Appendices

A Basic inequalities

The next two lemmas can be deduced from the Hölder inequality.

Lemma A.1. *For* $p \in (0, \infty)$ *,*

$$
\left|\sum_{i=1}^{n} a_i\right|^p \le \max\{1, n^{p-1}\} \sum_{i=1}^{n} |a_i|^p
$$

for any $n \geq 1$ *and* $a_1, \ldots, a_n \in \mathbb{R}$.

Lemma A.2. Let $p, q \in [1, \infty]$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$,

$$
\left(\sum_{i=1}^n |a_i|^q\right)^{\frac{1}{q}} \le \max\left\{1, n^{\frac{p-2}{p}}\right\} \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}}.
$$

The following fact implies the comparison of two types of Poincaré constants, $\lambda_{p,m}$ and $\tilde{\lambda}_{p,m}$, as in [\(5.4\)](#page--1-0).

Theorem A.3 ([\[9,](#page--1-1) Lemma 4.17]). Let μ be a finite measure on a set X. Then for any $f \in L^p(X, \mu)$ and $c \in \mathbb{R}$,

$$
|| f - c ||_{p,\mu} \ge \frac{1}{2} || f - (f)_{\mu} ||_{p,\mu},
$$

where $\|\cdot\|_{p,\mu}$ is the L^p-norm with respect to μ and $(f)_{\mu} = \mu(X)^{-1} \int_X f d\mu$.

The following lemma is a discrete version of the above theorem.

Corollary A.4. *Let* $(\mu_i)_{i=1,...,n} \in (0, 1)^n$ *with* $\sum_{i=1}^n \mu_i = 1$ *. Then*

$$
\sum_{i=1}^{n} |x - a_i|^p \mu_i \ge \left(\frac{1}{2}\right)^p \sum_{i=1}^{n} \left| \sum_{j=1}^{n} \mu_j a_j - a_i \right|^p \mu_i
$$

for any $x, a_1, \ldots, a_n \in \mathbb{R}$.

B Basic facts on p-energy

Let $G = (V, E)$ be a finite graph. For $A \subseteq V$, set $E_A = \{(x, y) | x, y \in A, (w, y) \in E\}$ and $G_A = (A, E_A)$.

Definition B.1. Let $\mu: V \to (0, \infty)$ and let $A \subseteq V$. Define supp $(\mu) = \{x \mid x \in V,$ $\mu(x) > 0$. Let $p > 0$. For $u \in \ell(V)$, define

$$
\mathcal{E}_p^G(u) = \frac{1}{2} \sum_{(x,y)\in E} |u(x) - u(y)|^p,
$$

$$
||u||_{p,\mu} = \left(\sum_{x\in V} |u(x)|^p \mu(x)\right)^{\frac{1}{p}},
$$

$$
(u)_{\mu} = \frac{1}{\sum_{y\in V} \mu(y)} \sum_{x\in V} \mu(x)u(x)
$$

and

$$
\lambda_{p,\mu}^G = \sup_{u \in \ell(V), u \neq 0} \frac{(\min_{c \in \mathbb{R}} ||u - c \chi_V||_{p,\mu})^p}{\mathcal{E}_p^G(u)},
$$

where $\chi_V \in \ell(V)$ is the characteristic function of the set V.

For
$$
A \subseteq U
$$
, set $\mathcal{E}_p^A = \mathcal{E}_p^{G_A}$ and $\lambda_{p,\mu}^A = \lambda_{p,\mu}^{G_A}$.

Lemma B.2. *Defne*

$$
\widetilde{\lambda}_{p,\mu}^G = \sup_{u \in \ell(V), u \neq 0} \frac{(\|u - (u)_{\mu} \chi_V\|_{p,\mu})^p}{\varepsilon_p^G(u)}.
$$

Then

$$
\left(\frac{1}{2}\right)^p \widetilde{\lambda}_{p,\mu}^G \leq \lambda_{p,\mu}^G \leq \widetilde{\lambda}_{p,\mu}^G.
$$

Proof. By Corollary [A.4,](#page-0-0)

$$
\sum_{x \in V} |u(x) - (u)_{\mu}|^p \mu(x) \ge \min_{c \in \mathbb{R}} \sum_{x \in V} |u(x) - c|^p \mu(x)
$$

$$
\ge \left(\frac{1}{2}\right)^p \sum_{x \in V} |u(x) - (u)_{\mu}|^p \mu(x).
$$

Lemma B.3 ([\[36,](#page--1-2) Proposition 1.5(2)]). Let $p \in [1, \infty)$ and let $\mu: V \to (0, \infty)$. *Assume that* $A \subseteq B \subseteq V$ *. Then for any* $u \in \ell(B)$ *,*

$$
|(u)_A-(u)_B|\leq \frac{1}{\mu(A)^{\frac{1}{p}}}\big(\widetilde{\lambda}_{p,\mu}^B \mathcal{E}_p^B(u)\big)^{\frac{1}{p}}.
$$

Proof. By the Hölder inequality,

$$
|(u)_{A} - (u)_{B}| \leq \frac{1}{\mu(A)} \int_{B} \chi_{A} |u - (u)_{B}| d\mu \leq \frac{1}{\mu(A)^{\frac{1}{p}}} \Big(\int_{B} |u - (u)_{B}|^{p} d\mu \Big)^{\frac{1}{p}}.
$$

C Useful facts on combinatorial modulus

In this appendix, we have useful facts on combinatorial modulus. In particular, the last lemma, Lemma [C.4,](#page-3-0) is a result on the comparison of moduli in two different graphs. This lemma plays a key role on several occasions in this paper.

Let V be a countable set and let $\mathcal{P}(V)$ be the power set of V. For $\rho: V \to [0,\infty)$ and $A \subseteq V$, define

$$
L_{\rho}(A) = \sum_{x \in A} \rho(x).
$$

For $\mathcal{U} \subset \mathcal{P}(V)$, define

$$
\mathcal{A}(\mathcal{U}) = \{ \rho \mid \rho: V \to [0, \infty), L_{\rho}(A) \ge 1 \text{ for any } A \in \mathcal{U} \}.
$$

Moreover, for $\rho: V \to [0, \infty)$, define

$$
M_p(\rho) = \sum_{x \in V} \rho(x)^p
$$
 and $\text{Mod}_p(\mathcal{U}) = \inf_{\rho \in \mathcal{A}(\mathcal{U})} M_p(\rho).$

Note that if $\mathcal{U} = \emptyset$, then $\mathcal{A}(\mathcal{U}) = [0, \infty)^V$ and $\text{Mod}_p(\mathcal{U}) = 0$.

Lemma C.1. Assume that U consists of finite sets. Then there exists $\rho_* \in \mathcal{A}(U)$ such *that*

$$
Mod_p(\mathcal{U}) = M_p(\rho_*).
$$

Proof. Choose $\{\rho_i\}_{i>1} \subseteq \mathcal{A}(\mathcal{U})$ such that $M_p(\rho_i) \to \text{Mod}_p(\mathcal{U})$ as $i \to \infty$. Since V is countable, there exists a subsequence $\{\rho_{n_j}\}_{j\geq 1}$ such that, for any $v \in V$, $\rho_{n_j}(v)$ is convergent as $j \to \infty$. Set $\rho_*(p) = \lim_{j \to \infty} \rho_{n_j}(p)$. For any $A \in \mathcal{U}$, since A is a finite set, it follows that $L_{\rho_*}(A) \geq 1$. Hence $\rho_* \in \mathcal{A}(\mathcal{U})$. For any $\varepsilon > 0$, there exists a finite set X_{ε} such that $\sum_{v \in X_{\varepsilon}} \rho_*(v)^p \ge M_p(\rho_*) - \varepsilon$. As

$$
Mod_p(\mathcal{U}) = \lim_{j \to \infty} M_p(\rho_{n_j}) \geq \lim_{j \to \infty} \sum_{v \in X_{\varepsilon}} \rho_{n_j}(v)^p,
$$

we obtain $\text{Mod}_p(\mathcal{U}) \geq M_p(\rho_*) - \varepsilon$ for any $\varepsilon > 0$. Hence $\text{Mod}_p(\mathcal{U}) \geq M_p(\rho_*)$. On the other hand, since $\rho_* \in \mathcal{A}(\mathcal{U})$, we see $M_p(\rho_*) \geq \text{Mod}_p(\mathcal{U})$. Therefore, $M_p(\rho_*) =$ $Mod_p(\mathcal{U}).$ П

Lemma C.2. Assume that U consists of finite sets. For $v \in V$, define $\mathcal{U}_v = \{A \mid$ $A \in \mathcal{U}, v \in A$ *. Then*

$$
\rho_*(v)^p \leq \text{Mod}_p(\mathcal{U}_v)
$$

for any $\rho_* \in \mathcal{A}(\mathcal{U})$ *with* $M_p(\rho_*) = \text{Mod}_p(\mathcal{U})$ *. In particular, if* $\mathcal{U}_v = \emptyset$ *, then*

$$
\rho_*(v)=0.
$$

Proof. Suppose that $\rho_* \in \mathcal{A}(\mathcal{U})$ and $M_p(\rho_*) = Mod_p(\mathcal{U})$. Assume that $\mathcal{U}_v = \emptyset$ and $\rho_*(v) > 0$. Define ρ'_* by

$$
\rho'_*(u) = \begin{cases} \rho_*(u) & \text{if } u \neq v, \\ 0 & \text{if } u = v. \end{cases}
$$

Then $\rho'_* \in \mathcal{A}(\mathcal{U})$ and $M_p(\rho'_*) < M_p(\rho_*)$. This contradicts the fact that $M_p(\rho_*) =$ $\text{Mod}_p(\mathcal{U})$. Thus if $\mathcal{U}_v = \emptyset$, then $\rho_*(v) = 0$. Next assume that $\mathcal{U}_v \neq \emptyset$. Let $\rho_v \in$ $\mathcal{A}(\mathcal{U}_v)$ with $M_p(\rho_v) = \text{Mod}_p(\mathcal{U}_v)$. Note that such a ρ_v does exist by Lemma C.1. Define

$$
\tilde{\rho}(u) = \begin{cases} \max\{\rho_*(u), \rho_v(u)\} & \text{if } u \neq v, \\ \rho_v(v) & \text{if } u = v. \end{cases}
$$

Let $A \in \mathcal{U}$. If $v \notin A$, then $\tilde{\rho} \ge \rho_*$ on A, so that $\tilde{\rho} \in \mathcal{A}(A)$. If $v \in A$, then $\tilde{\rho} \ge \rho_v$ on A and hence $\tilde{\rho} \in \mathcal{A}(A)$. Thus we see that $\tilde{\rho} \in \mathcal{A}(\mathcal{U})$. Therefore,

$$
Mod_p(\mathcal{U}) \le M_p(\tilde{\rho}) \le \sum_{u \ne v} \rho_*(u)^p + \sum_{u \in V} \rho_v(u)^p
$$

= $Mod_p(\mathcal{U}) - \rho_*(v)^p + Mod_p(\mathcal{U}_v).$

Define $\ell_{+}(V) = \{ f | f : V \to [0, \infty) \}.$

Lemma C.3. Let V_1 and V_2 be finite sets. Let $\mathcal{U}_i \subseteq \mathcal{P}(V_i)$ for $i = 1, 2$. If there exist maps $\xi: \mathcal{U}_2 \to \mathcal{U}_1$, $F: \ell_+(V_1) \to \ell_+(V_2)$ and constants $C_1, C_2 > 0$ such that

$$
C_1 L_{F(\rho)}(\gamma) \ge L_{\rho}(\xi(\gamma)) \quad \text{and} \quad M_p(F(\rho)) \le C_2 M_p(\rho)
$$

for any $\rho \in \ell_+(V_1)$ and $\gamma \in \mathcal{U}_2$, then

$$
\text{Mod}_p(\mathcal{U}_2) \le (C_1)^p C_2 \text{Mod}_p(\mathcal{U}_1)
$$

for any $p > 0$.

Proof. Note that $C_1 F(\rho) \in \mathcal{A}(\mathcal{U}_2)$ for any $\rho \in \mathcal{A}(\mathcal{U}_1)$. Hence if $F'(\rho) = C_1 F(\rho)$, then

$$
\begin{aligned} \text{Mod}_p(\mathcal{U}_2) &= \min_{\rho \in \mathcal{A}(\mathcal{U}_2)} M_p(\rho) \le \min_{\rho \in \mathcal{A}(\mathcal{U}_1)} M_p(F'(\rho)) \\ &= \le (C_1)^P C_2 \min_{\rho \in \mathcal{A}(\mathcal{U}_1)} M_p(\rho) (C_1)^P C_2 \text{Mod}_p(\mathcal{U}_1). \end{aligned} \tag{4}
$$

Lemma C.4. Let V_1 and V_2 be countable sets and let $\mathcal{U}_i \subseteq \mathcal{P}(V_i)$ for $i = 1, 2$. Assume that $H_v \subseteq V_1$ and $#(H_v) < \infty$ for any $v \in V_2$. Furthermore, assume that, for any $B \in \mathcal{U}_2$, there exists $A \in \mathcal{U}_1$ such that $A \subseteq \bigcup_{v \in B} H_v$. Then

$$
\mathrm{Mod}_p(\mathcal{U}_2) \le \sup_{v \in V_2} \#(H_v)^p \sup_{u \in V_1} \#(\{v \mid v \in V_2, u \in H_v\}) \mathrm{Mod}_p(\mathcal{U}_1)
$$

for any $p > 0$.

Proof. For $\rho: V_1 \to \mathbb{R}$, define

$$
F(\rho)(v) = \max_{u \in H_v} \rho(u)
$$

for any $v \in V_2$. Then $F: \ell_+(V_1) \to \ell_+(V_2)$ and

$$
M_p(F(\rho)) = \sum_{v \in V_2} \max_{u \in H_v} \rho(u)^p \le \sum_{v \in V_2} \sum_{u \in H_v} \rho(u)^p
$$

$$
\le \sup_{u \in V_1} \#(\{v \mid v \in V_2, u \in H_v\}) M_p(\rho).
$$

On the other hand, for $B \in \mathcal{U}_2$, choose $\xi(B) \in \mathcal{U}_1$ such that $\xi(B) \subseteq \bigcup_{v \in B} H_v$. Then for any $\rho \in \ell_+(V_1)$ and $B \in \mathcal{U}_2$,

$$
\sup_{u \in V_2} \#(H_u)L_{F(\rho)}(B) \ge \sum_{u \in B} \#(H_u)F(\rho)(u) \ge \sum_{u \in B} \sum_{v \in H_u} \rho(v)
$$

$$
= \sum_{v \in \bigcup_{u \in B} H_u} \#(\{u \mid v \in H_u\})\rho(v)
$$

$$
\ge \sum_{v \in \xi(B)} \rho(v) = L_{\rho}(\xi(B)).
$$

Hence by Lemma $C.3$, we have the desired conclusion.

D An Arzelà-Ascoli theorem for discontinuous functions

The following lemma is a version of Arzelà–Ascoli theorem showing the existence of a uniformly convergent subsequence of a sequence of functions. The difference between the original version and the current one is that it can handle a sequence of discontinuous functions.

Lemma D.1 (Extension of Arzelà–Ascoli). Let (X, d_X) be a totally bounded metric space and let (Y, d_Y) be a metric space. Let $u_i: X \to Y$ for any $i \ge 1$. Assume that there exist a monotonically increasing function $\eta: [0, \infty) \to [0, \infty)$ and a sequence $\{\delta_i\}_{i\geq 1} \in [0,\infty)$ such that $\eta(t) \to 0$ as $t \downarrow 0$, $\delta_i \to 0$ as $i \to \infty$ and

$$
d_Y(u_i(x_1), u_i(x_2)) \le \eta(d_X(x_1, x_2)) + \delta_i \tag{D.1}
$$

for any $i \ge 1$ and $x_1, x_2 \in X$. If $\overline{\bigcup_{i \ge 1} u_i(X)}$ is compact, then there exists a subsequence $\{u_{n_i}\}_{i\geq 1}$ such that $\{u_{n_i}\}_{i\geq 1}$ converges uniformly to a continuous function $u: X \to Y$ as $j \to \infty$ satisfying $d_Y(u(x_1), u(x_2)) \leq \eta(d_X(x_1, x_2))$ for any $x_1, x_2 \in X$.

Proof. Since X is totally bounded, there exists a countable subset $A \subseteq X$ which is dense in X and contains a finite τ -net A_{τ} of X for any $\tau > 0$. Let $K = \bigcup_{i>1} u_i(X)$.

Since K is compact and $\{u_i(x)\}_{i\geq 1} \subseteq K$ is bounded for any $x \in A$, there exists a subsequence $\{u_{m_k}(x)\}_{k\geq 1}$ converging as $k \to \infty$. By the standard diagonal argument, we may find a subsequence $\{u_{n_j}\}_{j\geq 1}$ such that $\{u_{n_j}(x)\}_{j\geq 1}$ converges as $j \to \infty$ for any $x \in A$. Set $v_j = u_{n_j}$ and $\alpha_j = \delta_{n_j}$. Define $v(x) = \lim_{j \to \infty} v(x)$ for any $x \in A$. By [\(D.1\)](#page-4-0),

$$
d_Y(v_j(x_1), v_j(x_2)) \le \eta(d_X(x_1, x_2)) + \alpha_j
$$

for any $x_1, x_2 \in A$. Letting $j \to \infty$, we see that

$$
d_Y(v(x_1), v(x_2)) \le \eta(d_X(x_1, x_2))
$$
 (D.2)

for any $x_1, x_2 \in A$. Since A is dense in X, v is extended to a continuous function on X satisfying [\(D.2\)](#page-5-0) for any $x_1, x_2 \in X$. Fix $\varepsilon > 0$. Choose $\tau > 0$ such that $\eta(\tau) < \frac{\varepsilon}{3}$. Since the τ -net A_{τ} is a finite set, there exists k_0 such that if $k \geq k_0$, then $\alpha_k < \frac{\epsilon}{3}$ and $d_Y(v(z), v_k(z)) < \varepsilon$ for any $z \in A_\tau$. Let $x \in X$ and choose $z \in A_\tau$ such that $d_X(x, z) < \tau$. If $k \geq k_0$, then

$$
d_Y(v_k(x), v(x)) \le d_Y(v_k(x), v_k(z)) + d_Y(v_k(z), v(z)) + d_Y(v(z), v(x))
$$

$$
\le 2\eta(d_X(x, z)) + \alpha_k + d_Y(v_k(z), v(z)) < 2\varepsilon.
$$

Thus $\{v_j\}_{j\geq 1}$ converges uniformly to v as $j \to \infty$.

E Geometric properties of strongly symmetric self-similar sets

In this appendix, we will give proofs of claims on topological and geometric properties of self-similar sets treated in Section [4.6.](#page--1-3) Namely, we will give proofs of Propositions 4.40 and 4.42 . First, we recall the setting of Section 4.6 . Let S be a finite subset of \mathbb{R}^L and let $\rho \in (0, 1)$. Let $U_q \in O(L)$ for any $q \in S$. Define $f_q: \mathbb{R}^L \to \mathbb{R}^L$ by

$$
f_q(x) = \rho U_q(x - q) + q
$$

for $x \in \mathbb{R}^L$. Let K be the self-similar set with respect to $\{f_a\}_{a \in S}$, i.e., K is the unique non-empty compact set K satisfying

$$
K = \bigcup_{q \in S} f_q(K).
$$

The triple $(K, S, \{f_q\}_{q \in S})$ is know to be a self-similar structure defined in Defini-tion [4.1](#page--1-6) and the map $\chi: S^{\mathbb{N}} \to K$ is given by

$$
\{\chi(q_1q_2\ldots)\}=\bigcap_{m\geq 0}f_{q_1\ldots q_m}(K)
$$

as we have seen in Section [4.1.](#page--1-7)

Definition E.1. (1) Define $\tilde{\sigma}: S^{\mathbb{N}} \to S^{\mathbb{N}}$ by

$$
\widetilde{\sigma}(q_1q_2\ldots) = q_2q_3\ldots \quad \text{for } q_1q_2\ldots \in S^{\mathbb{N}}.
$$

(2) Defne

$$
C_K = \bigcup_{i \neq j \in S} K_i \cap K_j, \quad \mathcal{C} = \chi^{-1}(C_K), \quad \mathcal{P} = \bigcup_{k \geq 1} \tilde{\sigma}^k(\mathcal{C}),
$$

and $V_0 = \chi(\mathcal{P})$. The sets C and P are called the critical set and the post critical set of $(K, S, \{f_q\}_{q \in S})$, respectively. A self-similar structure $(K, S, \{f_q\}_{q \in S})$ is said to be post critically finite (p.c.f. for short) if P is a finite set.

By [\[29,](#page--1-8) Theorem 1.2.3], we have the following proposition.

Proposition E.2. *The map is continuous and surjective. Moreover,*

$$
\chi(q_1 q_2 \ldots) = f_{q_1}(\chi(\tilde{\sigma}(q_1 q_2 \ldots)))
$$
 (E.1)

for any $q_1q_2... \in S^{\mathbb{N}}$.

In this appendix, we suppose that Assumption [4.39](#page--1-9) holds. The next lemma gives a proof of Proposition [4.40.](#page--1-4)

Lemma E.3. *Under Assumption* [4.39](#page--1-9)*, we have*

- (1) *For any* $q \in S$, $\chi^{-1}(q) = \overline{q}$, where $\overline{q} = qqq \ldots \in S^{\mathbb{N}}$.
- (2) $\mathcal{P} = \{\overline{q} \mid q \in U\}$, where U is the set appearing in Assumption [4.39](#page--1-9)*.* In par*ticular, the self-similar structure* $(K, S, \{f_a\}_{a \in S})$ *is post critically finite and* $V_0 = U$.

Proof. (1) Suppose $\chi(\tau_1 \tau_2 ...) = q$. Then by [\(E.1\)](#page-6-0),

$$
q = \chi(\tau_1 \tau_2 \ldots) = f_{\tau_1}(\chi(\tau_2 \tau_3 \ldots)) \in K_{\tau_1}.
$$

By Assumption [4.39](#page--1-9) (1), it follows that $\tau_1 = q$. Since f_q is invertible, we see that $\chi(\tau_2\tau_3...) = q$. Using the same argument as above, we see that $\tau_2 = q$ as well. Thus we deduce that $\tau_k = q$ for any $k \in \mathbb{N}$ inductively.

(2) Suppose that $\chi(\tau_1 \tau_2 ...) \in f_{\tau_1}(K) \cap f_q(K)$ for some $q \neq \tau_1$. By [\(E.1\)](#page-6-0), it follows that $\chi(\tau_1 \tau_2 ...) = f_{\tau_1}(\chi(\tau_2 \tau_3 ...)).$ Hence by Assumption [4.39](#page--1-9) (2),

$$
\chi(\tau_2\tau_3\ldots)\in (f_{\tau_1})^{-1}(f_{\tau_1}(K)\cap f_q(K))\subseteq U.
$$

Thus $\tau_2 \tau_3 \ldots = \overline{q'}$ for some $q' \in U$. Therefore, $\mathcal{P} \subseteq U$.

Conversely, again by Assumption [4.39](#page--1-9) (2), for any $q \in U$, there exist $p_1, p_2 \in S$ with $p_1 \neq p_2$ such that $\chi(p_1\bar{q}) \in f_{p_1}(K) \cap f_{p_2}(K)$. This shows that $p_1\bar{q} \in \mathcal{C}$ and hence $\overline{q} \in \mathcal{P}$.

In the next two lemmas, we are going to show a sufficient condition for Assumption [4.41.](#page--1-10)

Lemma E.4. *Suppose that Assumption* [4.39](#page--1-9) *holds and that* U^q *is the identity map for any* $q \in V_0$ *. Let* $q = f_{p_1}(q_1) = f_{p_2}(q_2)$ *for some* $p_1, p_2 \in S$ *with* $p_1 \neq p_2$ *and* $q_1, q_2 \in V_0$. Then there exists $\gamma = \gamma(p_1, p_2, q_1, q_2) > 0$ such that

$$
d(\overline{K_{p_1} \backslash K_{p_1(q_1)^{m-1}}}, K_{p_2}) \ge \gamma \rho^m
$$

for any $m \geq 1$ *, where* $d(A, B) = \inf_{x \in A, y \in B} |x - y|$ *and* $(q)^k = q \dots q$ k -times \in T_k .

In the following proof, we assume that

$$
\#(f_{p_1}(K) \cap f_{p_2}(K)) \le 1
$$

to avoid a non-essential complication of arguments. Without this assumption, the lemma is still true with a technical modifcation of the proof.

Proof. Set $c_m = \inf \{ d(K_w, K_v) \mid w, v \in T_m, K_w \cap K_v = \emptyset \}$. Define

$$
X_m = \overline{K_{p_1} \setminus K_{p_1(q_1)^{m-1}}} \quad \text{and} \quad Y_m = \overline{K_{p_1q_1} \setminus K_{p_1(q_1)^{m-1}}}
$$

for $m \ge 1$. Then $X_m = Y_m \cup (\bigcup_{q \neq q_1} K_{p_1q})$ and $K_{p_2} = K_{p_2q_2} \cup (\bigcup_{q \neq q_2} K_{p_2q})$. This implies that

$$
d(X_m, K_{p_2}) \ge \min\{d(Y_m, K_{p_2q_2}), c_2\}.
$$

On the other hand, letting $f(x) = \rho(x - q) + q$, we see that

$$
Y_m \cup K_{p_2q_2} = f(X_{m-1} \cup K_{p_2}).
$$

This yields $d(Y_m, K_{p_2q_2}) = \rho d(X_{m-1}, K_{p_2})$. Consequently, we have

$$
d(X_m, K_{p_2}) \ge \min\{\rho d(X_{m-1}, K_{p_2}), c_2\}.
$$

Now inductive argument suffices.

Lemma E.5. *Suppose that Assumption* [4.39](#page--1-9) *holds and that* U^q *is the identity map for* any $q \in V_0$. Then Assumption [4.41](#page--1-10) *holds*.

Remark. According to the notation in the proof of Lemma [E.4,](#page-7-0) this lemma claims $c_m \geq c \rho^m$ for any $m \geq 1$.

Proof. Suppose that $w, v \in T_m$ and $K_w \cap K_v = \emptyset$. Let $w = w_1 \dots w_m$ and let $v =$ $v_1 \ldots v_m$. In the case $w_1 = w_2$,

$$
d(K_w, K_v) = \rho d(K_{w_2...w_m}, K_{v_2...v_m}) \ge c_{m-1}\rho.
$$

Otherwise, assume that $w_1 \neq v_1$. If $K_{w_1} \cap K_{v_1} = \emptyset$, then $d(K_w, K_v) \geq c_1$. So, the remaining possibility is that $w_1 \neq v_1$ and $K_{w_1} \cap K_{v_1} \neq \emptyset$. In this case, let $q = K_{w_1} \cap K_{v_1}$. Then $q = f_{w_1}(p_{j_1}) = f_{w_2}(p_{j_2})$ for some $j_1, j_2 \in \{1, ..., L\}$. By Lemma [E.4,](#page-7-0) it follows that $d(K_w, K_v) \geq \overline{\gamma} \rho^m$, where $\overline{\gamma} = \min\{\gamma(p_1, p_2, q_1, q_2) \mid \overline{\gamma} \rho^m\}$ $p_1, p_2 \in S, q_1, q_2 \in V_0, f_{p_2}(q_1) = f_{p_1}(q_2)$. Combining all the cases and using induction on *m*, we see that $c_m \ge \min\{c_1, \overline{\gamma}\}\rho^m$ for any $m \ge 1$.

Now we start showing Proposition [4.42,](#page--1-5) that is, Assumption [2.15](#page--1-11) holds under Assumptions [4.39](#page--1-9) and [4.41.](#page--1-10)

Lemma E.6. *Under Assumptions* [4.39](#page--1-9) *and* [4.41](#page--1-10), *Assumption* [2.15](#page--1-11) (2) *holds with* $r = \rho$, $M_* = 1$, and $d = d_*$, where d_* is the restriction of the Euclidean metric.

Proof. (2A) is obvious. Set

$$
\Gamma_{1,n}(x) = \bigcup_{\substack{w \in T_n \\ x \in K_w}} \Gamma_1(w)
$$

for $x \in K$ and $n \ge 1$. Then for any $v \in T_n \backslash \Gamma_{1,n}(x)$, there exists $w \in T_n$ such that $x \in K_w$ and $K_w \cap K_v = \emptyset$. By Lemma [E.5,](#page-7-1) we see that $d(K_w, x) \ge c\rho^n$ and hence $B_{d_*}(x, c r^n) \cap K_v = \emptyset$. Thus we have

$$
B_{d*}(x, c\rho^n) \subseteq U_1(x:n). \tag{E.2}
$$

On the other hand, by (2A), there exists $c' > 0$ such that $\text{diam}(K_w, d_*) \leq c' \rho^{|w|}$ for any $w \in T$. This implies

$$
U_1(x:n) \subseteq B_{d_*}(x, 3c'\rho^n). \tag{E.3}
$$

So we have (2B). Choose $x_0 \in K \backslash V_0$ and choose $m_0 \in \mathbb{N}$ such that $2\rho^{m_0} < d(x_0, V_0)$. Let $w \in T_n$ and let $u \in \Gamma_{1,m_0+n}(f_w(x_0))$. Suppose that $u \in T(v)$ for some $v \in T_n$ with $v \neq w$. Since $u \in \Gamma_{1,m_0+n}(f_w(x_0))$, there exists $u_0 \in T_{n+m_0}$ such that $f_w(x_0) \in K_{u_0}$ and $K_{u_0} \cap K_u \neq \emptyset$. Let $y \in K_u$. Since K is connected (and hence arcwise connected by [\[29,](#page--1-8) Theorem 1.6.2]), there exists a continuous curve ζ : [0, 1] $\rightarrow K_{u_0} \cup K_u$ such that $\zeta(0) = f_w(x_0)$ and $\zeta(1) = y$. Note that $f_w(x_0) \in K_w$ and $y \in K_v$. By [\(4.24\)](#page--1-12), the curve ζ intersects with $f_w(V_0)$. Therefore, $(K_u \cup K_{u_0}) \cap f_w(V_0) \neq \emptyset$. However, since diam $(K_u, d_*) = \text{diam}(K_{u_0}, d_*) = \rho^{m_0+n}$, it follows

$$
d(f_w(x_0), K_u \cup K_{u_0}) \le 2\rho^{m_0+n} < d(f_w(x_0), f_w(V_0)),
$$

so that $(K_{u_0} \cup K_u) \cap f_w(V_0) = \emptyset$. This contradiction shows that $u \in T(w)$ and hence $U_1(f_w(x_0): m_0 + n) \subseteq K_w$. By [\(E.2\)](#page-8-0), we see that

$$
B_{d_*}(f_w(x_0), c\rho^{m_0+n}) \subseteq U_1(f_w(x_0):m_0+n) \subseteq K_w.
$$

This shows (2C).

Next set $\alpha_H = -\frac{\log f(S)}{\log \rho}$ $\frac{g \#(S)}{\log \rho}$. Note that $\rho^{\alpha} = \#(S)^{-1}$. Let μ be the self-similar measure on K with weight $(\rho^{\alpha_H}, \ldots, \rho^{\alpha_H})$. By [\[31,](#page--1-13) Theorem 1.2.7], we see that $\mu(K_w) = \rho^{|w|}$ for any $w \in T$ and consequently $\mu({x}) = 0$ for any $x \in K_w$. These facts show that μ satisfies Assumption [2.12.](#page--1-14) Moreover, we have the following proposition.

Proposition E.7. *Under Assumptions* [4.39](#page--1-9) *and* [4.41](#page--1-10)*, there exist* c_1 , $c_2 > 0$ *such that*

$$
c_1 s^{\alpha_H} \le \mu(B_{d_*}(x, s)) \le c_1 s^{\alpha_H} \tag{E.4}
$$

for any $s \in [0, 1]$. In particular, μ is α_H -Ahlfors regular with respect to d_* and the *Hausdorff dimension of* (K, d_*) *equals* α_H *.*

Proof. By [\(E.3\)](#page-8-1), for any $x \in K$ and $n \ge 1$, if $w \in \Gamma_{1,n}(x)$, then

$$
(\rho^n)^{\alpha_H} = \mu(K_w) \le \mu(B_{d_*}(x, 3c'\rho^n)).
$$
 (E.5)

On the other hand, by [\[31,](#page--1-13) Proposition 1.6.11], there exists $J_* \in \mathbb{N}$ such that

$$
\#(\Gamma_{1,n}(x)) \le J_*\tag{E.6}
$$

for any $x \in T$ and $n \ge 0$. (Note that $\Lambda^1_{\rho^n, x}$ defined in [\[31,](#page--1-13) Definition 1.3.3] equals $\Gamma_{1,n}(x)$.) Therefore by [\(E.2\)](#page-8-0),

$$
\mu(B_{d_*}(x, c\rho^n)) \le \sum_{v \in \Gamma_{1,n}(x)} \mu(K_v) \le J_*(\rho^n)^{\alpha_H}.
$$
 (E.7)

Combining $(E.5)$ and $(E.7)$, we obtain $(E.4)$.

The following proposition is immediately deduced from the previous propositions and lemmas. Note that $\Gamma_1(w) \subseteq \Gamma_{1,n}(x)$ for any $w \in T$ and $x \in K_w$. Hence by [\(E.6\)](#page-9-3), we see that the partition ${K_w}_{w \in T}$ is uniformly finite.

Proposition E.8 (Proposition [4.42\)](#page--1-5). *Under Assumptions* [4.39](#page--1-9) *and* [4.41](#page--1-10)*, Assumption* [2.15](#page--1-11) *holds with* $r = \rho$, $d = d_*$ *and* $M_* = M_0 = 1$.

The fact that $M_0 = 1$ is due to the second remark after Assumption [2.6.](#page--1-15)

F List of defnitions and notations

Definitions

adjacency matrix, Defnition [2.1](#page--1-16) Ahlfors regular, [\(2.9\)](#page--1-17) Ahlfors regular conformal dimension, [\(1.1\)](#page--1-18) Arzelà–Ascoli, Appendix [6.3](#page-4-1) child, Defnition [2.2](#page--1-19) (1) chipped Sierpiński carpet, Example [4.25](#page--1-20) conductance constant, Defnition [2.17](#page--1-21) conductively homogeneous (conductive homogeneity), Definition [3.4](#page--1-11) covering, Defnition [2.26](#page--1-22) covering numbers, Defnition [2.26](#page--1-22) covering system, Defnition [2.29](#page--1-23) critical set, Defnition [E.1](#page-6-1) exponential, Lemma [2.13](#page--1-24) folding map, Defnition [4.11](#page--1-25) (2) geodesic, Defnition [2.1](#page--1-16) (3) graph, Defnition [2.1](#page--1-16) graph distance, Defnition [2.21](#page--1-26) hyperoctahedral group, Defnition [4.9](#page--1-27) locally finite, Definition [2.1](#page--1-16)(1) locally symmetric, Definition [4.11](#page--1-25) (4) Markov property, Theorem [3.21](#page--1-28) (c) minimal, Defnition [2.5](#page--1-29) (1) modulus, Defnition [2.21](#page--1-26) (3) Moulin, Example [4.27](#page--1-30) m-walk, Defnition [4.44](#page--1-31) neighbor disparity constant, Defnition [2.26](#page--1-22) nested fractal, Defnition [4.47](#page--1-32) non-degenerate, Defnition [4.11](#page--1-25) (1) partition, Defnition [2.3](#page--1-33) path, Defnition [2.1](#page--1-16) (2) p-energy, Theorem [3.21](#page--1-28) pentakun, Example [4.47](#page--1-32) pinwheel, Example [4.27](#page--1-30) Poincaré constant, Defnition [5.4](#page--1-34) post critical set, Defnition [E.1](#page-6-1) post critically fnite, Defnition [E.1](#page-6-1) p.c.f., Defnition [E.1](#page-6-1) quasisymmetry, Defnition [1.1](#page--1-35) rationally related contraction ratios, right after Assumption [4.4](#page--1-36) ray, Definition [2.2](#page--1-19)

reference point, Defnition [2.2](#page--1-19) root, Defnition [2.2](#page--1-19) self-similar set, [\(4.1\)](#page--1-37) self-similar structure, Defnition [4.1](#page--1-6) Sierpiński cross, Section [4.5](#page--1-38) simple, Definition [2.1](#page--1-16)(2) snowfake, Example [4.48](#page--1-39) strict 0-walk, Defnition [4.44](#page--1-31) strongly connected, Defnition [4.11](#page--1-25) (3) strongly symmetric, Defnition [4.44](#page--1-31) sub-multiplicative inequality (conductance), Corollary [2.24](#page--1-40) sub-multiplicative inequality (modulus), Theorem [2.23](#page--1-41) sub-multiplicative inequality (neighbor disparity), Lemma [2.34](#page--1-42) subsystem of cubic tiling, Definition [4.11](#page--1-25) super-exponential, Assumption [2.12](#page--1-14) symmetry, Definition [4.7](#page--1-43) tree, Defnition [2.1](#page--1-16) (3) uniformly fnite, Defnition [2.5](#page--1-29) (3)

Notations

 $A_{m}^{(M)}(A_1, A_2, A)$, Definition [2.21](#page--1-26) (2) $A_{N,m}^{(M)}(w)$, Definition [2.21](#page--1-26) (3) A_s , Definition [4.11](#page--1-25) $B_d(x, r)$, Assumption [2.15](#page--1-11) $B_{i,i}$, Definition [4.9](#page--1-27) \mathbb{B}_I , Definition [4.9](#page--1-27) $B_{M,k}(w)$, Definition [2.11](#page--1-44) B_w , Definition [2.5](#page--1-29) $c_s^{L,N}$, Definition [4.9](#page--1-27) $c_{\mathcal{E}}(L, N, p), \overline{c}_{\mathcal{E}}(L, N, p)$, Definition [6.4](#page--1-45) $c_{\lambda}(p, L, N), \overline{c}_{\lambda}(p, L, N)$, Definition [6.8](#page--1-46) $\underline{c}_{\sigma}(L, N_1, N_2, \kappa), \overline{c}_{\sigma}(L, N_1, N_2, \kappa),$ Definition [6.11](#page--1-27) C_*^L , Definition [4.9](#page--1-27) $C_s^{L,N}$, Definition [4.9](#page--1-27) $\mathcal{C}_{s}^{(M)}(A_1, A_2, A)$, Definition [2.21](#page--1-26) (2) $\mathcal{C}_{N,m}^{(M)}(w)$, Definition [2.21](#page--1-26) (3) $diam(K, d)$, Assumption [2.15](#page--1-11) $\dim_{AR}(K, d)$, [\(1.1\)](#page--1-18) \overline{D}_k , Lemma [5.10](#page--1-34)

 E_n^* , Proposition [2.8](#page--1-47) $E_n^*(A), (2.15)$ $E_n^*(A), (2.15)$ $E_{M,n}^*$, Definition [2.21](#page--1-26) E_n^{ℓ} , Definition [4.11](#page--1-25) (3) $\mathcal{E}_{p,A}^n(\cdot)$, $\mathcal{E}_p^n(\cdot)$, Definition [2.17](#page--1-21)(1) $\widetilde{\mathcal{E}}_p^m(\cdot)$, [\(3.6\)](#page--1-49), [\(4.5\)](#page--1-50) $\widehat{\mathcal{E}}_p(\cdot)$, Theorem [3.21](#page--1-28) $\mathcal{E}_{p,m}(A_1, A_2, A)$, Definition [2.17](#page--1-21) $\mathcal{E}_{M,p,m,n}$, Definition [3.1](#page--1-51) $\mathcal{E}_{M,p,m}(w, A)$, Definition [2.17](#page--1-21) f , Definition [3.20](#page--1-27) $g(w)$, [\(4.2\)](#page--1-52) $\mathcal{G}(L, N)$, Definition [6.5](#page--1-53) $\mathcal{G}_{\mathcal{E}}(L, N)$, Definition [6.2](#page--1-54) $\mathcal{G}_{\sigma}(L, N_1, N_2)$, Definition [6.9](#page--1-47) $\mathcal{G}_{(K,T)}$, Definition [4.7](#page--1-43) $h_{M,w,m}^*$, Definition [2.20](#page--1-27) $h_{M_*,w}^*$, Lemma [3.18](#page--1-55) \mathcal{H}_{j_1,j_2}^i , Definition [4.10](#page--1-56) $I_{A,k,m}^{\prime}$, Lemma [5.3](#page--1-57) $\widehat{I}_{A,m}$, Lemma [5.1](#page--1-58) $\tilde{I}_{A,k}$, Lemma [5.2](#page--1-59) $IT(K, T)$, Definition [4.7](#page--1-43) \mathcal{J}_* , Example [2.30](#page--1-60) \mathcal{J}_{ℓ} , Example [2.32,](#page--1-61) [\(4.15\)](#page--1-62) $j(w)$, [\(4.2\)](#page--1-52) J_n , [\(3.5\)](#page--1-63) $K(\cdot)$, [\(4.9\)](#page--1-64) K_T , K_B , K_R , K_L , [\(4.20\)](#page--1-65) $\ell(\cdot)$, [\(2.10\)](#page--1-66) $\ell_{w,v}$, [\(4.14\)](#page--1-67) $\ell_{\rm T}$, $\ell_{\rm B}$, $\ell_{\rm R}$, $\ell_{\rm L}$, Definition [4.32](#page--1-68) $L_*, (2.3)$ $L_*, (2.3)$ $M₀$, Assumption [2.6](#page--1-15)(3), Assumption [2.15](#page--1-11) (4) M_{\ast} , Assumption [2.6](#page--1-15)(2), Assumption [2.15](#page--1-11) (2) $\mathcal{M}_{p,m}^{(M)}(A_1, A_2, A)$, Definition [2.21](#page--1-26) (2) $\mathcal{M}_{N,p,m}^{(M)}(w)$, Definition [2.21](#page--1-26) (3) $n_L(\cdot, \cdot)$, Definition [3.7](#page--1-27) $\mathcal{N}_p(\cdot)$, Lemma [3.13](#page--1-70) N_E , N_T , Definition [2.26](#page--1-22) $N_*, (2.7)$ $N_*, (2.7)$ O_w , Definition [2.5](#page--1-29) P_n , Definition [3.11](#page--1-27)

 $P_{n,m}$, Definition [2.26](#page--1-22) $P(V, E)$, Definition [6.5](#page--1-53) $\mathcal{P}(G, \kappa)$, Definition [6.9](#page--1-47) Q_n , [\(3.14\)](#page--1-72) R_j , R_{j_1,j_2}^i , Definition [4.10](#page--1-56) $R_{i,jk}$, $R_{i,jk}^*$, Definition [4.35](#page--1-73) $S(w)$, $S^m(w)$, Definition [2.2](#page--1-19)(1) T_m , Definition [2.2](#page--1-19)(2) T_n^n , T_n^{n+1} , Lemma [4.36](#page--1-32) $T(w)$, Definition [2.2](#page--1-19)(3) $U_M(w)$, Lemma [3.18](#page--1-55) $U_M(x:n)$, Assumption [2.15](#page--1-11) $|w|$, Definition [2.2](#page--1-19) (2) \overline{wv} , Definition [2.1](#page--1-16)(3) W^p , Lemma [3.13](#page--1-70) $X(e)$ – Definition [4.7](#page--1-43) β_* , Theorem [3.35](#page--1-74) γ , Assumption [2.12](#page--1-14) $\Gamma_M^A(w)$, $\Gamma_M(w)$, Definition [2.5](#page--1-29) $\delta_L(\cdot, \cdot)$, Definition [3.7](#page--1-27) $\partial S^m(w)$, Definition [2.9](#page--1-75) κ , Assumption [2.12](#page--1-14) $\lambda_{p,m}(A), \tilde{\lambda}_{p,m}(A)$, Definition [5.4](#page--1-34) $\lambda_{p,m}$, Definition [5.8](#page--1-76) $\Lambda_{r^n}^g$, [\(4.3\)](#page--1-77) $\theta_m(\cdot, \cdot)$, Definition [2.21](#page--1-26) $\Theta_{\frac{\pi}{2}}$, Theorem [4.14](#page--1-78) ξ_n , Lemma [5.9](#page--1-79) $\xi_n(w)$, Definition [5.6](#page--1-15) π , Definition [2.2](#page--1-19) σ , Theorem [3.30](#page--1-8) $\sigma_{p,m}(A)$, Definition [2.26](#page--1-22) $\sigma_{p,m,n}^{\mathcal{J}}, \sigma_{p,m}^{\mathcal{J}}$, Definition [2.29](#page--1-23) $\sigma_{p,\mu}(G)$, Definition [6.9](#page--1-47) τ , Lemma [3.10](#page--1-80) τ_p , Lemma [3.34](#page--1-55) τ_* , Theorem [3.35](#page--1-74) Φ_s , Definition [4.11](#page--1-25) φ_e , Definition [4.7](#page--1-43) $\varphi_{M,w,m}^*$, Definition [2.20](#page--1-27) $\varphi_{M_*,w}^*$, Lemma [3.18](#page--1-55) ψ_n , Definition [4.7](#page--1-43) $\psi_{n,m}^*$, Definition [4.37](#page--1-81) (1) Σ , Definition [2.2](#page--1-19) (4) $\#(\cdot)$, Definition [2.5](#page--1-29) $\|\cdot\|_{p,\mu}$, Lemma [3.13,](#page--1-70) Definition [5.4](#page--1-34)