Appendices

A Basic inequalities

The next two lemmas can be deduced from the Holder inequality.

Lemma A.1. For p € (0, 00),

n
P
D
i=1

foranyn > landay,...,a, € R.

n
< max{1.n?'} > " a;|”
i=1

Lemma A.2. Let p,q € [1, oo] satisfying % + é = 1. Then for any n € N and
ai,...,dy e R,

n 1
<Z|ai|q)q < max {1,n = (Z|a |p>
i=1
The following fact implies the comparison of two types of Poincaré constants,
Apm and Ap , as in (5.4).

Theorem A.3 ([9, Lemma 4.17]). Let u be a finite measure on a set X. Then for any
felP(X,u)andc € R,

I L=

where || - ||, is the L?-norm with respect to j and (f),, = w(X)™! [ fdp.
The following lemma is a discrete version of the above theorem.
Corollary A4. Let (i;)i=1,..n € (0,1)" with > ;_, u; = 1. Then

z 1\? o | — p
Z|x—ai|pﬂi2(5> Z‘Zﬂjaj—ai
i=1

i=1 j=1

i

forany x,aq,...,a, € R.

B Basic facts on p-energy

Let G = (V, E) be a finite graph. For A C V,set E4 = {(x,y) | x,y € A, (w,y) € E}
and G4 = (A, E4).
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Definition B.1. Let u: V' — (0, 00) and let A C V. Define supp(u) = {x | x € V,
u(x) > 0}. Let p > 0. For u € £(V), define

Efa =5 Y () —u(l?,

(x,»)EE

el = (D )17 (0)

xeV

1

Sy i) 2 M)
ye

xeV

(“)M =

and

min u—-c p
20 — sup ( cer |l - XV”p,u) ’
’ uel(V),u#0 8]) (u)

where yy € £(V) is the characteristic function of the set V.

A _ oGa A _ 4Ga
For A CU,set&) =&, and A}, |, = /\P,M|A'

Lemma B.2. Define
¥ (v — @) xv llp.)”

A6 = sup
PR ety uzto &% (u)

Then :
P=G G _736G
(5) Ao = Mg = Appe

Proof. By Corollary A 4,

D 1) = ()l p(x) = min B fu(x) = el p(x)

xeV xeV

= (5)" 3 o) — @), .

2
xevV

Lemma B.3 ([36, Proposition 1.5(2)]). Let p € [1, 00) and let u: V — (0, 00).
Assume that A € B C V. Then for any u € £(B),

1 o~ 1
_ < AB 83 p'
[(u)a — (u)B| < M(A)%( pu€p (W)

Proof. By the Holder inequality,

[(u)a — (W)B| < ﬁ/l;XAW — (u)ldp < /L(:l)ll’ (/B lu — (u)Bll’du);. "
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C Useful facts on combinatorial modulus

In this appendix, we have useful facts on combinatorial modulus. In particular, the last
lemma, Lemma C.4, is a result on the comparison of moduli in two different graphs.
This lemma plays a key role on several occasions in this paper.
Let VV be a countable set and let &* (V') be the power set of V. For p: V' — [0, 00)
and A C V, define
Ly(4) = Y p(x).

x€eA

For U C £ (V), define
AU) ={p|p:V = [0,00), L,(A) > 1 forany A4 € U}.
Moreover, for p: V — [0, 00), define

My(p) = Y p(x)? and Mod,(U) = peg(fu) M, (p).

xeV
Note that if U = @, then A(U) = [0, 00)" and Mod,(U) = 0.

Lemma C.1. Assume that U consists of finite sets. Then there exists p« € A(U) such
that
Mod, (U) = Mp(p+).

Proof. Choose {p; };>1 € +(U) such that M,(p;) — Mod,(U) asi — oo. Since V
is countable, there exists a subsequence {pn; };>1 such that, for any v € V, pp; (v)
is convergent as j — 00. Set px(p) = lim; o0 pn, (p). For any A € U, since A is
a finite set, it follows that L,, (4) > 1. Hence px € A(U). For any & > 0, there exists
a finite set X, such that 3 .y p«(v)? > Mp(ps) —&. As

Mody(U) = lim My(pn;) > Tim 3~ pn, (0)",

veXe

we obtain Mod, (U) > M, (px) — ¢ for any & > 0. Hence Mod,, (U) > M, (px«). On the
other hand, since px € A(U), we see My, (p+) > Mod,(U). Therefore, M, (p«) =
Mod, (U). ]

Lemma C.2. Assume that U consists of finite sets. For v € V, define U, = {A |
A€ U,v € A}. Then
p+(v)? < Mod, (Uy)

for any ps € A(U) with M, (px) = Mod,(U). In particular, if U, = 9, then

px(v) = 0.
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Proof. Suppose that px € A(U) and M, (p«) = Mod, (U). Assume that U, = @ and
p«(v) > 0. Define p/, by

/( ) IO*(M) if u # v,
u) =
P 0 ifu=v.
Then p), € A(U) and M, (p,) < M,(p«). This contradicts the fact that M, (px) =
Mod, (U). Thus if U, = 9, then p«(v) = 0. Next assume that U, # 0. Let p, €
A(Uy) with Mp(py) = Mod, (U,). Note that such a p, does exist by Lemma C.1.
Define

- max{p«(u), py(u)} ifu # v,

pu) = .

v (V) ifu =w.

LetAe U.Ifv ¢ A, then p > p, on A, so that p € A(A). If v € A, then p > p, on A
and hence p € A(A). Thus we see that p € A(U). Therefore,

Mod,(U) < Mp(5) < Y pu(u)? + > py(u)?
uF#v uev

= Mod, (U) — p«(v)? + Mod, (Uy). [
Define £ (V) ={f | f:V — [0,00)}.

Lemma C.3. Let Vi and V, be finite sets. Let U; € P (V;) fori = 1,2. If there exist
maps &: Uy — Uy, F: L (V1) — £+ (V>) and constants C1, C, > 0 such that

CiLrp)(v) = Lp(§(y)) and  My(F(p)) = C2Mp(p)
forany p € L4 (V1) and y € Uy, then
Mod,(Us) = (C1)?C;Mod, (Uy)
forany p > Q.

Proof. Note that C; F(p) € A(U-) for any p € A(U;). Hence if F/'(p) = C1F(p),
then

Mod,(U,) = min M < min M,(F’
p( 2) peA(Un) p(P)_pGA(ul) p( ()

=< (C)HFC, min M,(p)(C1)F CaMod, (Uy). "
peA(UL)

Lemma C.4. Let Vi and V, be countable sets and let U; C P(V;) fori =1, 2.
Assume that Hy, C Vi and #(Hy) < oo for any v € V,. Furthermore, assume that, for
any B € Uy, there exists A € Uy such that A C | J,cp Hy. Then

Mod,(U>z) < sup #(Hy)? sup #({v | v € V2, u € Hy})Mod,(U1)

vels uely

forany p > Q.
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Proof. For p: V3 — R, define
F(p)(v) = max p(u)
ueHy,
for any v € V5. Then F: £ (V1) — £4(V>) and

Mp(F(p) = ) max pu)” < 3 7 > p(u)”

IS %) veV ueHy
< sup #({v | v € Vo, u € Hy})Mp(p).
uev

On the other hand, for B € U, choose £(B) € U, such that £(B) € | J,cp Hy- Then
forany p € £ (V1) and B € U,,

sup #(Hy) L (p)(B) = Y #(H)F(p)w) = > Y p(v)

uels ueB ueB veH,
= Z #{u | v e Hy})p(v)
veUyep Hu
> Z p(v) = L, (§(B)).
veé(B)
Hence by Lemma C.3, we have the desired conclusion. n

D An Arzela—Ascoli theorem for discontinuous functions

The following lemma is a version of Arzela—Ascoli theorem showing the existence
of a uniformly convergent subsequence of a sequence of functions. The difference
between the original version and the current one is that it can handle a sequence of
discontinuous functions.

Lemma D.1 (Extension of Arzela—Ascoli). Let (X, dx) be a totally bounded metric
space and let (Y, dy) be a metric space. Let u;: X — Y for any i > 1. Assume that
there exist a monotonically increasing function 1: [0, 0c0) — [0, 00) and a sequence
{8i}i>1 € [0, 00) such that n(t) - Oast | 0,8; - O0asi — oo and

dy (ui(x1),ui(x2)) < n(dx(x1,x2)) + 6; (D.1)

forany i > 1 and x1,x, € X. If Uizl u; (X) is compact, then there exists a sub-
sequence {un; }j>1 such that {u,, }j>1 converges uniformly to a continuous function
u: X =Y as j — oo satisfying dy (u(xy),u(x2)) <n(dx (x1,x2)) forany x1,x, € X.

Proof. Since X is totally bounded, there exists a countable subset A € X which is
dense in X and contains a finite 7-net A, of X forany v > 0. Let K = ;5 ui (X).
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Since K is compact and {; (x)};>1 € K is bounded for any x € A, there exists a sub-
sequence {Uy,, (X)}x>1 converging as k — oo. By the standard diagonal argument,
we may find a subsequence {1y, }j>1 such that {u,; (x)};>1 converges as j — oo for
any x € A. Set v; = up; and @ = §y;. Define v(x) = lim; oo v(x) for any x € A.
By (D.1),

dy (v (x1). v (x2)) < n(dx (x1.x2)) + )

for any x1, x, € A. Letting j — o0, we see that
dy (v(x1), v(x2)) < n(dx (x1,x2)) (D.2)

for any x1, x, € A. Since A is dense in X, v is extended to a continuous function on X
satisfying (D.2) for any x, x € X. Fix ¢ > 0. Choose 7 > 0 such that n(7) < 3.

Since the t-net A, is a finite set, there exists ko such that if k > kg, then o < %
and dy (v(z), vg(z)) < e for any z € A;. Let x € X and choose z € A, such that
dx(x,z) < 1. If k > kg, then

dy (v (x), v(x)) < dy (v (x), v (2)) + dy (Ve (2), v(2)) + dy (v(2), v(x))
< 2n(dx (x, 2)) + ax + dy (v (2), v(2)) < 2e.

Thus {v; };>1 converges uniformly to v as j — oo. ]

E Geometric properties of strongly symmetric self-similar sets

In this appendix, we will give proofs of claims on topological and geometric prop-
erties of self-similar sets treated in Section 4.6. Namely, we will give proofs of
Propositions 4.40 and 4.42. First, we recall the setting of Section 4.6. Let S be a finite
subset of RL and let p € (0, 1). Let U, € O(L) for any q € S. Define f,: R — RE
by
Ja(x) = pUg(x —q) +q

for x € RL. Let K be the self-similar set with respect to { f; }4es. i.e., K is the unique
non-empty compact set K satisfying

K = U Jq(K).

qges

The triple (K, S. {f;}qes) is know to be a self-similar structure defined in Defini-
tion 4.1 and the map y: SN — K is given by

@1q2.- 9 = () faram(K)

m=>0

as we have seen in Section 4.1.
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Definition E.1. (1) Define 5: SN — SN by

5(q1g2...) = q2q3... forqiqs...<€ SN.

(2) Define

k= Kink;, e=yx'Cx) 2=|J5 )
i#jeS k>1

and Vy = y(9). The sets € and & are called the critical set and the post critical set
of (K, S,{fq}qes), respectively. A self-similar structure (K, S, { f;}4es) is said to
be post critically finite (p.c.f. for short) if J is a finite set.

By [29, Theorem 1.2.3], we have the following proposition.

Proposition E.2. The map yx is continuous and surjective. Moreover,

1(q1q2..) = fq,(X(0(q192 - . .))) (E.1)

forany q1q> ... € SN.

In this appendix, we suppose that Assumption 4.39 holds.
The next lemma gives a proof of Proposition 4.40.

Lemma E.3. Under Assumption 4.39, we have
(1) Foranyq € S, x"'(q) = g, where g = qqq ... € SN.

2) P =1{q | q € U}, where U is the set appearing in Assumption 4.39. In par-
ticular, the self-similar structure (K, S, { f4}qes) is post critically finite and
Vo =U.

Proof. (1) Suppose x(t172...) = ¢. Then by (E.1),

q=yx(m...)= fr(x(213...)) € Ky,.

By Assumption 4.39 (1), it follows that ; = ¢. Since f; is invertible, we see that
x(t213...) = ¢q. Using the same argument as above, we see that 1, = ¢ as well. Thus
we deduce that 7 = ¢ for any k € N inductively.

(2) Suppose that y(t172...) € fr,(K) N f4(K) for some g # 7;. By (E.1), it
follows that x(7172...) = fr; (x(7273...)). Hence by Assumption 4.39 (2),

x(w2t3..) € (fo) 7 (fo (K) N fy(K)) S U.

Thus 7,73 ... = ¢’ for some ¢’ € U. Therefore, # C U.

Conversely, again by Assumption 4.39 (2), for any g € U, there exist py, p» € S
with p; # p2 such that y(p1q) € fp,(K) N fp,(K). This shows that p;g € € and
hence ¢ € P. ]
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In the next two lemmas, we are going to show a sufficient condition for Assump-
tion 4.41.

Lemma E.4. Suppose that Assumption 4.39 holds and that Uy is the identity map

forany g € Vy. Let g = fp,(q1) = fp,(q2) for some p1, p» € S with p1 # p, and
41,92 € Vo. Then there exists y = y(p1, P2,41,42) > 0 such that

d(KP] \Kp] (q])mfl ’ KP2) . ypm

forany m > 1, where d(A, B) = infyea,yep |Xx — y| and (@ =q...qeTy.

k-times

In the following proof, we assume that

#(fp1 (K) 0 fpp (K)) = 1

to avoid a non-essential complication of arguments. Without this assumption, the
lemma is still true with a technical modification of the proof.

Proof. Set ¢, = inf{d(Ky, Ky) | w,v € Ty, Ky N Ky, = @}. Define

Xm = Kp \Kp, (gym—1  and Yy = Kp, 4\ K, (4,)m—

for m > 1. Then X = Y U (U4, Kprg) and Kp, = Kprg, U (U,24, Kpag)-
This implies that
d(Xm, Kp,) = min{d (Y, Kp,q,). 2}

On the other hand, letting f(x) = p(x —q) + ¢, we see that
Yim UKprgr = f(Xm—1 U Kp,).
This yields d(Ypm, Kp,q,) = pd(Xm—1. Kp,). Consequently, we have
d(Xm, Kp,) > min{pd(X,u—1, Kp,), c2}.
Now inductive argument suffices. |

Lemma E.5. Suppose that Assumption 4.39 holds and that Uy is the identity map for
any q € Vy. Then Assumption 4.41 holds.

Remark. According to the notation in the proof of Lemma E.4, this lemma claims
Ccm = cp™ forany m > 1.

Proof. Suppose that w,v € Tj, and Ky, N Ky, = 0. Letw = wy ... wy, and letv =
V1 ...VUy. In the case w1 = wa,,

d(Kwy Ky) = Pd(sz...wms sz...vm) Z Cm—1p-
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Otherwise, assume that wy # v;. If Ky, N Ky, = 0, then d(Ky, Ky) > ¢1. So,
the remaining possibility is that w; # vy and Ky, N Ky, # 9. In this case, let
q = Ky, N Ky,. Then g = fy,(p;,) = fw,(pj,) for some ji, j» € {1,...,L}. By
Lemma E.4, it follows that d(Ky,, K,) > yp™, where ¥ = min{y(p1, p2.91.92) |
1,02 €5,91,92 € Vo, fp,(q1) = fp,(g2)}. Combining all the cases and using induc-
tion on m, we see that ¢,, > min{cy, y}p™ for any m > 1. ]

Now we start showing Proposition 4.42, that is, Assumption 2.15 holds under
Assumptions 4.39 and 4.41.

Lemma E.6. Under Assumptions 4.39 and 4.41, Assumption 2.15(2) holds with
r=p, My =1,and d = dy, where d is the restriction of the Euclidean metric.

Proof. (2A) is obvious. Set

Tia) = J Tiw)

weTy
xeKy

for x € K and n > 1. Then for any v € T,\I'; »(x), there exists w € T, such that
x € Ky and Ky, N K, = @. By Lemma E.5, we see that d(K,,, x) > cp” and hence
By, (x,cr™) N K, = @. Thus we have

By, (x,cp") C Ui(x : n). (E.2)

On the other hand, by (2A), there exists ¢’ > 0 such that diam(Ky,, dx) < ¢’ p‘w| for
any w € T. This implies

Ui(x :n) € By, (x,3¢'0"). (E.3)

So we have (2B). Choose x¢ € K\ Vj and choose m¢ € N such that 2p™0 < d(xq, Vp).
Letw € T, and letu € I'y 40 (fw (x0)). Suppose that u € T'(v) for some v € T,, with
v # w. Since u € I't mo+n(fuw(x0)), there exists ug € Ty4m, such that fy, (xo) € Ky,
and Ky, N K, # 0. Let y € K,,. Since K is connected (and hence arcwise connected
by [29, Theorem 1.6.2]), there exists a continuous curve ¢: [0, 1] — Ky, U K, such
that £(0) = fw(x0) and ¢(1) = y. Note that f,,(x¢9) € Ky and y € K,,. By (4.24),
the curve ¢ intersects with fy, (Vo). Therefore, (K, U Ky,) N fi, (Vo) # 0. However,
since diam(Ky,, dx) = diam(Ky,,, d«) = p™0™", it follows

d(fuw(x0), Ky U Ky) < 2Pm0+n < d(fw(xo0), fw(Vo)),

so that (K, U Ky) N fiy, (Vo) = 0. This contradiction shows that u € T'(w) and hence
Uy (fw(x0) : mog +n) C Ky. By (E.2), we see that

Ba, (fuw(x0),co™*™) € Ur(fu(x0) : mo +1n) S Ky,

This shows (2C). ]
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Next set oy = —%. Note that p*# = #(S)~!. Let u be the self-similar
measure on K with weight (p%#, ..., p*H). By [31, Theorem 1.2.7], we see that

w(Ky) = pl*! for any w € T and consequently 1 ({x}) = 0 for any x € K,,. These
facts show that u satisfies Assumption 2.12. Moreover, we have the following propo-
sition.

Proposition E.7. Under Assumptions 4.39 and 4.41, there exist c1, c; > 0 such that

c18™ < ju(Bg,(x,5)) < c1s (E4)

for any s € [0, 1]. In particular, | is ag-Ahlfors regular with respect to d,. and the
Hausdorff dimension of (K, d«) equals ag.

Proof. By (E.3),forany x € K andn > 1,if w € I'; ,(x), then
(P = u(Kw) < u(Bg, (x,3¢'p")). (E.5)
On the other hand, by [31, Proposition 1.6.11], there exists Jx € N such that
#(1n(x)) < Js (E.6)

for any x € T and n > 0. (Note that All)n’x defined in [31, Definition 1.3.3] equals
I'1,n(x).) Therefore by (E.2),

1(Ba, (x.cp™) = D w(Ky) < Ju(p"). (E.7)
vely ,(x)
Combining (E.5) and (E.7), we obtain (E.4). ]

The following proposition is immediately deduced from the previous propositions
and lemmas. Note that 'y (w) € I'y »(x) forany w € T and x € K,,. Hence by (E.6),
we see that the partition { Ky, }yer is uniformly finite.

Proposition E.8 (Proposition 4.42). Under Assumptions 4.39 and 4.41, Assump-
tion 2.15 holds withr = p, d = dyx and M, = My = 1.

The fact that My = 1 is due to the second remark after Assumption 2.6.
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Definitions

adjacency matrix, Definition 2.1
Ahlfors regular, (2.9)
Ahlfors regular conformal dimension, (1.1)
Arzela—Ascoli, Appendix 6.3
child, Definition 2.2 (1)
chipped Sierpifiski carpet, Example 4.25
conductance constant, Definition 2.17
conductively homogeneous (conductive

homogeneity), Definition 3.4
covering, Definition 2.26
covering numbers, Definition 2.26
covering system, Definition 2.29
critical set, Definition E.1
exponential, Lemma 2.13
folding map, Definition 4.11 (2)
geodesic, Definition 2.1 (3)
graph, Definition 2.1
graph distance, Definition 2.21
hyperoctahedral group, Definition 4.9
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locally symmetric, Definition 4.11 (4)
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CL-N | Definition 4.9
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Se (L, N), Definition 6.2
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Y(k.T), Definition 4.7

hy Definition 2.20
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My w?

Jt’}l 2 Definition 4.10

I4.%.m»>Lemma5.3

iA,m, Lemma 5.1
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J(w), (4.2)
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K7, K, Kg, K1, (4.20)
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Oy, Definition 2.5

P,,, Definition 3.11
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Py, ., Definition 2.26
P (V, E), Definition 6.5
P (G, k), Definition 6.9
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R;, Rj.l Ja? Definition 4.10

R jk, Rﬁjk, Definition 4.35
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T, Definition 2.2 (2)

T2, Tr ! Lemma 4.36

T (w), Definition 2.2 (3)

Ups (w), Lemma 3.18

Upr (x : n), Assumption 2.15

|w|, Definition 2.2 (2)

wv, Definition 2.1 (3)

WP, Lemma 3.13

X (e)— Definition 4.7

B, Theorem 3.35

¥, Assumption 2.12

F;él (w), Tar (w), Definition 2.5
81 (-, +), Definition 3.7

9S8 (w), Definition 2.9

k, Assumption 2.12

Ap.m(A), X, m(A), Definition 5.4
Ip,m, Definition 5.8

A%, (4.3)

Om (-, -), Definition 2.21

6%, Theorem 4.14

&,, Lemma 5.9

&, (w), Definition 5.6

7, Definition 2.2

o, Theorem 3.30

0p.m(A), Definition 2.26

o2 pn.n» 08, Definition 2.29
0p.u(G), Definition 6.9

7, Lemma 3.10

75, Lemma 3.34

Tx, Theorem 3.35

&y, Definition 4.11

@e, Definition 4.7

@1 .w.m- Definition 2.20

Par, - Lemma 3.18

Yy, Definition 4.7

V- Definition 4.37 (1)

¥, Definition 2.2 (4)

#(-), Definition 2.5

Il llp. > Lemma 3.13, Definition 5.4
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