Chapter 5

Knight move implies conductive homogeneity

5.1 Conductance and Poincaré constants

From this section, we start preparations for a proof of Theorem 3.33. To begin with,
we will introduce Poincaré constants and study a relationship between Poincaré and
conductance constants in this section.

The next lemma concerns an extension of functions on 7, to those on 7, 4+,, by
means of the partition of unity {¢y, }yer, given in Lemma 2.19.

Lemma 5.1 ([36, Lemma 2.8]). Let p > 1, let A C T, and let {py, }wea be the par-
tition of unity given in Lemma 2.19. Define 14 ,: £(A) — £(S™(A)) by

Tam @) =D fW)ew ).

weA

Then
&y " amf) = cs1(max Entpm(w, A))E5 4 (f),

where the constant ¢s,, = ¢s5.1(p, L«, M) depends only on p, L« and M.

Proof. Let (ax(u,v))u,ver;, be the adjacency matrix of (7%, E;). Set f = IAA,mf.
Then

amD=3 Y Y amewlfe-For. 6

weAveS™ (w) yeSm (Il (w))

Suppose v € S™(w),u € Sm(l"{“(w)) and (u,v) € E,;, .. Then gy (1) = @y (v) =0
for any w' ¢ T’y ., (w). Hence

Z Pw () = Z Puw (v) = 1.

w’elhy | (w) w’elzy (W)
Using this, we see

fu)— f)

S S (pw @) = gur(v))

w/el’]‘é[_i_l(w)

= Y (S = fW) (g ) — gur ().

w’EFZ‘éI+1(w)
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Let g > 1 be the conjugate of p, i.e., % + é = 1. Then by Lemma A.2,
fay—fP= > [f@) - fw)?
w’el"jﬂl_i_l(w)
ya
(X lew ) —ew @)’
w’el"]‘él+1(w)
<C ), @)= fw)?
GF;}H("’)
x> lew ) = ew )7,
w’elfy 4 (w)

where C; = max{l, (L,)MTD®=2} If € Aand w’ € T4y, | (w), then there exist
w(0),...,w(M + 1) € Asuchthat w(0) = w, w(M + 1) =w’, (w(j), w(j +1)) €
Exforany j =0,..., M. Then

M
|fw) = fFw)|? < (M +DP7' | fw() — fw(j + D)7
j=0

Since #(I'jy ., (w)) < (L)t it follows that

YW - fw)l? < G 3 fw) = fF@")?,

w/el",‘é[(w) w/,w”el"jé,(u)),(l,v’,w”)eE,’,k

where C, = (M + 1)?~!(L,)™. On the other hand,

Z Z Anim WU, v) Z lpw (u) — @u (V)P

veS"(w) ueS”’(I‘lA(w)) w’eFfé,Jrl(w)
=2 ) Enulewew) = 2(L)MT max E’MJF'"(A)(‘pw/)
w/erﬁ+1(w)

Hence, by (5.1),

gm;%(A)(f) = CICZ(L*)M+1 max 8nsm(A)((pw)

3 ( ) /@) = "))

weA g/ w”el";é[_H(w) (w’, w”)EE;;

< CIG(L* M max &)°70 1) ()€ 4 ()

So, Lemma 2.19 suffices. [
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There is another simple way of extension of functions on 7, to those on 7, 4.

Lemma 5.2. Let p > 1 and let A C Ty,. Define Iy i: £(A) — £(S¥(A)) by

i f = fW)Xsk)-

weA

Then
€15k oy Tai f) = max#(dS* W)€} 4(f).

Proof. Let f = TA,kf. Then f(u) = f(v) if 7%(u) = 7% (v). Soif (u,v) € EN ,
and f (u) # f(v), then (¥ (u), 7% (v)) € E*. Fix (w,w’) € E*. Then

#{(u,v) | (U, ) € Epyr, 75 u) = w, 7% (v) = w'} < #05*(w)).
This immediately implies the desired statement. ]

Combining two previous extensions, we have the following estimate.

Lemma 5.3 ([36, Lemma 2.9]). Let p > 1 and let A C T,. Then, there exists I j m:
0(A) — (S5t (A)) such that for any [ € £(A),

enitm Uakmf) < css max#(aSk(w))

Sk+m(A)
x max Eu.pm(v. SK(A)EL 4(f). (5.2)
vesSk(4)

where the constant ¢s3 = ¢s3(p, Lx, M) depends only on p, L« and M, and
Tajem )W) = f(w) (5.3)
forany w € Aandu € S”‘(Sk(w)\BMk(w)).

Proof. Define I = 1, Sk (A),m © T, 4.k~ Combining Lemmas 5.1 and 5.2, we 1mmed1ately
obtain (5.2). Let u € S™tK(A). Set v = 7 (u) and w = 7 (w). If FS (A)(v)C
Sk (w), then

I = Y fE*Dew) = Y fEF0)ew )

U/GSk(A) v’EFf,,k(A)(v)
= > fwey@) = f(w).

k
v/el";‘g,l (A)(v)

Ifv e Sk(w)\BM,k (w), then Filk(A) (v) € Ty (v) € S¥(w). So the above equality
suffices for (5.3). ]
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Next we introduce p-Poincaré constants. In fact, there are two kinds of Poincaré
constants A, ,(A4) and A, ,,,(A) but they are almost the same in view of (5.4).

Definition 5.4. Define u(w) = u(Ky) for w € T. For A C T, define u(4) =
> wea 4(w) and g A — [0, 00) by

_ )

pa(w) = (A)

forw € A. For f € £(A), define

(Na=Y_ f)palu)

ucA

and

1/ s = (2 1S G017 pa0))

ucA

Moreover, define

infCER(” f —CxXsm (A) ||P5MSWL(A))p

Apm(A) =

Fel(sm(4) & ()

and
z (A) _ (”f - (f)Sm(A) |PaMSWI(A))p
p.m -
Fet(sm(4) & i (f)

Remark. By Lemma B.2, it follows that

1\?~ ~

(3)" Zoan (D) = 2 (4) = Tpum (). (5:4)

Using the previous lemmas, we have a relation between Poincaré and conductance
constants as follows.

Lemma 5.5 ([36, Proposition 2.10]). Let p > 1 and let A C T,. Forany m > 1 and
k Z Mmo,

max #(9S¥(w)) max &1, p.m (v, S¥(A)Ap ktm(A) > ¢5545.0(A),
weA veSk(A)

where the constant css = ¢s55(y,mg, p, L+, M) depends only on y, my, p, L« and M.

Proof. Choose fo € £(A) such that €] ,(fo) = 1 and

(min || fo — ¢ xallpys)” = Apo(A).
ceR
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Letting f = I4k m fo, by Lemma 5.3, we see that

k k k
SZ’EnthL(A)(f) <53 3121);#(85 (w)) vergg)((A) Em,pm(v, S (A)). (5.5)

On the other hand, by (5.3) and (2.8),

1 e
D ves;m) HOREYI0!

=ﬁ2 Y1) — el u)

weA yeSm (S (w))

1
> 3 | fo(w) = c|” u(v)
* weA yeS™M (Sk (w)\Bas x (w))
1
> ymoM N7 fo(w) — P u(w) = y"0M 3, 0(A).
p(A) —
This and (5.5) yield the desired inequality. |

5.2 Relations of constants

In this section, we will establish relations between conductance, neighbor disparity,
and Poincaré constants towards a proof of Theorem 3.33. As in the previous section
we fix a covering system J with covering numbers (N7, Ng) and we write 0,
and 0p ., in place of al;g, m and ai m,n» respectively.

Definition 5.6. For w € T and n > 0, define

p(v)
max
veS” (w) u(w)

‘i:n (w) =

First, we consider a relation between Poincaré and neighbor disparity constants.

Lemma 5.7 ([36, Proposition 2.13 (1)]). Let p > 1. Forany w € T andn,m > 1,

Xp,ner(w) < ZP_I(S,, (w) EI??[? )Xpam (v) + L*CZ.271p,n (w)ap,m,n+|w\)-
v w

Proof. By Theorem A.3, for any f € £(S"T™(w)),

S 1)~ (Dsrem PR)

p(w) ueSn+m(y)

< S (760 - (Nsmnl”

B ,u(w) veS(w) ueS™ (v)
+ () sm@) = (f) gntm )P Ipn),
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where C, = 277! for p # 2 and C, = 1. Examining the first half of the above inequal-
ity, we obtain

oD 1@ = (f)smw P )

veS" (w) ueSm (v)

veS”(w)

lw|+n+m
Xverggz(w) pm(v)8 S"+m(w)(f)'

p(w)

For the other half, by Lemma 2.27,

DD 1F)smwy = (F)sntmy P )

veS" (w) ueSm(v)

> £ B i £)O) = P piin D |?
veS" (w) M( )
< Ip,n (w)gll,w;jz_(nw)(})n—i—lwl mf)

7 +m+
=< L*Ap,n (w)c2.270'p,m,n+|w|8; S:zn+;1|,1‘(),|l))(f)

p(w)

Combining all, we see
ApnemW) < Cp(Ex(w) max Apm(v)
veS" (w)

+ L*CZA27Xp,n(w)ap,m,n-i-\wl(v, U,))- un

Definition 5.8. Define
kp m = sup kp m(w).

weT

By Theorem 6.7, Xp,m is finite for any m > 1.
Making use of Lemma 5.7, we have the following inequality.

Lemma 5.9. Define
€n = sup &p(w).

weT
Then 3 3 3
Ap,n—i—m =< 2p_l(g:nkp,m + L*62.27/\p,n0p,m) (5.6)

foranyn,m > 1.

Remark. By Lemma 2.13, u is exponential, so that there exist £ € (0,1) and ¢ > 0
such that

En < ct"

forany n > 1.
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Next, we examine the relationship between the conductance and Poincaré con-
stants.

Lemma 5.10. Foranyw € T, [,m > 1 and k > moM,,

Dk 8M*,p,m,\w|+k+lzp,k+m+l (w) > CS‘l()Xp,l (w), (5.7

where Dy = maxXyer\{¢} #(aSk(v)) and the constant ¢s.1) = 27P¢s5 depends only
ony,my, p, Ly and My. In particular,

BkgM*,p,mXp,k—l—m-H = CS,I()Xp,l (5.8)
Proof. Applying Lemma 5.5 with M = Mg and A = S’ (w), we obtain

D max  Eumypm(v, S WAk ym (ST (W) = ¢552p,0(S' (w)).
veSk+i(w)

Lemma 2.18 shows
EMo,pm(V, SKTHW)) < Ety pm U, Tl k1) < S pomfiw|+k+1-

Moreover, Ap,k+m(Sl(w)) = Ap k+m+1(w) and Apo(SH(w)) = Ap,1(w) by defini-
tion. So letting ¢s.10 = 27 ¢s.5, we obtain (5.7). [

The next theorem is one of the main results of this section.

Theorem 5.11. Assume that p > 1. If either

nll>r£>10 & 8p,n—moMO =0 (5.9
or
lim & D,_1 =0, (5.10)
n—>oo

then there exists C > 0 such that

Apm < Copm, (5.11)
Apmin < CApnOpm (5.12)

and ~ _
(SM*,p,n)_IAp,m < CApmtn (5.13)

foranyn,m > 1.

Remark. Inequalities (5.12) and (5.13) correspond to [36, (2.4)] and [36, (2.3)],
respectively.

Unlike (5.9), (5.10) does not depend on p. So, once (5.10) holds, then we have
(5.11), (5.12) and (5.13) for any p > 1. See Proposition 5.12 after the proof for more
discussion on (5.10).
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Proof. For ease of notation, we write )_Lm = )_kp,m, Om = 0pm and Epy, pom = Em.
By (5.8),if n > k > mo M, then

Di€n—ihnim = €s.10Am. (5.14)
This and (5.6) show
Angm <2771 ((e5.10) " DicEntcbndnim + LuC227An0m). (5.15)
Suppose that (5.9) holds. Let k = moMy. Then there exists no such that, for any
n = no,

_ 1= 1
2[7 1(c54|0) 1Dm()M08n—m()M0‘i‘-n < E

and hence by (5.15), B B
Antm < 2P LycroiAnom. (5.16)

Next suppose that (5.10) holds. Then there exists n¢ such that, for any n > ny,
_ 1= 1
27" N(es10) T Dp1616n < 5

so that we have (5.16) as well. Thus we have seen that if either (5.9) or (5.10) holds,
then there exists n¢g such that (5.16) holds for any n > ny.
Now, let n, = max{moMy + 1,n¢}. Then by (5.14) and (5.16),

CSAI()(EmOMO)_I(gp,n*—moMo)_IIm < Anutm < 2PLiCr27An, Om
for any m > 1. This immediately implies (5.11). Using this and (3.18), we have

Amin < Omin < COpmop.

Therefore, forany m > 1 andn € {1,...,np},
@ <cZ<Cc max 20
Angp’m A’n n=1,...,ng A‘n

So we have verified (5.12) for any n,m > 1. Letting k = moMj in (5.8) and using
(5.12), we obtain (5.13) as well. ]

The following proposition gives a geometric sufficient condition for (5.10).

Proposition 5.12. Suppose that Assumption 2.15 holds. Assume that | is ag -Ahlfors
regular with respect to the metric d. If there exist & < ayg and ¢ > 0 such that

#0S™(w)) < cr e

forany w € T and m > 0, then (5.10) holds.
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Under the assumptions of Proposition 5.12, oy = dimg (K, d), which is the
Hausdorff dimension of (K, d), while dimg (By,,d) < & for any w € T. So, roughly
speaking, Proposition 5.12 says that if

dimg (K,d) > sup dimg (By,d),

weT

then (5.10) is satisfied. By this proposition, one can verify (5.10) for generalized
Sierpifiski carpets for example.

Proof. By [34, Theorem 3.1.21], there exist c¢q, ¢, > 0 such that
el < p(Ky) < coret?!
for any w € T. Hence &, < cr®#", while D, < r~%", -

To conclude this section, we present a lemma providing a control of the difference
of a function on 7}, through &7 ( /) and the Poincaré constant.

Lemma 5.13. Forany w e T, n > m > 1, f € £(S"(w)), and u,v € §"(w), if
"M () = 77" (v), then

n—m
_1 1 - 1
fa) — f)] <2 7825 ()7 Y Fpi)7.
i=1
Proof. Letu € S"(w). Set
Si(u) = S* (7' (u))
foru e S"(w)andi =0,1,...,n. By Lemma B.3 and (2.5), forany k = 1,...,n

@) = (Fsea] = Y 1si v = (sial

=1

k 1
p(r' (W) \» » 1
Z<M(7T’ 1(u))> (Reopa (2" (IES 1) ()

~.

I/\

i=1

'u\»—

<y rert (v Z Xp,i (' (u))) 7.
Hence
@) = O] <170 = (Nl + () $5m) = L)
<y rertel () (nim(dp,i (7 @) 7 +(pi (' ())) 7). m

i=1
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5.3 Proof of Theorem 3.33

Finally, we are going to give a proof of the “if”” part of Theorem 3.33. Recall that
by (3.19), there exist ¢ > 0 and o € (0, 1) such that

EMy,pom < ca™

for any m > 0. Then since &, < 1, (5.9) is satisfied and hence (5.11), (5.12) and (5.13)
turn out to be true.

As in the previous sections, a set J is a covering system with covering numbers
(N1, Ng). Furthermore, recall that by the definition of covering systems,

sup #(A) < oo.
Aeg

We denote the above supremum by N..

Lemma 5.14. Set p = a%. There exists C > 0 such that for any w € T, k,m > 1
withm >k and f € £(S™(w)), if u,v € S™(w) and 7™ (u) = 7™ *(v), then

1

1f ) = F)] < CoERpm) P EV G ()7
Proof. By (5.13),

Api < ChpmEpm—i < ChpmpP™=D, (5.17)

Using this and applying Lemma 5.13, we have
. m—k _ . . . m—1 .
£ ) = f@)] < CEX, ()7 D Rp)PCEY T ()7 Cpm)? D . m
i=1 i=k

Lemma 5.15. Sete = (NC)_%. There exist ny > 1 and my > ny such that if m > my,
then there exist w € T and f € £(S™(w)) such that

1
min u) — max (u) > —¢
uesm—"*(yl)f( ) uesm—"*(yz)f ) 8

Sfor some y1, y, € S"*(w) and

|lw|+m 2
gp,Sm(w)(f) = O’p_m
Proof. Choose A € ¢ such that 0, ,,,(4) > %O’p’m. Suppose that A € T,, and choose
f € t(S™(A)) such that &7 ,(Pnm f) = 1 and
1

& i) = oA’ (5.18)
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Claim 1. There exists ¢c1 > 0, which is independent of m and A, such that ifuy,u, €
S™(A) and (uy,us) € E* then

n+m’
| f(u1) — f(u2)| < c1p™. (5.19)
Proof. By (5.11), (5.17) and (5.18), we have
1 2 C
uy) — fup)|? < &"tm = < < < Cp"™.
|f(u1) — fu2)|? < .S (A)(f) Tpm(A) — Tpm Ao p
This proves the claim. O

Claim 2. There exists ¢, > 0, which is independent of m and A, such thatifu,,u, € A
and 1K (uy) = 7% (uy) for some k € {1,...,m), then | f(u1) — f(uz)| < cap*.

Proof. Itfollows that u1,u, € S™(w) for some w € A. Using Lemma 5.14, we obtain
- 1 1
|fr) = fu2)] < Cp*Cpm) 7 €0 % 1) ()7
- 1 1 - 1 _1
= Cpk(/\p,m) P 8;:13_"2(14) ()7 < Cpk(/\p,m) 7 (0p,m)” 7.
Now (5.11) immediately shows the claim. O

Since #(A) < N, it follows that #(E}(A)) < (N.)?. Therefore, the fact that
8;’A(Pn’mf) = 1 shows that there exists (w1, w2) € E,; (A) such that

I(F)smawy) — (F)smanl? = (Ne)™> = &P,
Exchanging f by — f if necessary, we may assume that
(N)smwy) = (fsmn) = €
without loss of generality. Define

ny =inf{n | n € N, &g > 16¢2p"},

My = max{n.,inf{m | m € N, & > 2¢1p™}}.

Hereafter, we assume that m > m.

Claim 3. Fori = 1 or 2, there exist uy,us € S™(w;) such that u, € 0S™(w;) and

1
|f(u1) — f(u2)| = ZS-
Proof. Choose v11,v12 € S™(wq) and va1, v22 € S™(w;) such that

S11) = (fsmwy), f(22) < (f)smw,), (Vi2,v21) € E|T,)1|+m-
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Since

S11) = f(vi2) + f(v12) = f(v21) + f(v21) — f(v22) = f(v11) — f(va2) > &,
(5.19) shows that, for either i = 1 or 2,
1 1
| f(vi1) = f(vi2)| = 5(8 —c1p™) > ZS-
Letting u; = v;; and u, = v;3, we have the claim. m|

Let w = w; where i is chosen in Claim 3. Exchanging f by — f" if necessary, we
see that there exists #; € S™(w) and u, € dS™(w) such that

1
Sur) = fuz) = e
Set y; = 77"+ (u;) fori = 1,2. Note that y; € S”*(w). By Claim 2,

1 1
min u) — max U) > —g—2c0"* > —¢. n
uES”’—"*(yl)f( ) ueSm—nx(y,) Sz 4 207 = 8

Proof of Theorem 3.33. Let m > my. Then there exist w € T and f € £(S™(w))
satisfying the conclusions of Lemma 5.15. Set ¢o = maxyesm—nx(y,) f(u). Define

1 if 8(f(v) —co) > &,
h(v) = 8¢ 1 (f(v) —co) if0<8(f(v)—co) <&,
0 if 8(f(v) —co) <O

for any v € S (w). Then h|gn«(y,) = 1, h|sn«(y,) = 0 and

N x |w|+m p.—p ‘w|+m 23p+1(NC)2
Epmne (1,72, 87 (W) < é;JII,S’”(w)(h) = 8% 8p,Sm(w)(f) <— -
p.m
By (3.20),
c(n.)23PtH(N )2
EM,pm—ni = C(x)Epm—n, (¥1,y2, 8" (w)) < () (Ne) )
p.m

Making use of the sub-multiplicative property of Exs, pn, We have
EMu.pm < CEM, . pnu M. p.m—n-
Finally, the last two inequalities show
EM,,p.mOpm < C 8M>.<,p,rl*c(”l>x<)23p—i_l (Nc)2

for any m > m,, where the right-hand side is independent of m. Thus K is p-
conductively homogeneous. |



