
Chapter 4

Conductive homogeneity of self-similar sets

4.1 Self-similar sets and self-similarity of energy

In this section, we consider the case where K is a self-similar set with rationally
related contraction ratios and construct self-similar energies under conductive homo-
geneity. Throughout this section, we fix a self-similar structure

L D .K; S; ¹fsºs2S /:

The notion of the self-similar structure was introduced to give a purely topological
description of self-similar sets. See [29, Section 1.3] for details.

Definition 4.1. Let K be a compact metrizable space, let S be a finite set, and let
¹fsºs2S be a family of continuous injective maps from K to itself.

(1) The triple .K; S; ¹fsºs2S / is called a self-similar structure if there exists
a continuous surjective map �WSN ! K such that

�.s1s2 : : :/ D fs1.�.s2s3 : : ://

for any s1s2 : : : 2 SN , where SN is equipped with the product topology.

(2) Define W� D
S
n�0 S

n, where S0 D ¹�º. An element .w1; : : : ; wn/ 2 Sn is
denoted by w1 : : : wn. For w1 : : : wn 2 Sn, set

fw D fw1 ı � � � ı fwn and Kw D fw.K/:

In particular, f� is an identity map and K� D K.

Hereafter in this section, .K; S; ¹fsºs2S / is a self-similar structure.
By [29, Proposition 3.3], if .K;S; ¹fsºs2S / is a self-similar structure, �WSN !K

is uniquely given by
¹�.s1s2 : : :/º D

\
m�0

Ks1:::sm

for any s1s2 : : : 2 SN .
Typically, an example of self-similar structures is given by a self-similar set with

respect to a family of contractions. Let .X; d/ be a complete metric spaces and let
¹fiºiD1;:::;N be a family of contractions of .X; d/, i.e., fi WX ! X and

sup
x;y2X;x¤y

d.fi .x/; fi .y//

d.x; y/
< 1
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for any i 2 ¹1; : : : ;N º. Then it is known that there exists a unique non-empty compact
subset K of X satisfying

K D

N[
iD1

fi .K/: (4.1)

See [29, Theorem 1.1.4] for example. The set K is called a self-similar set with re-
spect to ¹fiºiD1;:::;N . By [29, Theorem 1.2.3], if S D ¹1; : : : ;N º, then .K;S; ¹fiºi2S /
is a self-similar structure.

Definition 4.2. Let r 2 .0; 1/ and let js 2 N for s 2 S .

(1) Define

j.w/ D

mX
iD1

jwi and g.w/ D rj.w/ (4.2)

forwDw1 : : :wm 2 Sm. (In particular, j.�/D 0, g.�/D 1.) Define z�.w1 : : :wm/D

w1 : : : wm�1 for w D w1 : : : wm 2 Sm and

ƒ
g
rn D ¹w j w D w1 : : : wm 2 W�; g.z�.w// > r

n
� g.w/º: (4.3)

(2) Set
Tn D ¹.n; w/ j w 2 ƒrnº; T D

[
n�0

Tn

and define �WT ! W � as �.n; w/ D w. Moreover, define

A D ¹..n; v/; .nC 1;w// j n � 0; v D w or v D z�.w/º:

Note that ƒgrn \ ƒ
g

rnC1
can be non-empty. (See Section 4.5 for example.) Thus

to distinguishw 2ƒ
g
rn andw 2ƒ

g

rnC1
, we have introduced Tn in the above definition.

The following proposition is straightforward.

Proposition 4.3. The triple .T;A; �/ is a rooted tree and ¹Kwºw2T is a minimal
partition of K parametrized by .T;A; �/.

In the rest of this section, we fix ¹jsºs2S and the associated partition .T;A; �/.
Furthermore, we presume the following assumption.

Assumption 4.4. There exists a metric d onK giving the original topology ofK and
Assumption 2.15 holds with the metric d .

If this assumption is satisfied, we say that ¹fsºs2S has rationally related contrac-
tion ratios ¹rjsºs2S .

In fact, under this assumption, in particular, by Assumption 2.15 (3), there exist
c1; c2 > 0 such that

c1r
j.w/

� diam.Kw ; d / � c2r
j.w/ (4.4)
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for any w 2 T . This enable us to regard the contraction ratio of fs as rjs . This is why
we say that contraction ratios of ¹fsºs2S are rationally related.

Combining (4.4) with Assumption 2.15 (2B), we obtain the following proposition.

Proposition 4.5. Define ˛H to be the unique number satisfyingX
s2S

rjs˛H D 1

and let � be the self-similar measure on K with weight ¹rjs˛H ºs2S . Then � is ˛H -
Ahlfors regular with respect to the metric d and ˛H coincides with the Hausdorff
dimension of .K; d/.

Under our assumptions, let � be the same constant as in Theorem 3.30. Note that
even if we replace the definition of zEmp .u/, (3.6), by

zEmp .u/ D �mEmp .u/; (4.5)

all the arguments in Section 3.1 work and the results are unchanged. Our goal in this
section is the next theorem.

Theorem 4.6. Let .K; S; ¹fsºs2S / be a self-similar structure and let .T;A; �/ be
given in Definition 4.2. Suppose that Assumption 4.4 is satisfied and that K is p-
conductively homogeneous for some p 2 .dimAR.K; d/;1/.

(1) For any w 2 W� and f 2 Wp ,

f ıfw 2 Wp:

(2) There exists EpWW
p ! Œ0;1/ satisfying

(a) .Ep/
1
p is a semi-norm on Wp and there exist c1; c2 > 0 such that

c1Np.f / � Ep.f /
1
p � c2Np.f /

and

c1d.x; y/
�p � sup

f 2W2;Ep.f /¤0

jf .x/ � f .y/jp

Ep.f /
� c2d.x; y/

�p

for any f 2 Wp and x; y 2 K.

(b) For any f 2 Wp , xf 2 Wp and

Ep. xf / � Ep.f /:

(c) For any f 2 Wp ,

Ep.f / D
X
s2S

�jsEp.f ıfs/:

In particular, for p D 2, .E2;W2/ is a local regular Dirichlet form on L2.K;�/.
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Proof. Define

U D
®
A.�/ j A.�/ is a semi-norm on Wp , there exist c1; c2 > 0 such that

c1Np.f / � A.f / � c2Np.f / for any f 2 Wp
¯
:

For A1; A2 2 U, we write A1 � A2 if and only if A1.f / � A2.f / for any f 2 Wp .
We give U the point-wise convergence topology, i.e., ¹Anºn�1 � U is convergent to
A 2 U as n! 1 if and only if An.f /! A.f / as n! 1 for any f 2 Wp . Then
due to the separability of Wp described in Theorem 3.22, U is an ordered topological
cone in the sense of [28].

Let w 2 W�. For any v D v1 : : : vk 2 ƒrn�j.w/ , since

g.wv1 : : : vk�1/ D g.w/g.v1 : : : vk�1/ > g.w/r
n�j.w/

D rn � g.wv/;

it follows that wv 2 ƒrn . This shows that ¹.n; wv/jv 2 ƒrn�j.w/º � Tn. In fact,

Tn D

[
w2Sm

¹.n; wv/ j v 2 ƒrn�j.w/º;

which is a disjoint union. This yieldsX
w2Sm

En�j.w/p .Pn�j.w/.f ıfw// � Enp .Pnf /

for any f 2 Lp.K;�/. Therefore,X
w2Sm

�j.w/ yEn�j.w/.f ıfw/ � yEnp .f /:

This inequality implies that �j.w/ supn�j.w/ yE
n�j.w/.f ıfw/ � Np.f /

p < 1 for
any f 2 Wp , so that f ıfw 2 Wp . Thus we have verified the statement (1). Again
by the above inequality,

c
X
w2Sm

�j.w/Np.f ıfw/
p
�

X
w2Sm

�j.w/ lim
n!1

yEn�j.w/.f ıfw/

� sup
n�0

yEnp .f / D Np.f /
p: (4.6)

Note that X
.n;v/2Tn

�j.v/ yEk�j.v/p .f ıfv/ �
X
w2Sm

�j.w/ yEnCk�j.w/.f ıfw/:

By (3.11), taking lim in the left-hand side and sup in the right-hand side, we see that

c
X

.n;v/2Tn

�j.v/Np.f ıfv/
p
�

X
w2Sm

�j.w/Np.f ıfw/
p: (4.7)
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On the other hand, for any .n; v/ 2 Tn and x 2Kv , the self-similarity of � and (3.21)
show

j.Pnf /.v/ � f .x/j �

Z
K

jf ıfv.y/ � f ıfv.x0/j�.dy/

� c

Z
K

d.x0; y/
��
p �.dy/Np.f ıfv/ � c0Np.f ıfv/;

where x0 D .fv/
�1.x/. Hence if ..n; v/; .n; u// 2 E�

n , then

j.Pnf /.v/ � .Pnf /.u/j � c0.Np.f ıfv/C Np.f ıfw//:

This along with (4.7) yields

yEnp .f / D
�n

2

X
..n;v/;.n;u//2E�

n

j.Pnf /.v/ � .Pnf /.u/j
p

� C
X

.n;v/2Tn

�j.w/Np.f ıfv/
p
� C 0

X
w2Sm

�j.w/Np.f ıfw/
p:

Taking sup in the right-hand side, we have

Np.f /
p
� C 0

X
w2Sm

�j.w/Np.f ıfw/
p: (4.8)

Now for A 2 U, define F .A/ by

F .A/.f / D
�X
s2S

�jsA.f ıfs/
p
� 1
p

:

For any A 2 U, since A � c2Np , (4.6) implies

F .A/ � c2F .Np/ � c0Np:

On the other hand, the fact c1Np � A and (4.8) yield

F .A/ � c1F .Np/ � c00Np:

Thus F .A/ 2 U and F WU ! U. It is easy to see that U is continuous and

F .AC B/ � F .A/C F .B/:

Combining (4.6) and (4.8), we see that there exist C1; C2 > 0 such that

c1Np � F j .Np/ � c2Np

for any j � 1. So, by [28, Theorem 1.5], there exists E� 2 U such that F .E�/ D E�.
Define

UM D
®
A j A 2 U; A. xf / � A.f / for any f 2 Wp

¯
:
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Then yEp 2 UM and UM is a closed subset of U. Hence by [28, Corollary 1.6], we
see there exists E 0 2 UM such that F .E 0/ D E 0. Letting E D .E 0/p , we have the
desired E . In the case p D 2, define

UDF D ¹A j A 2 U; A satisfies the parallelogram law, the resulting

quadratic form has both Markov and local propertyº:

Then UDF is a closed subspace of U and Theorem 3.23 ensures that UDF ¤ ;.
So again by [28, Corollary 1.6], we have the desired local regular Dirichlet form.

4.2 Conductive homogeneity of self-similar sets

In this section, we present a sufficient condition for conductive homogeneity of self-
similar sets. The idea originated from [11], where the authors used symmetries of
the spaces to show the combinatorial Loewner property of the Sierpiński carpet and
the Menger curve, also known as the Menger sponge. Our sufficient condition, Theo-
rem 4.8, will be used in Sections 4.3 and 4.6.

Throughout this section, we assume that .K;S; ¹fsºs2S / is a self-similar structure
and adopt the setting in Section 4.1, i.e., let .T;A;�/ be given in Definition 4.2 and we
suppose that Assumption 4.4 is satisfied. For simplicity, we also assume that js D 1

for any s 2 S , so that g.w/ D r jwj and Tm D Sm.

Definition 4.7. (1) For any e D .w; v/ 2
S
m�1E

�
m, define

X.e/ D .fw/
�1.fw.K/ \ fv.K//

and 'eWX.e/! X.er/ by 'e D .fv/
�1ıfw jX.e/, where er D .v; w/ for e D .w; v/.

Furthermore, define

	T .K; T / D ¹.X.e/; X.er/; 'e/ j m � 1; e 2 E�
mº:

An element of 	T .K; T / is called an intersection type of .K; T /.

(2) A homeomorphism gWK ! K is said to be a symmetry of .K; T / if there
exists g�W T ! T such that jg�.w/j D jwj and g.Kw/ D Kg�.w/ for any w 2 T .
Define G.K;T / as the collection of symmetries of .K; T /.

(3) For any n � 0, define  nW
S
m�0 TnCm ! T by  n.v/ D u if v 2 TnCm and

v D �m.v/u.

Remark. The notion of intersection types and the set 	T .K; T / were introduced
in [31].

Note that  n.TnCm/ D Tm and .f�m.v//�1.Kv/ D K n.v/ for any v 2 TnCm.
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Notation. For A � T , set
K.A/ D

[
v2A

Kv: (4.9)

Theorem 4.8. Suppose that there exist a finite subset 	 � 	T .K; T / and finite sub-
groups G0 and G1 of G.K;T / satisfying the following properties:

(a) .Tm; E
	
m/ is connected for any m � 1, where

E	
m D ¹e j e 2 E�

m; .X.e/; X.e
r/; 'e/ 2 	º:

(b) For any .X;Y;'/ 2 	 and x 2X , there exists g 2 G0 such that g.x/D '.x/.

(c) For any n� 1,w 2 Tn and p2C
.1/
M;m.w/, there exists Up �

S
g2G1

g�. n.p//
such that K.Up/ is connected and g.K.Up// \ X ¤ ; and g.K.Up// \

Y ¤ ; for any .X; Y; '/ 2 	 and g 2 G0.

Then for any p � 1, n; k � 1, m � 1, u�; v� 2 Tk , and w 2 Tn,

M
.1/
M;p;m.w/ � .L�/

M#.G1/pC1#.Tk/pM.1/
p;m.u�; v�; Tk/: (4.10)

Furthermore, if Assumption 4.4 holds withM� DM , thenK is p-conductively homo-
geneous for any p > dimAR.K; d/.

Remark. Strictly, a path p D .w.1/; : : : ; w.k// of a graph is not a subset of vertices
but a sequence of them. However, we use p to denote a subset ¹w.1/; : : : ; w.k/º if
no confusion may occur. For example, in the expression  n.p/ above, we regard p as
a subset of TnCm.

Proof of Theorem 4.8. For u 2 Sm.�M .w//, define Hu � TkCm by

Hu D ¹vg�. n.u// j g 2 G1; v 2 Tkº:

Then we have that #.Hu/ � #.Tk/#.G1/ for any u 2 Sm.�1.w// and #.¹u j v 2

Huº/ � #.�M .w//#.G1/ for any v 2 TkCm.
Now, since .Tk;E	

k
/ is connected, there exists .w.0/;w.1/; : : : ;w.l/;w.l C 1//2

.Tk/
lC2 such that w.0/ D u�; w.l C 1/ D v�, .w.i/; w.i C 1// 2 E	

k
for any i D

0; 1; : : : ; l . Set ei D .w.i/; w.i C 1//. Then .X.ei /; X..ei /r/; 'ei / 2 	.

Claim. There exist Ai � Tm; xi 2 K and gi ; hi 2 G0 for i D 1; 2; : : : ; l such that

(i) Ai D .hi /
�.Up/ and K.Ai / \X.ei / ¤ ;,

(ii) xi 2 K.Ai / \X.ei / and gi .xi / D 'ei .xi /,

(iii) AiC1 D .gi /
�.Ai /.

Proof. For i D 1, let h1 be the identity map. Then A1 D Up. Since by (c) K.A1/ \

X.e1/ ¤ ;, we may choose x1 2 K.A1/ \ X.e1/. By (b), there exists g1 2 G0 such
that g1.x1/ D 'e1.x1/.
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Assume that we have the desired objects for i 2 ¹1; : : : ; l � 1º. Letting hiC1 D
giıhi 2 G0 and AiC1 D .gi /

�.Ai /, we obtain

AiC1 D .gi /
�.hi /

�.Up/ D .hiC1/
�.Up/:

Using (c), we see thatK.AiC1/\X.eiC1/¤;. Choose xiC1 2K.AiC1/\X.eiC1/.
By (b), there exists giC1 2 G0 such that giC1.xiC1/ D 'eiC1.xiC1/.

Thus by induction, the claim has been proven. �

Now, by (c), X.e0/ \K.A1/ ¤ ; and X..el/r/ \K.Al/ ¤ ;. This implies

fw.1/.K.A1// \Kw.0/ ¤ ; and fw.l/.K.Al// \Kw.lC1/ ¤ ;: (4.11)

Next, (ii) yields fw.iC1/.gi .xi // D fw.i/.xi /. Since

gi .xi / 2 K..gi /
�.Ai // D K.AiC1/;

we have
fw.i/.K.Ai // \ fw.iC1/.K.AiC1// ¤ ; (4.12)

for i D 1; : : : ; l . Since Ai D .hi /
�.Up/ �

S
g2G1

g�. n.p//, we see that

l[
iD1

w.i/Ai �

[
u2p

Hu:

Note thatK.
Sl
iD1w.i/Ai /D

Sl
iD1fw.i/.Ai /. By formulas (4.12) and (4.11), we see

that K.
Sl
iD1w.i/Ai / is connected and intersects with Kw.0/ and Kw.lC1/. There-

fore, there exists p0 2 C
.1/
m .u�; v�; Tk/ included in

Sl
iD1w.i/Ai �

S
u2pHu. Con-

sequently, Lemma C.4 shows (4.10). The conductive homogeneity follows from Lem-
ma 2.22 and Theorem 3.33.

4.3 Subsystems of (hyper)cubic tiling

In this section, we present three classes of hypercube-based self-similar sets as ex-
amples of conductively homogeneous spaces. The first one given in Theorem 4.13
includes generalized Sierpiński carpets studied in the series of papers [1–6] by Barlow
and Bass, the Menger curves (also known as the Menger sponge), and the hypercubes
Œ�1; 1�L for L � 1. Unlike those examples, however, our examples also contain self-
similar sets with fewer, or even no, symmetries of a hypercube. See Section 4.4, where
we present explicit examples of self-similar sets belonging to the classes given in this
section.

We start with basic notations on the hypercube Œ�1; 1�L and its symmetry group.
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Definition 4.9. Let L 2 N and let CL� D Œ�1; 1�L. Moreover, let BL be the L-
dimensional hyperoctahedral group, that is,

BL D
®
g j g 2 O.L/; g.CL� / D CL�

¯
;

where O.L/ is the collection of orthogonal transformations of RL. For the case
L D 2, B2 is often denoted by D4 in a literature. Define

Bj;i D
®
.x1; : : : ; xL/ j .x1; : : : ; xL/ 2 Œ�1; 1�

L; xj D i
¯

for j D ¹1; : : : ; Lº and i 2 ¹�1; 0; 1º. Then the boundary of Œ�1; 1�L consists of
¹Bj;iºj2¹1;:::;Lº;i2¹1;�1º. For s D .s1; : : : ; sL/ 2 ¹1; : : : ; N ºL, define

CL;Ns D

LY
iD1

h2si � 2 �N
N

;
2si �N

N

i
;

cL;Ns D

�2s1 � 1 �N
N

; : : : ;
2sL � 1 �N

N

�
:

If no confusion may occur, we use C�, Cs and cs instead of CL� , CL;Ns and cL;Ns

respectively hereafter.
In the course of this section, we are going to deal with particular elements of BL.

Definition 4.10. Define Rj 2 BL as the reflection in the hyperplane Bj;0 for j 2

¹1; : : : ; Lº. Furthermore, define Rij1;j2 as the reflection in the hyperplane

H i
j1;j2

D ¹.x1; : : : ; xL/ j xj1 D ixj2º

for j1; j2 2 ¹1; : : : ; Lº with j1 ¤ j2 and i 2 ¹1;�1º.

In the next definition, we introduce key notions of this section.
Throughout this section, we fix L � 1 and N � 2.

Definition 4.11. (1) A self-similar structure .K; S; ¹fsºs2S / is called a subsystem of
L-dimensional hypercubic tiling, or a subsystem of cubic tiling for short, if K � C�,
S � ¹1; : : : ; N ºL and, for any s 2 S , fs is a restriction of a similitude from RL to
itself satisfying fs.C�/ D Cs , i.e., there exists ˆs 2 BL such that

fs.x/ D
1

N
ˆsx C cs

for any x 2 RL. A subsystem of cubic tiling .K;S; ¹fsºs2S / is called non-degenerate
if K \ Bj;i ¤ ; for any j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º.

(2) A continuous map 'WC� ! C� is called an N -folding map if and only if, for
any s 2 ¹1; : : : ; N ºL, there exists As 2 BL such that

'.x/ D NAs.x � cs/ (4.13)
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for any x 2 Cs . If no confusion may occur, we omit N in the expression of an “N -
folding” map and say a “folding map” for simplicity.

(3) Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. We use the frame-
work of Section 4.1 to define .T;A; �/ with r D 1

N
and js D 1 for any s 2 S . In this

case, Tn D Sn for any n � 1. Define a graph .Tn; E`n/ by

E`n D ¹.w; v/ j w; v 2 Tn; w ¤ v; fw.C�/ \ fv.C�/ D fw.Bj;i /

for some j 2 ¹1; : : : ; Lº and i 2 ¹1;�1ºº:

The subsystem of cubic tiling L is said to be strongly connected if .Tn; E`n/ is con-
nected for any n � 1.

(4) Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. L is called locally
symmetric if Kw [ Kv is invariant under the reflection in the hyperplane including
fw.C�/ \ fv.C�/ for any n � 1 and .w; v/ 2 E`n.

Remark. Let L be a subsystem of cubic tiling which is non-degenerate and locally
symmetric. Then E`n � E�

n by the following arguments. Assume that .w; v/ 2 E`n.
Set

`w;v D fw.C�/ \ fv.C�/: (4.14)

By non-degeneracy, Kw \ `w;v ¤ ; and by local symmetry, Kw \ `w;v D Kv \

`w;v¤;. Hence .w;v/2E�
n . Note that even if .w;v/2Tn and fw.C�/\fv.C�/¤ ;,

it may happen that Kw \Kv D ;.

Remark. Let L be a subsystem of cubic tiling which is non-degenerate, locally sym-
metric, and strongly connected. As in the case of the unit square in Example 2.32,
define

J` D
°
¹w; vº

ˇ̌
.w; v/ 2

[
n�0

E`n

±
: (4.15)

For explicit examples in the next section except for the chipped Sierpiński carpet,
J` is a covering system and is a good substitute for J� in the case p < dimAR.K; d/.

By properties of cubic tiling, it is easy to see that Assumption 2.15 holds. In sum-
mary, we have the next proposition. Recall that the edges of Tn are given not by E`n
but by E�

n as it has always been in the previous sections.

Proposition 4.12. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Then the
family ¹Kwºw2T is a partition of K parametrized by the tree .T;A; �/. Let d� be
the restriction of the Euclidean metric on K and let � be the self-similar measure
satisfying �.Kw/ D .#.S//�jwj for any w 2 T . Then Assumption 2.15 is satisfied
with d D d�, r D 1

N
, M� D 1, M0 D 1, N� D #.S/ and L� � 3L � 1. In this case,

� is ˛H -Ahlfors regular with respect to d�, where ˛H D
log #.S/

logN .
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The exponent ˛H coincides with the Hausdorff dimension of .K; d�/. Note that
#.S/�NL. Since #.S/DNL impliesK D C�, we see that ˛H <L unlessK D C�.

The following theorems are the main results of this section.

Theorem 4.13. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Assume
that L is non-degenerate, locally symmetric, and strongly connected. Moreover, sup-
pose that the following condition (SDR) is satisfied:

(SDR) For any j1; j2 2 ¹1; : : : ; Lº with j1 ¤ j2, there exists i 2 ¹1;�1º such
that Rij1;j2 2 G.K;T /.

Then K is p-conductively homogeneous for any p > dimAR.K; d�/.

The name (SDR) represents “symmetric with respect to diagonal reflections”
as Rij1;j2 is the reflection in the diagonal hyperplane H i

j1;j2
. For generalized Sier-

piński carpets, the Menger curve and the hypercube, it follows that G.K;T / D BL and
(SDR) is satisfied. However, G.K;T / does not necessarily coincide with BL to satisfy
(SDR). For example, the group generated by ¹R1j1;j2 j j1; j2 2 ¹1; : : : ; Lº; j1¤j2º

is (isomorphic to) the symmetric group of order L, �L, which is a proper subgroup
of BL, and if �L � G.K;T /, then (SDR) is satisfied. See Example 4.30.

In the case LD 2, the advantage of being planar gives another two classes having
conductive homogeneity.

Theorem 4.14. Let L D 2 and let L D .K; S; ¹fsºs2S / be a subsystem of 2-dimen-
sional cubic tiling. Assume that L is non-degenerate, locally symmetric, and strongly
connected. Moreover, assume one of the following two conditions (RS) or (NS):

(RS) ‚�
2
2 G.K;T /, where ‚�

2
is the rotation by �

2
around .0; 0/.

(NS) For each i; j 2 ¹1; : : : ; N � 1º, there exist i1; j1 2 ¹1; : : : ; N º such that

¹.i; j1/; .i C 1; j1/; .i1; j /; .i1; j C 1/º \ S D ;:

Then K is p-conductively homogeneous for any p > dimAR.K; d�/.

The expressions (RS) and (NS) represent “rotational symmetry” and “no symme-
try”, respectively.

At a glance at definitions, it may look difficult to verify the conditions like “non-
degenerate”, “strongly continuous”, and “locally symmetric”. In the course of the
discussion, however, we will show useful criteria concerning only the first iteration
¹fs.C�/ºs2S to check those conditions.

Proofs of the above theorems will be given later in this section after necessary pre-
parations. The main idea of the proof is to construct a family of paths required (c) of
Theorem 4.8 by using local symmetry and an additional geometric condition (SDR),
(RS), or (NS). Such an idea was used in [11] and can be traced back to the “knight
move” argument by Barlow–Bass [1]. In those previous works, however, the full BL-
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symmetry of the space was required but we find that weaker (or even no) symmetry
is good enough under the presence of local symmetry.

Now we start to study the conditions “non-degenerate”, “strong continuous”, and
“locally symmetric”. First, we study the nature of folding maps, which turns out to
be closely related to the local symmetry.

Lemma 4.15. Let 'WC� ! C� be a folding map characterized as (4.13). Then for
any s; t 2 ¹1; : : : ; N ºL,

As D AtRj if Cs \ Ct D
1

N
Bj;i C cs for some i 2 ¹1;�1º:

Proof. Assume that Cs \ Ct D 1
N
Bj;i C cs . Then Cs \ Ct D 1

N
Bj;�i C ct as well

and x � ct D Rj .x � cs/ for any x 2 Cs \ Ct . On the other hand, as ' is a folding
map, we see that

NAs.x � cs/ D NAt .x � ct /

for any x 2 Cs \ Ct . Hence As.x � cs/ D AtRj .x � cs/ for any x 2 Cs \ Ct . This
immediately implies As D AtRj .

Note that Rj1Rj2 D Rj2Rj1 for any j1; j2 2 ¹1; : : : ;Lº. So, by the above lemma,
we can determine all the folding maps as follows.

Lemma 4.16. Fix s� D .s�1 ; : : : ; s
�
L/ 2 ¹1; : : : ;N ºL. For A 2 BL, define 's�;AWC� !

C� by

's�;A.x/ D NA

LY
jD1

.Rj /
js�
j
�sj j.x � cN.i;j //

for any x 2 C.s1;:::;sL/. Then 's0;A is a folding map. Moreover, ¹'s�;A j A 2 BLº is
the totality of folding maps for any s� 2 ¹1; : : : ; N ºL.

Examples of folding maps in the case of L D 2 are given in Figure 4.1. In each
example, s� D .1; 1/ and A D I . The element of B2 in each square indicates the
corresponding A.R1/js1�s

�
1
j.R2/

js2�s
�
2
j.

Notation. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Set

K.m/ D
[
w2Tm

fw.C�/:

Due to the next lemma, one can easily determine the non-degeneracy of K by
examining K.1/.

Lemma 4.17. Let LD .K;S; ¹fsºs2S / be a subsystem of cubic tiling. Then L is non-
degenerate if and only if K.1/ \ Bj;i ¤ ; for any j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º.
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R1IR1I

�IR2�IR2

R1IR1I

�IR2�IR2

IR1I

R2�IR2

IR1I

N D 3 N D 4

Figure 4.1. Folding maps.

Proof. Since K � K.1/, the “only if” part is obvious. Assume that K.1/ \ Bj;i ¤ ;

for any j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º. We are going to show that K.k/ \ Bj;i ¤ ;

for any j 2 ¹1; : : : ; Lº, i 2 ¹1;�1º, and k 2 ¹1; : : : ; nº by induction on n. Assume
that the claim holds for n. Let w 2 Tn satisfying fw.C�/ \ Bj;i ¤ ;. Since

.fw/
�1.fw.C�/ \ Bj;i / D Bj1;i1

for some j1 2 ¹1; : : : ; Lº and i1 2 ¹1;�1º, there exists s 2 T1 such that

fs.C�/ \ .fw/
�1.fw.C�/ \ Bj;i / ¤ ;:

This implies that fws.C�/\Bj;i ¤ ;. Thus we have shown the desired statement for
nC 1. Now by induction,

K.k/ \ Bj;i ¤ ;

for any j 2 ¹1; : : : ;Lº, i 2 ¹1;�1º. SinceK.n/ is monotonically decreasing andK DT
n�1K

.n/, it follows that K \ Bj;i ¤ ; for any j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º.

The locally symmetric property can also be determined by the first step of the
iteration as follows.

Lemma 4.18. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Then L is
locally symmetric if and only if Ks [Kt is invariant under the reflection in `s;t for
any .s; t/ 2 E`1.

Proof. The “only if” part is obvious. We show the following statement by induction
on n � 1.

For any k 2 ¹1; : : : ; nº and .w;v/ 2E`
k

,Kw [Kv is invariant under the reflection
in `w;v .

The case nD 1 is exactly the assumption of the lemma. Suppose that the statement
holds for n. Let .w;v/ 2E`nC1. In the case �n.w/D �n.v/, let sD �n.w/. ThenwD

sw0 and v D sv0 for some w0; v0 2 Tn. Since fw.C�/ D fs.fw0.C�// and fv.C�/ D



Conductive homogeneity of self-similar sets 70

fs.fv0.C�//, we see `w0;v0 2 E
`
n. By induction hypothesis, Kw0 \ Kv0 is invariant

under the reflection in `w0;v0 . Applying fs , we see thatKw [Kv is invariant under the
reflection in `w;v . In the case �n.w/¤ �n.v/, let sD �n.w/ and let t D �n.v/. Since
`w;v � `s;t D fs.Bj;i / for some j 2 ¹1; : : : ;Lº and i 2 ¹1;�1º, we obtain .s; t/ 2E`1.
So, Ks [ Kt is invariant under the reflection in `s;t . Denoting this reflection by R,
we see that R coincides with the reflection in `w;v . Since R.fw.C�// D fv.C�/, it
follows that R.Kw/ D R.Ks \ fw.C�// D Kt \ fv.C�/ D Kv . So we have verified
the statement for nC 1. Thus by induction, we have the desired result.

Next, we consider the strong connectedness.

Lemma 4.19. Let L D .K; S; ¹fsºs2S / be a locally symmetric subsystem of cubic
tiling. If L is non-degenerate and .T1;E`1/ is connected, then L is strongly connected.

Proof. By the non-degeneracy, we see that K.n/ \ Bj;i ¤ ; for any j 2 ¹1; : : : ; Lº

and i 2 ¹1;�1º.
We are going to show that .Tk; E`k/ is connected for any k 2 ¹1; : : : ; nº by

induction on n � 1. Assume that w; v 2 TnC1. If �n.w/ D �n.v/, then there exist
w0;v0 2 Tn such thatwD sw0 and vD sv0, where sD�n.w/. Sincew0 and v0 are con-
nected by an E`n-path, w and v are connected by an E`nC1-path. In the case �n.w/ ¤
�n.v/, let s D �n.w/ and let t D �n.v/. Then w D sw0 and v D tv0 for some
w0; v0 2 Tn. Since .T1; E`1/ is connected, there exists an E`1-path .s.0/; : : : ; s.m//
such that s.0/D s, s.m/D t and .s.i/; s.i C 1// 2 E`1 for any i D 0; : : : ;m� 1. For
each i D 0; : : : ;m� 1, since

S
w02Tn

fw0.C�/\Bj;i ¤ ; for any j D ¹1; : : : ;Lº and
i 2 ¹1;�1º, there exists u.i/ 2 Tn such that fs.i/u.i/.C�/\ `s.i/;s.iC1/ ¤ ;. Since L

is locally symmetric, there exists v.i/ 2 Tn such that fs.iC1/v.i/.C�/ is the image of
fs.i/u.i/.C�/ by the reflection in `s.i/;s.iC1/. Define v.�1/Dw0 and u.m/D v0. Then
w D s.0/v.�1/ and v D s.m/u.m/. Since .Tn; E`n/ is connected, v.i � 1/ and u.i/
are connected by an E`n-path for any i D 0; : : : ; m � 1. Adding s.i/ at the top, we
obtain an E`nC1-path between s.i/v.i � 1/ and s.i/u.i/. Combining all these E`nC1-
paths, we obtain an E`nC1-path between w and v. Thus .TnC1; E`nC1/ is connected.
By induction, we see that L is strongly connected.

Lemma 4.20. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Assume that
K \ int.C�/ ¤ ;. For any s 2 ¹1; : : : ; NmºL, if K \ int.CL;N

m

s / ¤ ;, then there
exists w 2 Tm such that fw.C�/ D C

L;Nm

s .

Proof. Suppose that fw.C�/ ¤ C
L;Nm

s for all w 2 Tm. Then fw.C�/ \ C
L;Nm

s is
included in the boundary of CL;N

m

s and hence fw.C�/ \ int.CL;N
m

s / D ;. So,

K.m/ \ int.CL;N
m

s / D
[
w2Tm

�
fw.C�/ \ int.CL;N

m

s /
�
D ;:

Since K � K.m/, it follows that K \ int.CL;N
m

s / D ;.
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The following relation between a folding map and a subsystem of cubic tiling will
be used to characterize local symmetry.

Lemma 4.21. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling. Assume that
K \ int.C�/ ¤ ;. Let ' be a folding map. Then the following four statements are
equivalent:

(a) '.K/ D K.

(b) 'ıfs.K
.m// D K.m/ for any s 2 S and m � 0.

(c) 'ıfs.K/ D K for any s 2 S .

(d) '.K.mC1// D K.m/ for any m � 0.

Proof. (a) ) (b): Let s 2 S . Then 'ıfs.K/ � K. For any w 2 Tm, there exists � D

.�1; : : : ; �L/ 2 ¹1; : : : ; NmºL such that 'ıfs.fw.C�// D C
L;Nm

� . Now

K � 'ıfs.fw.K \ int.C�/// D 'ıfsıfw.K/ \ int.CL;N
m

� /:

Since K \ int.C�/ ¤ ;, this implies K \ int.CL;N
m

� / ¤ ;. Lemma 4.20 shows that
'ıfs.fw.C�// D C

L;Nm

� � K.m/, so that

'ıfs.K
.m// D

[
w2Tm

'ıfs.fw.C�// � K.m/:

As 'ıfs 2 BL preserves the Lebesgue measure of a set, we see 'ıfs.K.m//DK.m/.
(b) ) (c): Since

T
m�0K

.m/ D K,

'ıfs.K/ D 'ıfs

� \
m�0

K.m/
�
D

\
m�0

K.m/ D K:

(c) ) (a): Since K D
S
s2S fs.K/,

'.K/ D '
�[
s2S

fs.K/
�
D K:

(b) ) (d): Since
S
s2S fs.K

.m// D K.mC1/,

'.K.mC1// D '
�[
s2S

fs.K
.m//

�
D K.m/:

(d) ) (a): Since
T
m�0K

.m/ D K,

'.K/ D '
� \
m�0

K.mC1/
�
D

\
m�0

K.m/ D K:

The next theorem tells that a locally symmetric subsystem of cubic tiling is almost
an inverse of a folding map.
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Theorem 4.22. Let L D .K; S; ¹fsºs2S / be a subsystem of cubic tiling.

(1) If L is strongly connected and locally symmetric, then there exists a folding
map satisfying

'n ı fw.K
.m// D K.m/

for any n � 1, m � 0 and w 2 Tn. In particular,

'n.K.nCm// D K.m/

for any n � 1, m � 0 and
'n.K/ D K

for any n � 1. Furthermore, define FsWC� ! Cs by Fs D .'jCs /
�1 for each

s 2 S . Then
K D

[
s2S

Fs.K/

and .K; S; ¹Fsºs2S / is a self-similar structure.

(2) Suppose that K \ int.C�/ ¤ ;. If there exists a folding map ' such that
'.K/ D K, then L is locally symmetric.

Proof. (1) Fix s 2 S . Recall that there exists ˆs 2 BL such that

fs.x/ D
1

N
ˆsx C cs

for any x 2 C�. Set As D .ˆs/
�1 and define ' D 's0;As . Since 'ıfs D I , it follows

that 'nı.fs/n D I for any n � 1. Thus letting

sn D ss � � � s
n-times

;

we see that 'nıfsn.K/ D K. Choose � D .�1; : : : ; �L/ 2 ¹1; : : : ; N nºL such that
C
L;Nn

� D fsn.C�/. Let w 2 Tn. Choose � D .�1; : : : ; �L/ 2 ¹1; : : : ; N nºL such that
C
L;Nn

�
D fw.C�/. Since L is strongly connected, there exists an E`n-path .w.0/;

: : : ; w.m// between sn and w. Following this path and applying the reflections in
`w.i/;w.iC1/, we see that

Kw � c
L;Nn

�
D R.Ksn � c

L;Nn

� /;

where R D
QL
jD1.Rj /

j�j��j j. Note that 'n is an N n-folding map. Hence, for any
 2 ¹1; : : : ; N nºL, there exists A 2 BL such that

'n.x/ D N nA .x � cL;N
n

 /
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for any x 2 C
L;Nn

 . Applying Lemma 4.16 to 'n, we see that

'nıfw.K/ D 'n.Kw/ D N nA�.Kw � c
L;Nn

�
/

D N nA�RR.Ksn � c
L;Nn

� / D 'n.Ksn/ D K:

Hence
'nıfw.K/ D K

for any n � 1 and w 2 Tn. SinceK � K.m/, it follows that 'nıfw.K.m// � K. Note
that 'nıfw.K.m// D

S
2B C

L;Nn

 for some subset B � ¹1; : : : ; N nºL and K.m/ is
the minimal of such unions containing K. This shows 'nıfw.K.m// � K.m/. Since
'nıfw preserves the Lebesgue measure of a set, we conclude that

'nıfw.K
.m// D K.m/:

Since K.mCn/ D
S
w2Tn

fw.K
.m//, we obtain 'n.K.nCm// D K.m/. Note that K DS

w2Tn
fw.K/. Hence 'n.K/ D K. Moreover, if '.x/ D NAs.x � cs/ for x 2 Cs ,

then by Lemma 4.21 (c), we have K D NAs.Ks � cs/. This implies

Ks D
1

N
.As/

�1K C cs:

Hence letting Fs.x/ D 1
N
.As/

�1x C cs , we see K D
S
s2S Fs.K/.

(2) Suppose that .s; t/ 2 E`1. Then by Lemma 4.16, there exist As 2 BL and
j 2 ¹1; : : : ; Lº such that

'.x/ D NAs.x � cs/

for any x 2 Cs and
'.x/ D NAsRj .x � ct /

for any x 2 Ct . Since 'ıfs.K/ D K and 'ıft .K/ D K by Lemma 4.21, it follows
that

Ks � cs D
1

N
.As/

�1K and Kt � ct D
1

N
Rj .As/

�1K:

Therefore,

R.Ks � cs/ D R
1

N
.As/

�1K D Kt � ct ;

so thatKt [Ks is invariant under the reflection in `s;t . Thus Lemma 4.18 shows that
L is locally symmetric.

By (2) of the above theorem, we immediately have the following sufficient con-
dition for the local symmetry.



Conductive homogeneity of self-similar sets 74

Corollary 4.23. Let S � ¹1; : : : ; N ºL. Assume that Bj;i \ .
S
s2S Cs/ ¤ ; for any

j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º. Let ' be an N -folding map. Define

fs D .'jCs /
�1

for any s 2 S . Let K be the unique non-empty compact set satisfying

K D

[
s2S

fs.K/:

Then, L D .K; S; ¹fsºs2S / is non-degenerate and locally symmetric.

Proof. Since Bi;i \ .
S
s2S Cs/ ¤ ; for any j 2 ¹1; : : : ; Lº and i 2 ¹1;�1º, Lem-

ma 4.17 shows that L is non-degenerate and hence K \ int.C�/ ¤ ;. Moreover, it is
immediate to see that '.K/ D K. Now Theorem 4.22 (2) suffices.

Note that by Theorem 4.22 (1), if a subsystem of cubic tiling is locally symmetric
and strongly connected, then it is given by a inverse of a folding map described in
Corollary 4.23.

Now we are ready to give a proof of Theorem 4.13.

Proof of Theorem 4.13. By Theorem 4.22, we may assume that L is given by an
inverse of a folding map described in Corollary 4.23 without loss of generality. Note
that

.'mjfw.C�//
�1

D fw (4.16)

for any m � 1 and w 2 Tm. For any m � 1 and e D .w; v/ 2 E`m, by (4.16),

'mjfw.C�/\fv.C�/ D .fw/
�1

jfw.C�/\fv.C�/ D .fv/
�1

jfw.C�/\fv.C�/:

Hence X.e/ D X.er/ and 'e D I , where I is the identity map. Now let

	 D

°
.X.e/; X.er/; 'e/

ˇ̌
e 2

[
m�1

E`m

±
;

and set G0 D ¹I º and G1 D G.K;T / \ BL. We are going to make use of Theorem 4.8.
By the fact that L is strongly connected, we have (a) of Theorem 4.8. Since 'e D I

for any e 2
S
m�1E

`
m, (b) of Theorem 4.8 is obvious.

Now it only remains to show (c) of Theorem 4.8. Let w 2 Tn. Suppose that
fw.C�/D

QL
iD1Œ˛i ;˛i C

2
Nn
�. Then every path p 2C

.1/
1;m.w/ contains a path between

hyperplanes

¹.x1; : : : ; xL/ j xj D j̨ º and
°
.x1; : : : ; xL/ j xj D j̨ �

2

N n

±
or °

.x1; : : : ; xL/ j xj D j̨ C
2

N n

±
and

°
.x1; : : : ; xL/ j xj D j̨ C

4

N n

±
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for some j 2 ¹1; : : : ; Lº. This implies that there exists j� 2 ¹1; : : : ; Lº such that
'n.K.p//\Bj�;i ¤ ; for any i 2 ¹1;�1º. Note that 'm.K.p//D K. n.p//. Hence
there exists a path pj� � n.p/ betweenBj�;�1 andBj�;1. By (SDR), for any j1¤ j�,
there exists i� 2 ¹1;�1º such that Ri�j�;j1 2 G.K;T /. Set pj1 D .R

i�
j�;j1

/�.pj�/. Then
K.pj1/ \ Bj1;i ¤ ; for any i 2 ¹1;�1º. Moreover, K.pj�/ and K.pj1/ intersects at
H
i�
j�;j1

. Thus set p� D
SL
kD1 pk . Then p� is connected and K.p�/ \ Bk;i \K ¤ ;

for any k 2 ¹1; : : : ; Lº and i 2 ¹1;�1º. Moreover, p� �
S
g2G.K;T /\BL

g�. n.p//.
Thus we have verified (c) of Theorem 4.8.

Proof of Theorem 4.14. The arguments are the same as in the proof of Theorem 4.13
except the deduction of (c) of Theorem 4.8.

In the case of (RS), to construct pj1 from pj� , we use‚�
2

in place ofRi�j�;j1 . Then
the advantage of being planar yields K.pj�/ \K.pj / ¤ ;. The rest is the same as in
the proof of Theorem 4.8.

Next, assume (NS). Let w 2 Tn and let p D .w.1/; : : : ; w.k// 2 C
.1/
M;m.w/ with

M D 4N � 3. Note that

#
�
¹�m.w.1//; : : : ; �m.w.k//º

�
�M:

We are going to show that
K. n.p// \ Bj;i ¤ ; (4.17)

for any j 2 ¹1;2º and i2 ¹1;�1º. SupposeK. n.p//\B1;1D;. As '�n.B1;1/ forms
vertical lines at intervals of 2

Nn
, we see that K.p/ is contained in the interior of

a vertical strip
S
jD1;:::;Nn C

2;Nn

.i�;j /
[ C

2;Nn

.i�C1;j /
, which is denoted by Zi� , for some i�.

Let C1; : : : ; Cl be the collection of connected components of� [
w2Tn

fw.Q/
�
\Zi�

and set
Di D ¹v j v 2 Tn; fv.C�/ � Ciº

for i D 1; : : : ; l . Then by (NS), we see that

#.Di / � 2.2N � 2/:

Note that
Sk
iD1 f�m.w.i//.C�/ � Ci� for some i�. Hence

4N � 4 � #.Di�/ � #.¹�m.w.i// j i D 1; : : : ; kº/ �M D 4N � 3:

This contradiction shows (4.17). Thus setting Up D  n.p/, we have (c) of Theo-
rem 4.8.

To conclude this section, we present a useful criterion to determine if g 2 BL is
a symmetry of .K; T / or not.
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Lemma 4.24. Let L D .K;S; ¹fsºs2S / be a subsystem of cubic tiling. Assume that L

is non-degenerate, locally symmetric and strongly connected. Let ' be the folding
map satisfying Theorem 4.22 (1). Then for g 2 BL, if there exists a map g�W S ! S

such that, for any s 2 S , g.Cs/ D Cg�.s/ and Ag�.s/g.As/
�1 D gk for some k � 0,

then g 2 G.K;T /.

Recall that As 2 B2 is given in Definition 4.11 (2).

Proof. We are going to show that g.K.n// D K.n/ for any n � 1 by induction. For
n D 1, since g.Cs/ D Cg�.s/, it follows g.K.1// D K.1/. Next assume that

g.K.n// D K.n/:

Then by Theorem 4.22, 'ıfs.K.n// D K.n/, so that Asˆs.K.n// D K.n/. Hence

fs.K
.n// D

1

N
.As/

�1.K.n//C cs:

Set t D g�.s/. Then

g.fs.K
.n/// D

1

N
g.As/

�1.K.n//C ct D
1

N
.At /

�1Atg.As/
�1.K.n//C ct

D
1

N
.At /

�1gk.K.n//C ct D ft .K
.n//:

SinceK.nC1/ D
S
s2S fs.K

.n//, this yields g.K.nC1//DK.nC1/. Thus using induc-
tion, we see that g.K.n// D K.n/ for any n � 1. Since

T
n�1K

.n/ D K, we obtain
g.K/ D K. Now, since g.K.n// D K.n/, it follows that, for any w 2 Tn, there exists
v 2 Tn such that g.fw.C�// D fv.C�/. Set v D g�.w/. Then g�W Tn ! Tn. Since
g.fw.C�// D fg�.v/.C�/ and g.Kw/ � K, we see that

g.Kw/ � g.fw.C�// \K D fg�.w/.C�/ \K D Kg�.w/:

Using g�1 in place of g in the arguments above, we obtain g�1.Kg�.w// � Kw as
well. Thus we have shown g.Kw/ D Kg�.w/, so that g 2 G.K;T /.

4.4 Examples: subsystems of (hyper)cubic tiling

In this section, we present examples of subsystems of cubic tiling having conductive
homogeneity.

We begin with planar examples where dimAR.K;d�/� dimH .K;d�/ < 2, so that
they are 2-conductively homogeneous and have self-similar local regular Dirichlet
forms constructed in Theorem 4.6.
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IR1I

R2R2

IR1

Figure 4.2. Chipped Sierpiński carpet.

Example 4.25 (Chipped Sierpiński carpet). Let L D 2 and let N D 3. Let S be the
set of squares in the right figure of Figure 4.2 where one of R1, R2 or I is written.
The corresponding fs is given by

fs.x/ D
1

N
ˆsx C c3s ;

where ˆs 2 B2 is indicated in Figure 4.2. Note that if the upper-left square belonged
to S as well, then K would be the Sierpiński carpet. Lemma 4.17 and Corollary 4.23
show that L is non-degenerate and locally symmetric, respectively. Then using Lem-
ma 4.19, we see that L is strongly connected. Finally, Lemma 4.24 shows that R�1

1;2 2

G.K;T /, so that (SDR) is satisfied. Thus we have confirmed all the assumptions in
Theorem 4.13. Note thatK \ @C� has two different ingredients, the line segment, and
the Cantor set. The lack of rotational symmetry enables such a phenomenon. Another
unique feature is the “countably ramified” property, that is, after removing a certain
countable set, every remaining point becomes a connected component. Because of
this property, J` introduced in (4.15) is not a covering system. Furthermore, no matter
how we choose a covering system J � J�, we cannot avoid a pair ¹w; vº 2 J where
Kw \Kv consists of a single point. It is our conjecture that dimAR.K; d/D 1 for the
chipped Sierpiński gasket. In this example, since there are enough number of straight
lines inside K, .K; d�/ has the chain condition and hence the heat kernel associated
with .E;W2/ satisfies (3.26) and (3.28).

Example 4.26. Let L D 2 and let N D 4. As in Example 4.25, S and ¹ˆsºs2S are
indicated in the right figure of Figure 4.3. It is easy to see that the corresponding
self-similar structure is non-degenerate, locally symmetric, and strongly connected in
the same way as Example 4.25. Moreover, Lemma 4.24 shows that R11;2 2 G.K;T /, so
that (SDR) is satisfied. Thus we have confirmed all the assumptions of Theorem 4.13.
Unlike the chipped Sierpiński carpet, this example is not “countably ramified”. In this
example, like the chipped Sierpiński carpet, K contains enough straight lines. This
implies that .K; d�/ has the chain condition, so that the heat kernel associated with
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R1R1I

�IR2�IR2

R1R1

�IR2�IR2

Figure 4.3. Non-countably ramified example.

.E;W2/ satisfies (3.26) and (3.28). In this example, J` given by (4.15) is a covering
system with covering numbers .4; 2/.

Example 4.27 (Moulin/Pinwheel). Let L D 2 and let N D 5. As in the above exam-
ples, S and ¹ˆsºs2S are indicated in the right figure of Figure 4.4. The assumptions
of Theorem 4.14 are verified in exactly the same way as before including (RS), i.e.,
‚�
2
2 G.K;T /. In this example, unlike previous ones, .K; d�/ does not have the chain

condition and hence we have (3.26) and (3.27). In this example, J` given by (4.15) is
a covering system with covering numbers .4; 2/.

IR1I

�IR2�IR2

R1R1

R2�IR2�I

IR1I

Figure 4.4. Moulin/Pinwheel.

The next two examples satisfy (NS) and have no B2-symmetry. Furthermore,
J` given by (4.15) is a covering system with covering numbers .4; 2/.

Example 4.28. LetLD 2 and letN D 6. As in the previous examples, S and ¹ˆsºs2S
are indicated in the right figure of Figure 4.5. In the same manner as before, we verify
local symmetry, non-degeneracy and strongly connectedness. By the right figure of
Figure 4.5, we verify (NS). We have #.S/ D 23, so that dimH .K; d�/ D

log23
log6 .

Example 4.29. LetLD 2 and letN D 7. As in the previous examples, S and ¹ˆsºs2S
are indicated in the right figure of Figure 4.6. In the same manner as before, we verify



Examples: subsystems of (hyper)cubic tiling 79

�IR2�IR2

R1R1I

�IR2R2�I

R1IR1I

R2�IR2R2

R1IR1I

Figure 4.5. Non-symmetric example 1.

local symmetry, non-degeneracy and strongly connectedness. By the right figure of
Figure 4.6, we verity (NS). In this example #.S/D 30, so that dimH .K; d�/D

log30
log7 .

Note that

dimH .K \R2;1/ D
log 5
log 7

while dimH .K \R2;�1/ D
log 4
log 7

:

IR1II

R2R2�IR2�I

IR1I

R2�IR2�I�IR2

III

R2�IR2R2

R1IIR1I

Figure 4.6. Non-symmetric example 2.

In the following examples, we may choose an arbitrary L � 2.

Example 4.30. Let S D¹1; : : : ;N ºLn¹s�º, where s� D .1; : : : ; 1/. Also let 'D 's�;I ,
i.e., ' is a folding map given by

'.x/ D NAs.x � cs/

for any s D .s1; : : : ; sL/ 2 ¹1; : : : ; N ºL and x 2 Qs , where As D
QL
jD1.Rj /

jsi�1j.
Note that .As/�1 D As . Define

fs.x/ D
1

N
Asx C cs



Conductive homogeneity of self-similar sets 80

and let K be the unique non-empty compact set satisfying

K D

[
s2S

fs.K/:

Then L D .K; S; ¹fsºs2S / is a self-similar structure. According to Corollary 4.23,
L is non-degenerate and locally symmetric. Moreover, Lemma 4.19 shows that L

is strongly connected. Additionally, using Lemma 4.24, we see that G.K;T / is gener-
ated by ¹R1j1;j2 j j1; j2 2 ¹1; : : : ; Lº; j1 ¤ j2º and it is isomorphic to the symmetric
group of orderL. Hence by Theorem 4.13,K is p-conductively homogeneous for any
p > dimAR.K; d�/. Note that G.K;T / is a proper subgroup of BL in this case. In this
example, J` given by (4.15) is a covering system with covering numbers .2L;L/.

Example 4.31 (Hypercube). Let S D ¹1; : : : ; N ºL and let fs.x/ D 1
N
x C cs for

any s 2 S and x 2 Œ�1; 1�L. SetK D Œ�1; 1�L. Then .K;S; ¹fsºs2S / is a self-similar
structure. Obviously, L is non-degenerate, strongly connected and locally symmetric.
Moreover, G.K;T / D BL. In this case, J` is a covering system with covering numbers
.2L;L/. By Theorem 4.13,K is p-conductively homogeneous for any p >L. In fact,
for any p > L, we see that W 1;p.K/ D Wp and there exist c > 0 such that

cEp.f / �

Z
K

jrf jpdx � c�1Ep.f / (4.18)

for any f 2 W 1;p.K/, where Ep is the self-similar p-energy constructed in Sec-
tion 4.1. The rest of this example is devoted to showing these facts. Let

A D ¹w.1/; w.2/; w.3/º � Tn:

Then Kw.1/; Kw.2/ and Kw.3/ are three consecutive cubes in x1-direction, i.e.,

Kw.1/ \Kw.2/ D fw.1/.B1;1/ D fw.2/.B1;�1/;

Kw.2/ \Kw.3/ D fw.2/.B1;1/ D fw.3/.B1;�1/:

LetA1D ¹w.1/º and letA2D ¹w.3/º. Then, the function attaining the infimum in the
definition of Ep;m.A1; A2; A/ depends only on the first variable x1 and is a piecewise
linear function in the direction of x1. Consequently, we see that

E`p;m.A1; A2; A/ � 2m.L�p/�1:

On the other hand, the comparison of moduli shows

M.1/
p;m.A1; A2; A/ � M

.1/
1;p;m.w/

for any w 2 T . Therefore, there exists c2 > 0 such that

c22
m.L�p/

� E1;p;m.w; Tjwj/

for any m � 1 and w 2 T .
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Now, for f WK ! R, we define zfmWTm ! T by zfm.w/ D f .fw.0//. Then there
exists c > 0 such that

2m.p�L/Ep;Tm.
zfm/! c

Z
K

jrf jpdx (4.19)

as m! 1 for any f 2 C1.K/. So there exists c3 > 0 such that E1;p;m.w; Tjwj/ �

c32
m.L�p/ for any w 2 T . Thus the scaling exponent of � appearing in (3.17) is

2L�p . Combining this fact and arguments analogous to those in [41, Section 5.3], we
have the following Korevaar–Shoen type expression of Wp:

Wp
D

°
f

ˇ̌
f 2 Lp.K; dx/; lim

r#0

Z
K

1

rL

Z
Bd� .x;r/

jf .x/ � f .y/jp

rp
dydx <1

±
:

This expressing enable us to identify Wp withW 1;p.K/. By (4.19), we see that (4.18)
holds for any f 2 C1.K/. Since C1.K/ is dense in W 1;p.K/, (4.18) holds for any
f 2 Wp .

4.5 Rationally ramified Sierpiński crosses

In this section, we present another class of conductively homogeneous spaces called
rationally ramified Sierpiński crosses. This example is a planar square-based self-
similar set as those in the last section but the sizes of the squares constituting it are
not one but two. See Figure 4.7. Consequently, although it has full B2-symmetry, we
should make a little more complicated discussion than that of the previous section to
show the conductive homogeneity.

The family of Sierpiński crosses was introduced in [31, Example 1.7.5].

Definition 4.32. Let r1; r2 2 .0; 1/ satisfying 2r1 C r2 D 1 and r1 � r2. Let p1 D
.�1;�1/, p2 D .0;�1/, p3 D .1;�1/, p4 D .1; 0/, p5 D .1; 1/, p6 D .0; 1/, p7 D
.�1; 1/ and p8 D .�1; 0/. Set S D ¹1; : : : ; 8º. For s 2 S , define FsWC� ! C� as

Fs.x/ D

´
r1.x � ps/C ps if s is odd,

r2.x � ps/C ps if s is even.

The self-similar setK with respect to the family of contractions ¹Fsºs2S is called the
.r1/-Sierpiński cross. Define

`L D ¹�1º � Œ�1; 1�; `R D ¹1º � Œ�1; 1�;

`B D Œ�1; 1� � ¹�1º; `T D Œ�1; 1� � ¹1º;

where the symbols, L, R, B, and T correspond to left, right, bottom, and top, respec-
tively.
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`RK4K8

K2

`B

K6

`T

`L

K5

K3

K7

K1

Figure 4.7. The ��-Sierpiński cross: �� D
p
2 � 1.

In this section, we will show that if an .r1/-Sierpiński cross K is rationally ram-
ified, then it is p-conductively homogeneous for any p > dimAR.K; d�/. Roughly
speaking an .r1/-Sierpiński cross is rationally ramified if

S
v2�1.w/

Kv , which repre-
sents the local geometry around w 2 T , has finite types of variety up to the isometries
whenw 2 T varies. See [31] for the exact definition. In fact, in [31, Proposition 1.7.6],
it is shown that an .r1/-Sierpiński cross is rationally ramified if and only if 1 � r1 D
.r1/

m for some m � 2. For simplicity of arguments, we confine ourselves to the case
m D 2 hereafter in this section. The generalization to other values of m is a little
complicated but the essential idea is the same.

In the case m D 2, the value of r1 equals
p
2 � 1. Set �� D

p
2 � 1. Our main

object of study is now the ��-Sierpiński cross. We take advantage of the framework
of Section 4.1 with r D �� and

js D

´
1 if s is odd,

2 if s is even

to define .T;A; �/ and the associated partition of K. In this case, g.w/ is the con-
traction ratio of the map Fw D Fw1 ı � � � ı Fwm for w D w1 : : : wm 2 Sm. Note that
g.w/ D .��/

n or .��/nC1 for any .n; w/ 2 Tn. For example, ƒg�� D S and

ƒ
g

.��/2
D ¹1s; 3s; 5s; 7s j s 2 S; sW evenº [ ¹1s; 3s; 5s; 7s j s 2 S; sW oddº

[ ¹2; 4; 6; 8º:

Note that g.1s/ D .��/
3 if s is even and g.1s/ D .��/

2 if s is odd. Moreover, ƒg�� \

ƒ
g

.��/2
¤ ; in this case. Let d� be the restriction of the Euclidean metric to K. Let

h��.n; w/ D .��/
n for .n; w/ 2 Tw . It is straightforward to see that d� is 1-adapted

to the weight function h�� , i.e., Assumption 2.15 (2B) holds with M� D 1.
For simplicity, to denote an element in Tn, we use w in place of .n; w/ hereafter

as long as no confusion may occur.
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The Hausdorff dimension of .K;d�/ is given by the unique number ˛H satisfying

4.��/
2˛H C 4.��/

˛H D 1:

Consequently, we see that

˛H D 1C
log 2

log .1C
p
2/
:

Let � be the self-similar measure with weight .�i /i2S , where

�i D

´
.��/

˛H if i is odd,

.��/
2˛H if i is even.

Then � is the normalized ˛H -dimensional Hausdorff measure and is ˛H -Ahlfors reg-
ular with respect to d�. After those observations, it is easy to see that Assumption 2.15
is satisfied with M� DM0 D 1, N� D 8. Moreover, we see that L� � 8.

The main result of this section is as follows.

Theorem 4.33. For any p > 0, n;m; k � 1, w 2 Tn and u; v 2 Tk ,

M
.1/
1;p;m.w/ � 8.24/pC1#.TkC1/pM.1/

p;m.u; v; Tk/:

An immediate consequence of the above theorem is the conductive homogeneity
of the Sierpiński cross.

Corollary 4.34. The ��-Sierpiński cross K is p-conductively homogeneous for any
p > dimAR.K; d�/. Moreover, there exists a self-similar p-energy Ep on Wp . In par-
ticular, there exists a local regular Dirichlet form .E;W2/ on L2.K; �/ whose asso-
ciated heat kernel satisfies (3.26) and (3.28).

Note that due to the two different values of js , the self-similarity of the p-
energy Ep is given as

Ep.f / D �
X
sWodd

Ep.f ıFs/C �2
X
sWeven

Ep.f ıFs/

for any f 2 Wp .

Proof. By (2.13), it follows that

E1;p;m.w; Tn/ � cp#.TkC1/pEp;m.u; v; Tk/

for any n;m;k � 1, w 2 Tn and u; v 2 Tk . Moreover, since p > dimAR.K;d�/, there
exist c > 0 and ˛ 2 .0; 1/ such that

E1;p;m � c˛m
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for any m � 1. Thus we have obtained (3.19) and (3.20), so that K is p-conductively
homogeneous by Theorem 3.33. In particular, since ˛H < 2, K is 2-conductively
homogeneous and we have .E;W2/. Since .K; d�/ has the chain condition, by The-
orem 3.35, we have (3.26) and (3.28).

To show Theorem 4.33, we need to prepare several notions.

Definition 4.35. (1) Set

U D ¹.2; 13/; .2; 31/; .4; 35/; .4; 53/; .6; 57/; .6; 75/; .8; 17/; .8; 71/º:

For .i;jk/2U , defineRi;jk WKi !Kjk as the reflection in the line segmentKi\Kjk .
Moreover, define R�

i;jk
.w/ for w 2 T .i/ [ T .jk/ as the unique v 2 T .i/ [ T .jk/

satisfying Ri;jk.Kw/ D Kv . R�
i;jk

is a map from T .i/ [ T .jk/ to itself.

(2) For g 2 B2, define g�WT ! T by

g�.w/ D v;

where v is the unique v 2 T with g.Kw/ D Kv . Note that g�jTn WTn ! Tn.

(3) For w 2 T , if w … T .2/ [ T .4/ [ T .6/ [ T .8/, then define

Hw D ¹g�.v/ j g 2 B2º:

Otherwise, if w 2 T .i/ for i D 2; 4; 6; 8, then define

Hw D ¹g�.v/ j g 2 B2º [ ¹g�.R
�
i;jk.v// j g 2 B2; .i; jk/ 2 U º:

Note that #.Hw/ � 24 for any w 2 Tn.
By the construction of Tn, we see that g.w/ D .��/

n or g.w/ D .��/
nC1 for any

w 2 T nn . In fact, we immediately obtain the following lemma.

Lemma 4.36. Set T nn D ¹w j w 2 Tn; g.w/ D .��/
nº and T nC1n D ¹w j w 2 Tn;

g.w/ D .��/
nC1º. Then

(1) For any w 2 T nn , wv 2 TnCm if and only if v 2 Tm.

(2) For any w 2 T nC1n , wv 2 TnCm if and only if v 2 Tm�1.

(3) w 2 T nC1nC1 if and only if w 2 T nC1n or w D �j for some � 2 T nn and j 2

¹1; 3; 5; 7º.

(4) w 2 T nC2nC1 if and only if w D �j for some � 2 T nn and j 2 ¹2; 4; 6; 8º.

Definition 4.37. (1) Define  �
n;mWS

m.T nn /! Tm by

 �
n;m.wv/ D v

for w 2 T nn and v 2 Tm.
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(2) For w 2 T , define H0
w � T by

H0
w D

´
¹w;R�

i;jk
.w/º if w 2 T .jk/ for some .i; jk/ 2 U ,

¹wº otherwise:

For w 2 T nC1nC1 and u 2 T , define

Hn
wu D

´
¹�v j v 2 H0

juº if w D �j for some � 2 T nn and j 2 ¹1; 3; 5; 7º;

¹wuº if w 2 T nC1n .

(3) Define
K% D

[
s2S;Ks\`%¤;

Ks (4.20)

for % 2 ¹T;B;R;Lº. For example, KB D K1 [K2 [K3.

Note that if w 2 Tn, then H0
w 2 Tn and that if w 2 T nC1nC1 and u 2 Tm�1, then

Hn
wu � TnCm.

Lemma 4.38. Assume that there exists a path p D .w.1/; : : : ; w.l// of Tm�1 con-
tained in KL such that Kw.1/ \ `B ¤ ;, Kw.l/ \ `T ¤ ;, and p is R�

2 -invariant.
Set

H�
u D

[
w2T

kC1
kC1

[
v2Hu

HkC1
wv

for u 2 Tm�1. Then for any u1; u2 2 Tk , there exists p0 2 C
.1/
m .¹u1º; ¹u2º; Tk/ such

that

p0 �
l[
iD1

H�
w.i/: (4.21)

Remark. Strictly, p0 is not a subset but a sequence of points. However, in (4.21), we
use p0 to denote a subset consisting of the points in the sequence. We use such abuse
of notations if no confusion may occur.

Proof. Set
Y D p [‚�

�
2
.p/ [‚�

�.p/ [‚
�
3�
2

.p/:

Then Y D g�.Y / for any g 2 B2. Let

H�.Y / D
[

w2T
kC1
kC1

[
v2Y

HkC1
wv :

See Figure 4.8 for an illustration paths  and Y along with a part of H�.Y /. It
follows thatK.H�.Y // is a connected set intersectingKu for any u 2 Tk . Therefore,
we can choose a path p0 connecting Ku1 and Ku2 from H�.Y /. Since H�.Y / �Sl
iD1 H�

w.i/
, we have the desired statement.
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p � Tm�1

Y � Tm�1

v

�

�1 �3

�7 �5

� 2 T k
k

, v 2 T kC1
k

\ T kC1
kC1

, �1; �3; �5; �7 2 T kC1
kC1

1

.��/
k

Figure 4.8. Paths  and Y , and a part of H�.Y /.

Proof of Theorem 4.33. Let w 2 Tn and let u1; u2 2 Tk . For any p 2 C
.1/
1;m.w/, set

Hm�1.p/ D
[

u2 �
nC1;m�1

.p\Sm�1.T
nC1
nC1

//

Hu:

Then Hm�1.p/ � Tm�1 and g�.Hm�1.p// D Hm�1.p/ for any g 2 B2.

Claim 1. There exists a path p� contained in Hm�1.p/ such that one of the following
four statements is true:

(a) K.p�/ \ `B ¤ ; and K.p�/ \KT ¤ ;,

(b) K.p�/ \ `T ¤ ; and K.p�/ \KB ¤ ;,

(c) K.p�/ \ `L ¤ ; and K.p�/ \KR ¤ ;,

(d) K.p�/ \ `R ¤ ; and K.p�/ \KL ¤ ;.

Proof. Let Fw.C�/ D Œa; a C h� � Œb; b C h�, where h D .��/
n if w 2 T nn and h D

.��/
nC1 if w 2 T nC1n . Define

Aw; D Œa � ; aC hC � � Œb � ; b C hC �

and zAw D K \ .Aw;.��/nC1nAw;.��/nC2/. Two typical examples of zAw is illustrated
in Figure 4.9. Since Kw.1/ \Kw ¤ ; and Kw.l/ \ Aw;.��/nC1 D ;, a part of p con-
tained in zAw connects

¹.a � .��/
nC1; y/ j y 2 Œ�1; 1�º and ¹.a � .��/

nC2; y/ j y 2 Œ�1; 1�º,

¹.aC h; y C .��/
nC2/ j y 2 Œ�1; 1�º and ¹.aC hC .��/

nC1; y/ j y 2 Œ�1; 1�º,

¹.x; b � .��/
nC1/ j x 2 Œ�1; 1�º and ¹.x; b � .��/

nC2/ j x 2 Œ�1; 1�º,

or

¹.x; b C hC .��/
nC2/ j x 2 Œ�1; 1�º and ¹.x; b C hC .��/

nC1/ j x 2 Œ�1; 1�º.
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w

w

v1

v2

v3

v1

v2

v3
.��/

nC1 .��/
n

.��/
nC1.��/

n

�1.w/ D ¹w; v1; v2; v3º,

w 2 T nC1n , v1; v2; v3 2 T nn

�1.w/ D ¹w; v1; v2; v3º,

v1; v2 2 T nC1n , w; v3 2 T nn

Figure 4.9. Two examples of zAw (dark grey regions are Kw , light grey regions are zAw).

According to the four possibilities above, we have (a), (b), (c) or (d), where the
exact correspondence depends on w. �

Hereafter we assume the first case (a) in Claim 1 in the course of discussion.
Other cases may be treated exactly in the same manner. In the following claims, we
are going to modify the initial path p� step by step. This process of modification is
illustrated in Figure 4.10.

Claim 2. The union p� [R�
2.p

�/ contains an R2-symmetric path

p1 D .v.0/; : : : ; v.l1//

between `B and `T , i.e., Kv.0/ \ `B ¤ ;, R�
2.v.i// D v.l1 � i/ for i D 1; : : : ; l1.

Proof. Let p� D .w.1/; : : : ; w.l//. By (a), K.p�/ intersects with the line segment
Œ�1;1�� ¹0º. Set i� Dmin¹i jw.i/\ Œ�1;1�� ¹0º¤ ;º. Then connecting .w.1/; : : : ;
w.i�// and its image by R�

2 , we obtain a desired path. �

Claim 3. The union R�
1.p1/ [ p1 contains an R2-symmetric path p2 such that

K.p2/ � Œ�1; 0� � Œ�1; 1�:

Proof. If p1 or R�
1.p1/ is contained in the left half of C�, then choose p1 or R�

1.p1/
accordingly as our path. Otherwise, applyingR1 toK.p1/\ Œ0;1�� Œ�1;1�, we obtain
a desired path. �

Claim 4. Set Hp� D
S
u2p� Hu. Then there exists an R�

2 -symmetric path p3 � Hp�

contained in KL such that K.p3/ \ `T ¤ ; and K.p3/ \ `B ¤ ;.
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Claim 2 Claim 2

Claim 3

Claim 4

R2;13

R6;75

Claim 3

K.p�/: initial path
between `B and KT

K.p�/ [R2.K.p�// K.p1/

K.p3/ K.p2/ K.p1/ [R1.K.p1//

Figure 4.10. Modifications of a path.

Proof. If K.p2/ � KL, then we set p2 D p3. Otherwise, use R�
2;13 (resp. R�

6;75) to
reflect the partK.p2/\K2 (resp.K.p2/\K6) intoK13 (resp.K75). Then we obtain
a desired path. �

Now we have a path p3 satisfying all the assumptions of Lemma 4.38. Apply-
ing Lemma 4.38 with p D p3, we obtain a path p0 2 C

.1/
m .¹u1º; ¹u2º; Tk/. For u 2

Sm.�1.w//, define

Hu D

8<:
S
v2H

 �
nC1;m�1

.u/
H�
v if u 2 Sm�1.T nC1nC1 /,

; otherwise.

Then it follows that p0 �
S
v2pHv: Since #.Hu/ � 24 and #.�1.w// � 8,

#.Hw/ � 48#.TkC1/ and #.¹v j u 2 Hvº/ � 24 � 8:

So, Lemma C.4 suffices.

4.6 Nested fractals

In this section, we show conductive homogeneity of a class of self-similar sets, called
strongly symmetric self-similar sets, that are highly symmetric and finitely ramified.
This class is a natural extension of nested fractals introduced by Lindstrøm [37],
where Brownian motions were constructed on them. In [29, Section 3.8], Lindstrøm’s
results were extended to strongly symmetric self-similar sets. Typical examples of
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strongly symmetric self-similar sets are the Sierpiński gasket, the pentakun (“Kun”
means “Mr.” in Japanese), and the snowflake, whose definitions are given below.

Let � 2 .0; 1/ and let S be a finite subset of RL for some L 2 N. For each q 2 S ,
let fqWRL!RL be a �-similitude whose fixed point is q, i.e., there existsUq 2O.L/
such that

fq.x/ D �Uq.x � q/C q

for any x 2 RL. Let K be the self-similar set with respect to the family of con-
tractions ¹fqºq2S . Then the triple .K; S; ¹fqºq2S / is a self-similar structure as is
explained in Section 4.1. Throughout this section, we consider a self-similar structure
.K; S; ¹fqºs2S / given in this way.

Assumption 4.39. (1) If p; q 2 S and p ¤ q, then p … fq.K/.

(2) There exists U � S such that[
q1;q22S
q1¤q2

f �1
q1
.fq1.K/ \ fq2.K// D U:

(3) K is connected.

For purposes of normalization, we assume
P
q2U q D 0 hereafter.

Proposition 4.40. Under Assumption 4.39, .K; S; ¹fqºq2S / is a post critically finite
self-similar structure with

V0 D U: (4.22)

Moreover, define ¹Vmºm�1 inductively by

VmC1 D

[
i2S

fi .Vm/:

Then
Vm � VmC1 (4.23)

for any m � 0.

The definitions of post critically finite (p.c.f. for short) self-similar structures
and V0 along with the proof of (4.22) is given in Appendix 6.3. Inclusion (4.23)
is due to [29, Lemma 1.3.11].

For the self-similar structure .K; S; ¹fqºq2S /, we adopt the framework in Sec-
tion 4.1 with r D � and jq D 1 for any q 2 S . In this case,

Tm D Sm D ¹w1 : : : wm j wi 2 S for any i D 1; : : : ; mº:

Then we see that
V0 D

[
e2E�

1

X.e/;
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where X.e/ is defined in Definition 4.7. Moreover, by [29, Proposition 1.3.5 (2)], it
follows that

Kw \Kv D fw.V0/ \ fv.V0/ � Vm (4.24)

for any w; v 2 Tm with w ¤ v. This implies that

V0 D
[

.X;Y;'/2	T .K;T /

X: (4.25)

Let ˛H D�
logN
log� . Note thatN�˛H D 1. Let � be the self-similar measure with weight

.�˛H ; : : : ; �˛H /. Basic properties of � are given in Appendix 6.3. Also, let d� be the
restriction of the Euclidean metric to K.

The following assumption is an equivalent condition of Assumption 2.15 (2B)
when d is the (restriction of) Euclidean metric. Essentially, the same assumptions
have been around from time to time for almost 30 years. See [35, Assumption 2.2]
and [38, Assumption (P)]. The assumption is believed to be true for nested fractals
but we have no proof so far. In [38], it was shown that this assumption is true if Uq is
the same for any q 2 S . In Appendix 6.3, this assumption is shown to be true if Uq is
the identity map for any q 2 V0.

Assumption 4.41. There exists c > 0 such that d.Kw ;Kv/� c�jwj for any n� 1, and
.w;v/ 2 .Tn � Tn/nE

�
n , where d.A;B/D infx2A;y2B jx � yj for subsetsA;B � RL.

Proposition 4.42. Under Assumptions 4.39 and 4.41, Assumption 2.15 is satisfied
with d D d�, r D �, and M� DM0 D 1.

The above proposition is proven in Appendix 6.3.

Definition 4.43. (1) Let m� D #¹jx � yj j x; y 2 V0; x ¤ yº, where jxj is the Eu-
clidean length of x 2 RL. Define

l0 D min¹jx � yj j x; y 2 V0; x ¤ yº:

Moreover, define li for i D 0; 1; : : : ; m� � 1 inductively by

liC1 D min¹jx � yj j x; y 2 V0; x ¤ y; jx � yj > liº:

(2) A sequence .xi /iD1;:::;k � Vm is called an m-walk if there exists w.i/ 2 Tm
such that xi ; xiC1 2 fw.i/.V0/ for any i D 1; : : : ; k � 1.

(3) A 0-walk .xi /iD1;:::;k is called a strict 0-walk (between x1 and xk) if jxi �
xiC1j D l0 for any i D 1; : : : ; k � 1.

(4) Define

G D ¹g j g 2 O.L/; g.V0/ D V0 and there exists g�WT ! T such that

g.fw.V0// D fg�.w/.V0/ for any w 2 T º:
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(5) For any x; y 2 RL with x ¤ y, define

Hxy D
®
z j z 2 RL; jx � zj D jy � zj

¯
:

(Hxy is the hyperplane bisecting the line segment xy.) Also let gxy WRL ! RL be
reflection in Hxy .

Definition 4.44. A self-similar structure .K; S; ¹fqºq2S / is said to be strongly sym-
metric if Assumption 4.39 is satisfied and there exists a finite subgroup G� of G such
that the following properties hold:

(1) For any x; y 2 V0 with x ¤ y, there exists a strict 0-walk between x and y.

(2) If x; y; z 2 V0 and jx � yj D jx � zj, then there exists g 2 G� such that
g.x/ D x and g.y/ D z.

(3) For any i D 1; : : : ;m� � 2, there exist x;y and z 2 V0 such that jx � yj D li ,
jx � zj D liC1 and gyz 2 G�.

(4) V0 is G�-transitive, i.e., for any x; y 2 V0, there exists g 2 G� such that
g.x/ D y.

Remark. By Definition 4.44 (4), jq1j D jq2j for any q1; q2 2 V0.

Definition 4.45. A self-similar structure .K; S; ¹fqºq2S / is called a nested fractal if
Assumption 4.39 holds and gxy 2 G for any x; y 2 V0 with x ¤ y.

By [29, Proposition 3.8.7], we have the following proposition.

Proposition 4.46. A nested fractal is strongly symmetric.

We give three examples of strongly symmetric self-similar sets. Note that As-
sumption 4.41 is satisfied for all three examples because of Lemma E.5. The first two
are nested fractals.

Example 4.47 (Pentakun: Figure 4.11). LetLD 2 and let S D ¹p1; : : : ;p5º be a col-
lection of vertices of a regular pentagon satisfying

P5
iD1 pi D 0 and let � D

3�
p
5

2
.

Then the associated self-similar set K, called pentakun, is strongly symmetric. (See
[29, Example 3.8.11].) In this case G D G� D D5, which is the group of symmetries
of a regular pentagon, and V0 D ¹p1; : : : ; p5º.

Example 4.48 (Snowflake: Figure 4.12). Let LD 2 and let ¹p1; : : : ; p6º be a collec-
tion of vertices of a regular hexagon satisfying

P6
iD1 pi D 0 and let S D ¹p1; : : : ;

p7; 0º. Furthermore, let � D 1
3

. Then the associated self-similar set, called snowflake,
is strongly symmetric. (See [29, Example 3.8.12].) In this case G D G� D D6, which
is the group of symmetries of a regular hexagon and V0 D ¹p1; : : : ; p6º.

The last example is not a nested fractal.
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Figure 4.11. Pentakun. Figure 4.12. Snowflake.

Example 4.49. Let L D 3 and let

S D ¹�1; 0; 1º3 [
°
�
1

2
;
1

2

±3
; U D ¹1;�1º3;

and � D
1
5

. Note that U is the collection of vertices of the cube Œ�1; 1�3 and

fq.Œ�1; 1�
3/ D

h4q1 � 1
5

;
4q1 C 1

5

i
�

h4q2 � 1
5

;
4q2 C 1

5

i
�

h4q3 � 1
5

;
4q3 C 1

5

i
for any qD .q1; q2; q3/ 2 S . It is straightforward to see that the associated self-similar
set is strongly symmetric with V0 D U and G D G� D B3. This self-similar set is not
a nested fractal because gxy … G if x D .�1;�1;�1/ and y D .1; 1; 1/.

Using Theorem 4.8, we have the following theorem.

Theorem 4.50. Suppose that .K; S; ¹fiºi2S / is strongly symmetric and that As-
sumption 4.41 holds. Then .K; d�/ is p-conductively homogeneous for any p >
dimAR.K; d�/.

As for dimAR.K; d�/, it was shown in [44] that dimAR.K; d�/ D 1 if .K; d�/ is
the Sierpiński gasket. In general, we have the following fact.

Proposition 4.51. Suppose that .K; S; ¹fiºi2S / is strongly symmetric and that As-
sumption 4.41 holds. Then dimAR.K; d�/ < 2.

Proof. Form � 0, define zEm D ¹.fw.x/; fw.y// j w 2 Tm; x; y 2 V0; x ¤ yº. Then
the sequence ¹.Vm; zEm/ºm�0 is a proper system of horizontal networks in the sense
of [34, Definition 4.6.5]. Define

Ls.V0/ D ¹.Dxy/x;y2V0 j there exists .D0; : : : ;Dm��1/ 2 Œ0;1/m�

such that D0 D 1, Dxy D Di if jx � yj D li ;

and
P
y2V0

Dxy D 0 for any x 2 V0º:
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In particular, letD1 2 Ls.V0/ satisfy .D1/xy D 1 for any x; y 2 V0 with x ¤ y. For
D D .Dxy/x;y2V0 2 Ls.V0/, define

ED2;m.h/ D
1

2

X
w2Tm;x;y2V0

Dxy.h.fw.x// � h.fw.y///
2

for h 2 `.Vm/ and

ED2;m;w D inf
®
ED2;nCm.h/ j h 2 `.VnCm/; hjVnCm\Kw D 1;

hjVnCm\.[v…�1.w/Kv/
D 0

¯
for any w 2 Tn. Then by [29, Theorem 3.8.10 and Corollary 3.1.9], there exist D� 2

Ls.V0/ and � > 1 such that .D�; .�
�1; : : : ; ��1// is a harmonic structure, that is, for

any h 2 `.Vm/,

�mED�

2;m.h/ D min
®
�mC1ED�

2;mC1.g/ j g 2 `.VmC1/; gjVm D h
¯
:

This implies that there exist c1; c2 > 0 and k � 1 such that

c1�
�m

� sup
w2T nTk

ED�

2;m;w � c2�
�m:

On the other hand, there exist c3; c4 > 0 such that

c3E
D�

2;m.h/ � ED
1

2;m.h/ � c4E
D�

2;m.h/

for any m � 0 and h 2 `.Vm/. Thus we see that supw2T E
D1
2;m;w � C��m for any

m � 0. Therefore, by [34, Theorems 4.6.9 and 4.9.1], dimAR.K; d�/ < 2.

The rest of this section is devoted to proving Theorem 4.50. We suppose that
.K;S; ¹fiºi2S / is strongly symmetric hereafter in this section. We have the following
theorem by [29, Proposition 3.8.19],

Lemma 4.52. If .K; S; ¹fiºi2S / is strongly symmetric, then g.Kw/ D Kg�.w/ for
any g 2 G and w 2 T . In particular, G � G.K;T /.

Lemma 4.53. If .K; S; ¹fiºi2S / is strongly symmetric, x1; x2; y1; y2 2 V0 and
jx1 � x2j D jy1 � y2j, then there exists g 2 G� such that g.x1/D y1 and g.x2/D y2.

Proof. According to Definition 4.44 (4), there exists g1 2 G� such that g1.x1/ D y1.
Let g1.x2/ D z. Then jy1 � y2j D jy1 � zj. Hence by Definition 4.44 (2), there exists
g2 2 G� such that g2.y1/ D y1 and g2.z/ D y2. Thus letting g D g2ıg1, we see that
g.x1/ D g2.y1/ D y1 and g.x2/ D g2.z/ D y2.

Definition 4.54. A path .w.1/; : : : ; w.k// of .Tm; E�
m/ is said to connect x 2 K and

y 2 K if x 2 Kw.1/ and y 2 Kw.k/.
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Lemma 4.55. Let p be a path of .Tm; E�
m/ connecting x1 2 V0 and x2 2 V0. Sup-

pose jx1 � x2j D li for some i D 1; : : : ; m� � 1. Then there exist a path p1 of
.Tm; E

�
m/, x 2 V0 and y 2 V0 such that p1 connects x and y, p1 �

S
g2G�

g�.p/
and jx � yj D li�1.

Notation. For a path p D .w.1/; : : : ; w.k// and g 2 G , set

g�.p/ D .g�.w.1//; : : : ; g�.w.k///:

Remark. As was done before, we regard p1 and g�.p/ as subsets of Tm in the above
lemma. We are going to keep doing such an abuse of notation as long as no confusion
may occur.

Proof. By Definition 4.44 (2), there exist x; y; z 2 V0 such that jx � yj D li�1,
jx � zj D li and gyz 2 G�. Also, Lemma 4.53 shows that there exists h 2 G� such
that h.x1/ D x and h.x2/ D z. Since jx � yj < jx � zj, x and z belong to differ-
ent sides of Hyz . Hence the path h�.p/ intersects with Hyz . Therefore, h�.p/ and
.gyz/

� ı h�.p/ has an intersection inHyz . Since .gyz/� ı h�.p/ connects gyz.x/ and
y D gyz.z/, we can extract a path p1 from h�.p/ [ .gyz/� ı h�.p/ connecting x
and y, and included in

S
g2G�

g�.p/. Since jx � yj D li�1, p1 is a desired path.

Lemma 4.56. Let p be a path of .Tm;E�
m/ connecting two distinct points in V0. Then

for any x; y 2 V0, there exists a path p0 of .Tm; E�
m/ connecting x and y such that

p0 �
S
g2G�

g�.p/.

Proof. Inductive use of Lemma 4.55 shows that there exists a path p0 of .Tm; E�
m/

connecting two distinct points z1 and z2 in V0 such that jz1 � z2j D l0 and p0 �S
g2G�

g�.p/. By Definition 4.44 (1), there exists a strict 0-walk .x1; : : : ; xj0/ satis-
fying x1 D x and xj0 D y. By Lemma 4.53, for any j D 1; : : : ; j0 � 1, there exists
gj 2 G� such that gj .z1/ D xj and gj .z2/ D xjC1. Concatenating .g1/�.p0/; : : : ;
.gj0�2/

�.p0/ and .gj0�1/
�.p0/, we obtain a desired path connecting x and y.

Proof of Theorem 4.50. We are going to use Theorem 4.8. Let 	 D 	T .K; T / and
let G0 D G1 D G�. By (4.25) and the fact that 	 D 	T .K;T /, we see that E	

m D E�
m.

Hence (a) of Theorem 4.8 is satisfied, and (b) is also satisfied due to the fact that G�

is transitive on V0.
Let w 2 Tn, let u; v 2 Tk and let p 2 C

.1/
1;m.w/. Then p contains a path con-

necting two distinct points in
S
w02Tn

fw0.V0/. Thus  n.p/ contains a path between
two distinct points in V0. By Lemma 4.56, for any x; y 2 V0, there exists a path
pxy �

S
g2G�

g�. n.p// connecting x and y. Set Up D
S
x;y2V0

pxy . Then since
K.Up/ � V0, it follows that g.K.U'// � V0 for any g 2 G�. Moreover, K.Up/ is
connected and Up �

S
g2G�

g�. n.p//. Thus we have verified (c) of Theorem 4.8.
Now, Theorem 4.8 suffices.


