
Chapter 6

Miscellanea

6.1 Uniformity of constants

In this section, we study the uniformity of conductance, Poincaré and neighbor dis-
parity constants with respect to the structure of graphs.

Definition 6.1. (1) A pair .V; E/ is called a (non-directed) graph if and only if V is
a countable set and E � V � V such that .u; v/ 2 V if and only if .v; u/ 2 V . For
a graph .V;E/, V is called the vertices and E is called the edges.

(2) Let .V;E/ and .V 0;E 0/ be graphs. A bijective map �WV ! V 0 is called an iso-
morphism between .V;E/ and .V 0;E 0/ if “.w;v/2E” is equivalent to “.�.w/; �.v//2
E 0” for any u; v 2 V .

(3) Let .V;E/ be a graph. For p > 0 and f 2 `.V /, define E
.V;E/
P .f / 2 Œ0;1� by

E.V;E/p .f / D
1

2

X
.u;v/2E

jf .u/ � f .v/jp:

(4) Let .V;E/ be a graph and let A;B � V with A \ B D ;. Define

E.V;E/p .A;B/ D inf¹E.V;E/p .f / j f 2 `.V /; f jA � 1; f jB � 0º:

In this section, we always identify isomorphic graphs.
First, we study the uniformity of conductance constants.

Definition 6.2. For L;N � 1, define

GE.L;N / D ¹.V;E/ j .V;E/ is a connected graph; V D ¹t;bº [ V�;where

the union is a disjoint union and t ¤ b; 1 � #.V�/ � LN;

#.¹v j v 2 E; .w; v/ 2 Eº/ � L for any w 2 V�º:

Since GE.L; N / is a finite set up to graph isomorphisms, we have the following
theorem.

Theorem 6.3. For any L;N � 1 and p > 0,

0 < inf
.V;E/2GE .L;N/

E.V;E/p .¹tº; ¹bº/ � sup
.V;E/2GE .L;N/

E.V;E/p .¹tº; ¹bº/ <1:

Definition 6.4. Define

cE.L;N; p/ D inf
.V;E/2GE .L;N/

E.V;E/p .¹tº; ¹bº/



Miscellanea 108

and
xcE.L;N; p/ D sup

.V;E/2GE .L;N/

E.V;E/p .¹tº; ¹bº/:

Next we consider Poincaré constants.

Definition 6.5. For L � 1 and N � 2, define

G .L;N / D ¹.V;E/ j .V;E/ is a connected graph; 2 � #.V / � N;

#.¹v j v 2 V; .w; v/ 2 E; º/ � L for any w 2 V º:

For a connected graph .V;E/, define

P .V;E/ D
°
�
ˇ̌
� 2 V ! Œ0; 1�;

X
v2V

�.v/ D 1
±
:

For � 2 P .V;E/, define

.f /� D

X
v2V

f .v/�.v/;

for f 2 `.V /,

z�.V;E/p;� D sup
f 2`.V /

P
v2V jf � .f /�j

p�.v/

E
.V;E/
p .f /

for p > 0.

Lemma 6.6. Let .V;E/ be a connected finite graph. Then for any p � 1,

0 < inf
�2P .V;E/

z�.V;E/p;� � sup
�2P .V;E/

z�.V;E/p;� <1:

Proof. Write Ep D E
.V;E/
p . For any p � 1,

j.f /�j C Ep.f /
1
p

is a norm on `.V /. Therefore, if

F� D ¹f j f 2 `.V /;Ep.f / D 1; .f /� D 0º;

then F� is a compact subset of `.V /. Fix �� 2 P .V; E/ and set F D F��
. For any

f 2 `.V / with Ep.f / ¤ 0, define

f� D Ep.f /
� 1
p .f � .f /��

/:

Then f� 2 F andP
v2V jf .v/ � .f /�j

p�.v/

Ep.f /
D

X
v2V

jf�.v/ � .f�/�j
p�.v/:
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Hence letting
F.�; f�/ D

X
v2V

jf�.v/ � .f�/�j
p�.v/;

we see that
z�.V;E/p;� D sup

f�2F

F.�; f�/:

Since P .V; E/ � F is compact and F.�; f�/ is continuous on P .V; E/ � F , it
follows that

0 < inf
�2P .V;E/;f�2F

F.�; f�/ � inf
�2P

z�.V;E/p;� � sup
�2P .V;E/

�.V;E/p;�

< sup
�2P .V;E/;f�2F

F.�; f�/ <1:

Since G .L;N / is a finite set, the above lemma implies the following theorem.

Theorem 6.7. For p � 1,

0 < inf
.V;E/2G .L;N/;�2P .V;E/

z�.V;E/p;� � sup
.V;E/2G .L;N/;�2P .V;E/

z�.V;E/p;� <1:

Definition 6.8. Define

c�.p;L;N / D inf
.V;E/2G .L;N/;�2P .V;E/

z�.V;E/p;�

and

xc�.p;L;N / D sup
.V;E/2G .L;N/;�2P .V;E/

z�.V;E/p;� :

Finally, we study neighbor disparity constants.

Definition 6.9. Define

G� .L;N1; N2/ D
®
.V;E1; ¹Viº

n
iD1; E2/ j .V;E1/ 2 G .L;N1/;

.¹1; : : : ; nº; E2/ 2 G .L;N2/; Vi � V and Vi ¤ ;

for any i D 1; : : : ; n, V D
Sn
iD1 Vi ; Vi \ Vj D ; if i ¤ j

¯
:

Let .V;E/ be a graph and let � 2 P .V;E/. For U � V and f 2 `.V /, define

�.U / D
X
v2U

�.v/

and
.f /U;� D

1

�.U /

X
v2U

f .v/�.v/
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if�.U / > 0. ForGD .V;E1; ¹Viº
n
iD1;E2/2 G� .L;N1;N2/,�2P .V;E/ and p � 1,

define PG;�W `.V /! `.¹1; : : : ; nº/ and �p;�.G/ by

.PG;�f /.i/ D .f /Vi ;�

for f 2 `.V / and

�p;�.G/ D sup
f 2`.V /;E

.V;E/
p .f /¤0

E
.¹1;:::;nº;E2/
p .PG;�f /

E
.V;E/
p .f /

:

Moreover, define

P .G; �/ D ¹� j � 2 P .V;E/; �.Vi / � ��.Vj / for any i; j 2 ¹1; : : : ; nºº

for � 2 .0; 1�.

Theorem 6.10. For any p � 1, L;N1; N2 � 1 and � 2 .0; 1�,

0 < inf¹�p;�.G/ j G 2 G� .L;N1; N2/; � 2 P .G; �/º

� sup¹�p;�.G/ j G 2 G� .L;N1; N2/; � 2 P .G; �/º <1:

Proof. First fix
G D .V;E1; ¹Viº

n
iD1; E2/ 2 G� .L;N1; N2/

and fix
�� 2 P .G; �/:

Define F as in the proof of Lemma 6.6. For any f 2 `.V /, setting

f� D Ep.f /
� 1
p � .f � .f /��

/;

we see that f� 2 F and

j.f /V1;� � .f /V2;�j
p

Ep.f /
D j.f�/V1;� � .f�/V2;�j

p

for any � 2 P .G; �/. Let F WF � P .G; �/! R by

F.f; �/ D j.f /V1;� � .f /V2;�j:

Since F is continuous and F � P .G; �/ is compact,

0 < inf
�2P .G;�/;f 2F

F.f; �/ � inf
�2P .G;�/

�p;�.G/ � sup
�2P .G;�/;f 2F

F.f; �/

D sup
�2P .G;�/

�p;�.G/ <1:

Now the desired statement follows by the fact that G� .L;N / is a finite set up to graph
isomorphisms.
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Definition 6.11. Define

c� .L;N1; N2; �/ D inf¹�p;�.G/ j G 2 G� .L;N1; N2/; � 2 P .G; �/º;

xc� .L;N1; N2; �/ D sup¹�p;�.G/ j G 2 G� .L;N1; N2/; � 2 P .G; �/º:

6.2 Modification of the structure of a graph

In the original work of Kusuoka–Zhou [36], they used a subgraph of .Tn; E�
n / to

define their version of Em2 in the case of the Sierpiński carpet. Namely, in our termi-
nology, their subgraph is

E1n D ¹.u; v/ j .u; v/ 2 E�
1 ; dimH .Kv \Ku/ D 1º

and their energy is

E1;np .f / D
1

2

X
.u;v/2E1n

jf .u/ � f .v/jp

for f 2 `.Tn/. (They only consider the case p D 2.) Our theory in this paper works
well if we replace our energy Enp with Kusuoka–Zhou’s energy E

1;n
p because they are

uniformly equivalent, i.e., there exist c1; c2 > 0 such that

c2E
n
p .f / � E1;np .f / � c2E

n
p .f /

for any n � 1 and f 2 `.Tn/. More generally, if we replace our graph .Tn; E�
n / with

a subgraph .Tn; En/ satisfying conditions (A) and (B) below, all the results in this
paper remain true except for changes in the constants.

(A) Gn D .Tn; En/ is a connected graph for each n having the following prop-
erties:

(i) If .w; v/ 2 En, then Kw \Kv ¤ ;.
(ii) If .w; v/ 2 En for n � 1, then �.w/D �.v/ or .�.w/;�.v// 2 En�1.
(iii) If .w; v/ 2 En for n � 1, then there exist w1 2 S.w/ and v1 2 S.v/

such that .w1; w2/ 2 EnC1.
(iv) For any n� 0 andw;v 2 Tn withKw \Kv ¤;, there existw.0/; : : : ;

w.k/ 2 �1.w/ satisfyingw.0/Dw;w.k/D v and .w.i/;w.i C 1// 2

En for any i D 0; : : : ; k � 1.

(B) For any w 2 T , the graphs .Sn.w/; ES
n.w/

nCjwj
/ associated with the partition

T .w/ of Kw satisfies the counterparts of conditions (i), (ii), (iii) and (iv)
of (A).

Naturally, the graph .Tn; E�
n / satisfies (A) and (B).
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6.3 Open problems

In the final section, we gather some of open problems and future directions of our
research.

1. Regularity of Wp for p 2 Œ1; dimAR.K; d/�: As we have already mentioned, it is
not known whether or not C.K/\W p is dense in Wp for p 2 Œ1;dimAR.K;d/�. The
first step should be to establish an elliptic Harnack principle for p-harmonic functions
on approximating graphs and/or the limiting object .Wp; yEp.�/C k � kp;�/. Even in
the case of p D 2, this problem is open except for the case of generalized Sierpiński
carpets. The conjecture

Wp
� C.K/ if and only if p > dimARC .K; d/

in the introduction is closely related to this problem as well.

2. Construction of p-form and p-Laplacian: In this paper, we have constructed a p-
energy yEp.f / but not a p-form yEp.f; g/. Let

p̂.t/ D

´
jt jp�2t if t ¤ 0;

0 if t D 0:

On a graph G D .V;E/, if we define

Ep.f; g/ D �

X
x2V

.�pf /.x/g.x/

for f; g 2 `.V /, where �p is the p-Laplacian defined by

.�pf /.x/ D
X

y2V;.x;y/2E

p̂.f .y/ � f .x//;

then it follows that

Ep.f / D
1

2

X
.x;y/2E

jf .x/ � f .y/jp D Ep.f; f /:

As a natural counterpart, we expect to have a p-form yEp.f; g/ which is linear in g,
satisfies

yEp.f / D yEp.f; f /

for any f 2 Wp , and has an expression such as

Ep.f; g/ D �

Z
K

.�pf /.x/g.x/�.dx/:
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3. Existence of p-energy measure: In the case p D 2, there is the notion of energy
measures associated with a strongly local regular Dirichlet form .E;F /, where E is
the form and F is the domain. Roughly speaking, the energy measure �f associated
with f 2 F is a positive Radon measure satisfyingZ

X

u.x/ d�f .dx/ D 2E.uf; f / � E.f 2; u/

for any u 2 F \ C0.X/. See [19] for details. So, what is a counterpart of this in the
case of yEp? Is there any natural measure �f for f 2 Wp such thatZ

K

d�f .dx/ D yEp.f /?

For Rn, the answer is yes and

�f D jrf jpdx:

For the planar Sierpiński carpet, this problem has already been studied in [41]. How-
ever, we know almost nothing beyond those examples.

4. Fractional Korevaar–Shoen type expression: As we have already mentioned, a
fractional Korevaar–Shoen type expression of Wp has already shown in [41] in the
case of the planar Sierpiński carpet. Namely, we have

Wp
D

°
f

ˇ̌
f 2 Lp.K;�/; lim

r#0

Z
K

1

r˛H

Z
Bd� .x;r/

jf .x/ � f .y/jp

rˇp
dxdy <1

±
;

and it is shown in [41] that p̌ > p for any p > 1. How about other cases? Suppose
that Assumption 2.15 holds and � is ˛H -Ahlfors regular with respect to the metric d .
Then we expect that

p̌ D ˛H C �p

and we know
˛H C �p � p

by [34, (4.6.14)]. Now our questions are:

• Do we have a fractional Korevaar–Shoen type expression as above?

• When does p̌ > p hold? (Apparently, if K D Œ�1; 1�L, then p̌ D p.)

A related question is: If p̌ D p, then does Wp coincide with any of the Sobolev type
spaces given by approaches using upper gradients?

5. Without local symmetry: In Sections 4.3, 4.4, 4.5 and 4.6, we have shown the
conductive homogeneity of self-similar sets having local symmetry, which helped us
to extend a path from one piece ofKw to neighbors by the reflection in its boundaries.
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However, the local symmetry does not seem indispensable for having conductive
homogeneity. Intuitively the essence should be the balance of conductances in differ-
ent directions, for example, the vertical and the horizontal directions for square-based
self-similar sets. Unfortunately, we have not had any example without local symmetry
yet except for finitely ramified cases.


