # y.

By [29, Proposition 3.8.7], we have the following proposition.
Proposition 4.46. A nested fractal is strongly symmetric.

We give three examples of strongly symmetric self-similar sets. Note that As-
sumption 4.41 is satisfied for all three examples because of Lemma E.5. The first two
are nested fractals.

Example 4.47 (Pentakun: Figure 4.11). Let L =2andletS = {py,..., ps} beacol-
lection of vertices of a regular pentagon satisfying Z?:l pi =0andlet p = %g
Then the associated self-similar set K, called pentakun, is strongly symmetric. (See
[29, Example 3.8.11].) In this case § = §, = D5, which is the group of symmetries

of a regular pentagon, and Vo = {p1,..., ps}.

Example 4.48 (Snowflake: Figure 4.12). Let L = 2 and let {p;, ..., pe} be a collec-
tion of vertices of a regular hexagon satisfying Zle pi=0andlet S ={p1,...,
p7,0}. Furthermore, let p = % Then the associated self-similar set, called snowflake,
is strongly symmetric. (See [29, Example 3.8.12].) In this case § = 9. = Dg, which
is the group of symmetries of a regular hexagon and Vy = {p1,..., ps}.

The last example is not a nested fractal.
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Figure 4.11. Pentakun. Figure 4.12. Snowflake.

Example 4.49. Let L = 3 and let

1 1,3
S =1{-1,0,113U {—5,5} LU ={1,-1),

and p = % Note that U is the collection of vertices of the cube [—1, 1] and

41 —1 491 +1 4> —1 49> + 1 43 —1 4g3 +1
fa=11P) = [ | x [ | x[*E—, ]
5 5 5 5 5 5

forany ¢ = (q1,92,93) € S. Itis straightforward to see that the associated self-similar
set is strongly symmetric with Vo = U and § = §, = B3. This self-similar set is not
a nested fractal because g, ¢ § if x = (—1,—1,—1)and y = (1,1, 1).

Using Theorem 4.8, we have the following theorem.

Theorem 4.50. Suppose that (K, S,{ fi}ies) is strongly symmetric and that As-
sumption 4.41 holds. Then (K, dx) is p-conductively homogeneous for any p >

As for dimgr (K, dx), it was shown in [44] that dimgg (K, dx) = 1 if (K, dy) is
the Sierpinski gasket. In general, we have the following fact.

Proposition 4.51. Suppose that (K, S,{f;}ies) is strongly symmetric and that As-
sumption 4.41 holds. Then dimyg (K, ds) < 2.

Proof. Form > 0, define E,, = {(fu (%), fw(»)) | w € Tpn.x,y € Vo, x # y}. Then
the sequence {(Vin, Em)}m>o is a proper system of horizontal networks in the sense
of [34, Definition 4.6.5]. Define

Ls(Vo) = {(Dxy)x,yev, | there exists (Do, ..., Dpy,—1) € [0, 00)™*
such that Do = 1, Dy = D; if |x — y| = ;.
and }_ ey, Dxy = Oforany x € Vo}.
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In particular, let D! € £(Vp) satisfy (Dl)xy = 1forany x, y € Vo with x # y. For
D = (ny)x,erO e L5(Vp), define

=5 Y Daylh(ful) ~h(fu()
weTy,x,yeVp

for h € £(V};,) and

Epmuw = AL, 4 () | B € LVsm). BV, ks = 1.
h|Vn+mﬂ(Uv¢F1(w)Kv) = 0}
for any w € T,. Then by [29, Theorem 3.8.10 and Corollary 3.1.9], there exist D, €

£5(Vo) and o > 1 such that (D, (071,...,071)) is a harmonic structure, that is, for
any h € £L(Vy),

6" &y (h) = min {o" 1€ 1 (9) | § € L(Vimr1). 8y, = h}.

m ,m
This implies that there exist ¢y, c2 > 0 and £ > 1 such that

_ D _
cio”™ < sup &y <co ™

weT\Tk

w

On the other hand, there exist c3, ¢4 > 0 such that
1
03835 (h) < €2, (h) < c4€7%(h)

for any m > 0 and & € £(V},). Thus we see that sup,, <y SZD,,In,w < Co™™ for any

m > 0. Therefore, by [34, Theorems 4.6.9 and 4.9.1], dimgr (K, dx) < 2. ]

The rest of this section is devoted to proving Theorem 4.50. We suppose that
(K, S,{fi}ies) is strongly symmetric hereafter in this section. We have the following
theorem by [29, Proposition 3.8.19],

Lemma 4.52. If (K, S,{fi}ies) is strongly symmetric, then g(Ky) = Kgx@) for
any g € § and w € T. In particular, § C Gk T).

Lemma 4.53. If (K, S, {fi}ies) is strongly symmetric, x1, X2, y1, y2 € Vo and
|x1 — X2| = |y1 — y2|, then there exists g € G such that g(x1) = y1 and g(x3) = y,.

Proof. According to Definition 4.44 (4), there exists g; € g« such that g(x1) = y;.
Let g1(x2) = z. Then |y; — y2| = |y1 — z|. Hence by Definition 4.44 (2), there exists
g2 € G, such that g>(y1) = y1 and g2(z) = y,. Thus letting g = go0g1, we see that
g(x1) = g2(y1) = y1 and g(x2) = g2(2) = y2. u

Definition 4.54. A path (w(1),...,w(k)) of (Tjn. E,;) is said to connect x € K and
y € Kifx e Kw(l) and y € Kw(k)-
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Lemma 4.55. Let p be a path of (T, E.) connecting x1 € Vo and x, € Vy. Sup-
pose |x1 — x| = 1; for some i = 1,...,my — 1. Then there exist a path p; of
(T, Ep), x € Vo and y € Vo such that py connects x and y, p1 € U, cg, &*(P)
and |x — y| = li—1.

Notation. For a pathp = (w(1),...,w(k)) and g € &, set
g (p) = (" (w()),...,g" (w(k))).

Remark. As was done before, we regard p; and g*(p) as subsets of T}, in the above
lemma. We are going to keep doing such an abuse of notation as long as no confusion
may occur.

Proof. By Definition 4.44 (2), there exist x, y,z € Vp such that |x — y| = [;_1,
|x —z| =/; and g,,; € Gs. Also, Lemma 4.53 shows that there exists & € &, such
that ~(x1) = x and h(x;) = z. Since |x — y| < |x — z|, x and z belong to differ-
ent sides of H,,. Hence the path #*(p) intersects with H, .. Therefore, 2*(p) and
(8yz)* o h*(p) has an intersection in H, .. Since (g,)* o h*(p) connects g, (x) and
Yy = gyz(2), we can extract a path p; from 2*(p) U (g,2)* o h*(p) connecting x
and y, and included in | J,cg, *(P). Since |x — y| = /;—1, p1 is a desired path. m

Lemma 4.56. Let p be a path of (T, E,;,) connecting two distinct points in Vy. Then
for any x,y € Vy, there exists a path p’ of (T,,, E,;,) connecting x and y such that

P C Ueq, & (D)

Proof. Inductive use of Lemma 4.55 shows that there exists a path py of (75, E})
connecting two distinct points z; and z, in Vp such that |z; — z5| = [y and py C
Ugeg* g*(p). By Definition 4.44 (1), there exists a strict 0-walk (x1, ..., xj,) satis-
fying x; = x and x;, = y. By Lemma 4.53, forany j = 1,..., jo — 1, there exists
gj € &, such that g;(z;) = x; and g;(z2) = x;j41. Concatenating (g1)*(po). - - -,
(8jo—2)" (Po) and (gj,—1)* (Po), we obtain a desired path connecting x and y. [

Proof of Theorem 4.50. We are going to use Theorem 4.8. Let I = I7 (K, T) and
let §p = §; = §«. By (4.25) and the fact that T = IT (K, T), we see that Ei =E;.
Hence (a) of Theorem 4.8 is satisfied, and (b) is also satisfied due to the fact that G,
is transitive on Vj.

Let w € Ty, let u,v € Ty and let p € ‘6’1(1,31 (w). Then p contains a path con-
necting two distinct points in ( J,,rc7, fuw (Vo). Thus ¥, (p) contains a path between
two distinct points in Vy. By Lemma 4.56, for any x, y € Vj, there exists a path
Pxy € Ugeg, & (¥n(p)) connecting x and y. Set U, = U, , ey, Pxy- Then since
K(Up) 2 Wy, it follows that g(K(U,)) 2 Vp for any g € Gy. Moreover, K(Up) is
connected and Up € (J,eg, & (¥n(p))- Thus we have verified (c) of Theorem 4.8.
Now, Theorem 4.8 suffices. |



