
Appendices

A Basic inequalities

The next two lemmas can be deduced from the Hölder inequality.

Lemma A.1. For p 2 .0;1/,ˇ̌̌ nX
iD1

ai

ˇ̌̌p
� max¹1; np�1º

nX
iD1

jai j
p

for any n � 1 and a1; : : : ; an 2 R.

Lemma A.2. Let p; q 2 Œ1;1� satisfying 1
p
C

1
q
D 1. Then for any n 2 N and

a1; : : : ; an 2 R, � nX
iD1

jai j
q
� 1
q

� max
®
1; n

p�2
p

¯� nX
iD1

jai j
p
� 1
p

:

The following fact implies the comparison of two types of Poincaré constants,
�p;m and z�p;m, as in (5.4).

Theorem A.3 ([9, Lemma 4.17]). Let � be a finite measure on a set X . Then for any
f 2 Lp.X; �/ and c 2 R,

kf � ckp;� �
1

2
kf � .f /�kp;�;

where k � kp;� is the Lp-norm with respect to � and .f /� D �.X/�1
R
X
fd�.

The following lemma is a discrete version of the above theorem.

Corollary A.4. Let .�i /iD1;:::;n 2 .0; 1/n with
Pn
iD1 �i D 1. Then

nX
iD1

jx � ai j
p�i �

�1
2

�p nX
iD1

ˇ̌̌ nX
jD1

�jaj � ai

ˇ̌̌p
�i

for any x; a1; : : : ; an 2 R.

B Basic facts on p-energy

LetG D .V;E/ be a finite graph. ForA� V , setEAD ¹.x;y/ j x;y 2A;.w;y/ 2Eº

and GA D .A;EA/.
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Definition B.1. Let �W V ! .0;1/ and let A � V . Define supp.�/ D ¹x j x 2 V;

�.x/ > 0º. Let p > 0. For u 2 `.V /, define

EGp .u/ D
1

2

X
.x;y/2E

ju.x/ � u.y/jp;

kukp;� D

�X
x2V

ju.x/jp�.x/
� 1
p

;

.u/� D
1P

y2V �.y/

X
x2V

�.x/u.x/

and

�Gp;� D sup
u2`.V /;u¤0

.minc2R ku � c�V kp;�/
p

EGp .u/
;

where �V 2 `.V / is the characteristic function of the set V .

For A � U , set EAp D E
GA
p and �Ap;� D �

GA
p;�jA

.

Lemma B.2. Define

z�Gp;� D sup
u2`.V /;u¤0

.ku � .u/��V kp;�/
p

EGp .u/
:

Then �1
2

�p
z�Gp;� � �Gp;� � z�Gp;�:

Proof. By Corollary A.4,X
x2V

ju.x/ � .u/�j
p�.x/ � min

c2R

X
x2V

ju.x/ � cjp�.x/

�

�1
2

�p X
x2V

ju.x/ � .u/�j
p�.x/:

Lemma B.3 ([36, Proposition 1.5 (2)]). Let p 2 Œ1;1/ and let �W V ! .0;1/.
Assume that A � B � V . Then for any u 2 `.B/,

j.u/A � .u/B j �
1

�.A/
1
p

�
z�Bp;�EBp .u/

� 1
p :

Proof. By the Hölder inequality,

j.u/A � .u/B j �
1

�.A/

Z
B

�Aju � .u/B jd� �
1

�.A/
1
p

� Z
B

ju � .u/B j
pd�

� 1
p

:
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C Useful facts on combinatorial modulus

In this appendix, we have useful facts on combinatorial modulus. In particular, the last
lemma, Lemma C.4, is a result on the comparison of moduli in two different graphs.
This lemma plays a key role on several occasions in this paper.

Let V be a countable set and let P .V / be the power set of V . For �WV ! Œ0;1/

and A � V , define
L�.A/ D

X
x2A

�.x/:

For U � P .V /, define

A.U/ D ¹� j �WV ! Œ0;1/; L�.A/ � 1 for any A 2 Uº:

Moreover, for �WV ! Œ0;1/, define

Mp.�/ D
X
x2V

�.x/p and Modp.U/ D inf
�2A.U/

Mp.�/:

Note that if U D ;, then A.U/ D Œ0;1/V and Modp.U/ D 0.

Lemma C.1. Assume that U consists of finite sets. Then there exists �� 2 A.U/ such
that

Modp.U/ DMp.��/:

Proof. Choose ¹�iºi�1 � A.U/ such that Mp.�i /! Modp.U/ as i ! 1. Since V
is countable, there exists a subsequence ¹�nj ºj�1 such that, for any v 2 V , �nj .v/
is convergent as j ! 1. Set ��.p/ D limj!1 �nj .p/. For any A 2 U, since A is
a finite set, it follows that L��.A/ � 1. Hence �� 2 A.U/. For any " > 0, there exists
a finite set X" such that

P
v2X"

��.v/
p �Mp.��/ � ". As

Modp.U/ D lim
j!1

Mp.�nj / � lim
j!1

X
v2X"

�nj .v/
p;

we obtain Modp.U/�Mp.��/� " for any " > 0. Hence Modp.U/�Mp.��/. On the
other hand, since �� 2 A.U/, we see Mp.��/ � Modp.U/. Therefore, Mp.��/ D
Modp.U/.

Lemma C.2. Assume that U consists of finite sets. For v 2 V , define Uv D ¹A j

A 2 U; v 2 Aº. Then
��.v/

p
� Modp.Uv/

for any �� 2 A.U/ with Mp.��/ D Modp.U/. In particular, if Uv D ;, then

��.v/ D 0:
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Proof. Suppose that �� 2 A.U/ andMp.��/D Modp.U/. Assume that Uv D ; and
��.v/ > 0. Define �0� by

�0�.u/ D

´
��.u/ if u ¤ v,

0 if u D v.

Then �0� 2 A.U/ and Mp.�0�/ < Mp.��/. This contradicts the fact that Mp.��/ D
Modp.U/. Thus if Uv D ;, then ��.v/ D 0. Next assume that Uv ¤ ;. Let �v 2

A.Uv/ with Mp.�v/ D Modp.Uv/. Note that such a �v does exist by Lemma C.1.
Define

Q�.u/ D

´
max¹��.u/; �v.u/º if u ¤ v,

�v.v/ if u D v.

Let A 2 U. If v … A, then Q� � �� on A, so that Q� 2 A.A/. If v 2 A, then Q� � �v on A
and hence Q� 2 A.A/. Thus we see that Q� 2 A.U/. Therefore,

Modp.U/ �Mp. Q�/ �
X
u¤v

��.u/
p
C

X
u2V

�v.u/
p

D Modp.U/ � ��.v/p C Modp.Uv/:

Define `C.V / D ¹f j f WV ! Œ0;1/º.

Lemma C.3. Let V1 and V2 be finite sets. Let Ui � P .Vi / for i D 1; 2. If there exist
maps �WU2 ! U1, F W `C.V1/! `C.V2/ and constants C1; C2 > 0 such that

C1LF.�/./ � L�.�.// and Mp.F.�// � C2Mp.�/

for any � 2 `C.V1/ and  2 U2, then

Modp.U2/ � .C1/
pC2Modp.U1/

for any p > 0.

Proof. Note that C1F.�/ 2 A.U2/ for any � 2 A.U1/. Hence if F 0.�/ D C1F.�/,
then

Modp.U2/ D min
�2A.U2/

Mp.�/ � min
�2A.U1/

Mp.F
0.�//

D� .C1/
PC2 min

�2A.U1/
Mp.�/.C1/

PC2Modp.U1/:

Lemma C.4. Let V1 and V2 be countable sets and let Ui � P .Vi / for i D 1; 2.
Assume thatHv � V1 and #.Hv/ <1 for any v 2 V2. Furthermore, assume that, for
any B 2 U2, there exists A 2 U1 such that A �

S
v2B Hv . Then

Modp.U2/ � sup
v2V2

#.Hv/p sup
u2V1

#.¹v j v 2 V2; u 2 Hvº/Modp.U1/

for any p > 0.
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Proof. For �WV1 ! R, define

F.�/.v/ D max
u2Hv

�.u/

for any v 2 V2. Then F W `C.V1/! `C.V2/ and

Mp.F.�// D
X
v2V2

max
u2Hv

�.u/p �

X
v2V2

X
u2Hv

�.u/p

� sup
u2V1

#.¹v j v 2 V2; u 2 Hvº/Mp.�/:

On the other hand, for B 2 U2, choose �.B/ 2 U1 such that �.B/�
S
v2BHv . Then

for any � 2 `C.V1/ and B 2 U2,

sup
u2V2

#.Hu/LF.�/.B/ �
X
u2B

#.Hu/F.�/.u/ �
X
u2B

X
v2Hu

�.v/

D

X
v2

S
u2B Hu

#.¹u j v 2 Huº/�.v/

�

X
v2�.B/

�.v/ D L�.�.B//:

Hence by Lemma C.3, we have the desired conclusion.

D An Arzelà–Ascoli theorem for discontinuous functions

The following lemma is a version of Arzelà–Ascoli theorem showing the existence
of a uniformly convergent subsequence of a sequence of functions. The difference
between the original version and the current one is that it can handle a sequence of
discontinuous functions.

Lemma D.1 (Extension of Arzelà–Ascoli). Let .X; dX / be a totally bounded metric
space and let .Y; dY / be a metric space. Let ui WX ! Y for any i � 1. Assume that
there exist a monotonically increasing function �W Œ0;1/! Œ0;1/ and a sequence
¹ıiºi�1 2 Œ0;1/ such that �.t/! 0 as t # 0, ıi ! 0 as i ! 1 and

dY .ui .x1/; ui .x2// � �.dX .x1; x2//C ıi (D.1)

for any i � 1 and x1; x2 2 X . If
S
i�1 ui .X/ is compact, then there exists a sub-

sequence ¹unj ºj�1 such that ¹unj ºj�1 converges uniformly to a continuous function
uWX!Y as j !1 satisfying dY .u.x1/;u.x2//� �.dX .x1;x2// for any x1;x2 2X .

Proof. Since X is totally bounded, there exists a countable subset A � X which is
dense in X and contains a finite � -net A� of X for any � > 0. Let K D

S
i�1 ui .X/.
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SinceK is compact and ¹ui .x/ºi�1 �K is bounded for any x 2A, there exists a sub-
sequence ¹umk .x/ºk�1 converging as k ! 1. By the standard diagonal argument,
we may find a subsequence ¹unj ºj�1 such that ¹unj .x/ºj�1 converges as j !1 for
any x 2 A. Set vj D unj and j̨ D ınj . Define v.x/ D limj!1 v.x/ for any x 2 A.
By (D.1),

dY .vj .x1/; vj .x2// � �.dX .x1; x2//C j̨

for any x1; x2 2 A. Letting j ! 1, we see that

dY .v.x1/; v.x2// � �.dX .x1; x2// (D.2)

for any x1; x2 2A. SinceA is dense inX , v is extended to a continuous function onX
satisfying (D.2) for any x1; x2 2 X . Fix " > 0. Choose � > 0 such that �.�/ < "

3
.

Since the � -net A� is a finite set, there exists k0 such that if k � k0, then ˛k < "
3

and dY .v.z/; vk.z// < " for any z 2 A� . Let x 2 X and choose z 2 A� such that
dX .x; z/ < � . If k � k0, then

dY .vk.x/; v.x// � dY .vk.x/; vk.z//C dY .vk.z/; v.z//C dY .v.z/; v.x//

� 2�.dX .x; z//C ˛k C dY .vk.z/; v.z// < 2":

Thus ¹vj ºj�1 converges uniformly to v as j ! 1.

E Geometric properties of strongly symmetric self-similar sets

In this appendix, we will give proofs of claims on topological and geometric prop-
erties of self-similar sets treated in Section 4.6. Namely, we will give proofs of
Propositions 4.40 and 4.42. First, we recall the setting of Section 4.6. Let S be a finite
subset of RL and let � 2 .0; 1/. Let Uq 2 O.L/ for any q 2 S . Define fqWRL ! RL

by
fq.x/ D �Uq.x � q/C q

for x 2 RL. LetK be the self-similar set with respect to ¹fqºq2S , i.e.,K is the unique
non-empty compact set K satisfying

K D

[
q2S

fq.K/:

The triple .K; S; ¹fqºq2S / is know to be a self-similar structure defined in Defini-
tion 4.1 and the map �WSN ! K is given by

¹�.q1q2 : : :/º D
\
m�0

fq1:::qm.K/

as we have seen in Section 4.1.
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Definition E.1. (1) Define z� WSN ! SN by

z�.q1q2 : : :/ D q2q3 : : : for q1q2 : : : 2 SN :

(2) Define

CK D

[
i¤j2S

Ki \Kj ; C D ��1.CK/; P D

[
k�1

z�k.C/;

and V0 D �.P /. The sets C and P are called the critical set and the post critical set
of .K; S; ¹fqºq2S /, respectively. A self-similar structure .K; S; ¹fqºq2S / is said to
be post critically finite (p.c.f. for short) if P is a finite set.

By [29, Theorem 1.2.3], we have the following proposition.

Proposition E.2. The map � is continuous and surjective. Moreover,

�.q1q2 : : :/ D fq1.�.z�.q1q2 : : :/// (E.1)

for any q1q2 : : : 2 SN .

In this appendix, we suppose that Assumption 4.39 holds.
The next lemma gives a proof of Proposition 4.40.

Lemma E.3. Under Assumption 4.39, we have

(1) For any q 2 S , ��1.q/ D xq, where xq D qqq : : : 2 SN .

(2) P D ¹xq j q 2 U º, where U is the set appearing in Assumption 4.39. In par-
ticular, the self-similar structure .K; S; ¹fqºq2S / is post critically finite and
V0 D U .

Proof. (1) Suppose �.�1�2 : : :/ D q. Then by (E.1),

q D �.�1�2 : : :/ D f�1.�.�2�3 : : :// 2 K�1 :

By Assumption 4.39 (1), it follows that �1 D q. Since fq is invertible, we see that
�.�2�3 : : :/D q. Using the same argument as above, we see that �2 D q as well. Thus
we deduce that �k D q for any k 2 N inductively.

(2) Suppose that �.�1�2 : : :/ 2 f�1.K/ \ fq.K/ for some q ¤ �1. By (E.1), it
follows that �.�1�2 : : :/ D f�1.�.�2�3 : : ://. Hence by Assumption 4.39 (2),

�.�2�3 : : :/ 2 .f�1/
�1.f�1.K/ \ fq.K// � U:

Thus �2�3 : : : D q0 for some q0 2 U . Therefore, P � U .
Conversely, again by Assumption 4.39 (2), for any q 2 U , there exist p1; p2 2 S

with p1 ¤ p2 such that �.p1xq/ 2 fp1.K/ \ fp2.K/. This shows that p1xq 2 C and
hence xq 2 P .
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In the next two lemmas, we are going to show a sufficient condition for Assump-
tion 4.41.

Lemma E.4. Suppose that Assumption 4.39 holds and that Uq is the identity map
for any q 2 V0. Let q D fp1.q1/ D fp2.q2/ for some p1; p2 2 S with p1 ¤ p2 and
q1; q2 2 V0. Then there exists  D .p1; p2; q1; q2/ > 0 such that

d.Kp1nKp1.q1/m�1 ; Kp2/ � �m

for any m � 1, where d.A;B/ D infx2A;y2B jx � yj and .q/k D q : : : q
k-times

2 Tk .

In the following proof, we assume that

#.fp1.K/ \ fp2.K// � 1

to avoid a non-essential complication of arguments. Without this assumption, the
lemma is still true with a technical modification of the proof.

Proof. Set cm D inf¹d.Kw ; Kv/ j w; v 2 Tm; Kw \Kv D ;º. Define

Xm D Kp1nKp1.q1/m�1 and Ym D Kp1q1nKp1.q1/m�1

for m � 1. Then Xm D Ym [ .
S
q¤q1

Kp1q/ and Kp2 D Kp2q2 [ .
S
q¤q2

Kp2q/.
This implies that

d.Xm; Kp2/ � min¹d.Ym; Kp2q2/; c2º:

On the other hand, letting f .x/ D �.x � q/C q, we see that

Ym [Kp2q2 D f .Xm�1 [Kp2/:

This yields d.Ym; Kp2q2/ D �d.Xm�1; Kp2/. Consequently, we have

d.Xm; Kp2/ � min¹�d.Xm�1; Kp2/; c2º:

Now inductive argument suffices.

Lemma E.5. Suppose that Assumption 4.39 holds and that Uq is the identity map for
any q 2 V0. Then Assumption 4.41 holds.

Remark. According to the notation in the proof of Lemma E.4, this lemma claims
cm � c�m for any m � 1.

Proof. Suppose that w; v 2 Tm and Kw \Kv D ;. Let w D w1 : : : wm and let v D

v1 : : : vm. In the case w1 D w2,

d.Kw ; Kv/ D �d.Kw2:::wm ; Kv2:::vm/ � cm�1�:
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Otherwise, assume that w1 ¤ v1. If Kw1 \ Kv1 D ;, then d.Kw ; Kv/ � c1. So,
the remaining possibility is that w1 ¤ v1 and Kw1 \ Kv1 ¤ ;. In this case, let
q D Kw1 \Kv1 . Then q D fw1.pj1/ D fw2.pj2/ for some j1; j2 2 ¹1; : : : ; Lº. By
Lemma E.4, it follows that d.Kw ; Kv/ � x�m, where x D min¹.p1; p2; q1; q2/ j
p1;p2 2 S;q1; q2 2 V0;fp2.q1/D fp1.q2/º. Combining all the cases and using induc-
tion on m, we see that cm � min¹c1; º�m for any m � 1.

Now we start showing Proposition 4.42, that is, Assumption 2.15 holds under
Assumptions 4.39 and 4.41.

Lemma E.6. Under Assumptions 4.39 and 4.41, Assumption 2.15 .2/ holds with
r D �, M� D 1, and d D d�, where d� is the restriction of the Euclidean metric.

Proof. (2A) is obvious. Set

�1;n.x/ D
[
w2Tn
x2Kw

�1.w/

for x 2 K and n � 1. Then for any v 2 Tnn�1;n.x/, there exists w 2 Tn such that
x 2 Kw and Kw \Kv D ;. By Lemma E.5, we see that d.Kw ; x/ � c�n and hence
Bd�.x; cr

n/ \Kv D ;. Thus we have

Bd�.x; c�
n/ � U1.x W n/: (E.2)

On the other hand, by (2A), there exists c0 > 0 such that diam.Kw ; d�/ � c0�jwj for
any w 2 T . This implies

U1.x W n/ � Bd�.x; 3c
0�n/: (E.3)

So we have (2B). Choose x0 2KnV0 and choosem0 2N such that 2�m0 <d.x0;V0/.
Letw 2 Tn and let u2�1;m0Cn.fw.x0//. Suppose that u2 T .v/ for some v 2 Tn with
v¤w. Since u2�1;m0Cn.fw.x0//, there exists u0 2 TnCm0 such that fw.x0/ 2 Ku0
andKu0 \Ku ¤ ;. Let y 2Ku. SinceK is connected (and hence arcwise connected
by [29, Theorem 1.6.2]), there exists a continuous curve �W Œ0; 1�! Ku0 [Ku such
that �.0/ D fw.x0/ and �.1/ D y. Note that fw.x0/ 2 Kw and y 2 Kv . By (4.24),
the curve � intersects with fw.V0/. Therefore, .Ku [Ku0/\ fw.V0/¤ ;. However,
since diam.Ku; d�/ D diam.Ku0 ; d�/ D �m0Cn, it follows

d.fw.x0/;Ku [Ku0/ � 2�m0Cn < d.fw.x0/; fw.V0//;

so that .Ku0 [Ku/\ fw.V0/D;. This contradiction shows that u 2 T .w/ and hence
U1.fw.x0/ W m0 C n/ � Kw . By (E.2), we see that

Bd�.fw.x0/; c�
m0Cn/ � U1.fw.x0/ W m0 C n/ � Kw :

This shows (2C).
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Next set ˛H D �
log #.S/

log� . Note that �˛H D #.S/�1. Let � be the self-similar
measure on K with weight .�˛H ; : : : ; �˛H /. By [31, Theorem 1.2.7], we see that
�.Kw/ D �jwj for any w 2 T and consequently �.¹xº/ D 0 for any x 2 Kw . These
facts show that � satisfies Assumption 2.12. Moreover, we have the following propo-
sition.

Proposition E.7. Under Assumptions 4.39 and 4.41, there exist c1; c2 > 0 such that

c1s
˛H � �.Bd�.x; s// � c1s

˛H (E.4)

for any s 2 Œ0; 1�. In particular, � is ˛H -Ahlfors regular with respect to d� and the
Hausdorff dimension of .K; d�/ equals ˛H .

Proof. By (E.3), for any x 2 K and n � 1, if w 2 �1;n.x/, then

.�n/˛H D �.Kw/ � �.Bd�.x; 3c
0�n//: (E.5)

On the other hand, by [31, Proposition 1.6.11], there exists J� 2 N such that

#.�1;n.x// � J� (E.6)

for any x 2 T and n � 0. (Note that ƒ1�n;x defined in [31, Definition 1.3.3] equals
�1;n.x/.) Therefore by (E.2),

�.Bd�.x; c�
n// �

X
v2�1;n.x/

�.Kv/ � J�.�
n/˛H : (E.7)

Combining (E.5) and (E.7), we obtain (E.4).

The following proposition is immediately deduced from the previous propositions
and lemmas. Note that �1.w/ � �1;n.x/ for any w 2 T and x 2Kw . Hence by (E.6),
we see that the partition ¹Kwºw2T is uniformly finite.

Proposition E.8 (Proposition 4.42). Under Assumptions 4.39 and 4.41, Assump-
tion 2.15 holds with r D �, d D d� and M� DM0 D 1.

The fact that M0 D 1 is due to the second remark after Assumption 2.6.
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F List of definitions and notations

Definitions

adjacency matrix, Definition 2.1
Ahlfors regular, (2.9)
Ahlfors regular conformal dimension, (1.1)
Arzelà–Ascoli, Appendix 6.3
child, Definition 2.2 (1)
chipped Sierpiński carpet, Example 4.25
conductance constant, Definition 2.17
conductively homogeneous (conductive

homogeneity), Definition 3.4
covering, Definition 2.26
covering numbers, Definition 2.26
covering system, Definition 2.29
critical set, Definition E.1
exponential, Lemma 2.13
folding map, Definition 4.11 (2)
geodesic, Definition 2.1 (3)
graph, Definition 2.1
graph distance, Definition 2.21
hyperoctahedral group, Definition 4.9
locally finite, Definition 2.1 (1)
locally symmetric, Definition 4.11 (4)
Markov property, Theorem 3.21 (c)
minimal, Definition 2.5 (1)
modulus, Definition 2.21 (3)
Moulin, Example 4.27
m-walk, Definition 4.44
neighbor disparity constant, Definition 2.26
nested fractal, Definition 4.47
non-degenerate, Definition 4.11 (1)
partition, Definition 2.3
path, Definition 2.1 (2)
p-energy, Theorem 3.21
pentakun, Example 4.47
pinwheel, Example 4.27
Poincaré constant, Definition 5.4
post critical set, Definition E.1
post critically finite, Definition E.1
p.c.f., Definition E.1
quasisymmetry, Definition 1.1
rationally related contraction

ratios, right after Assumption 4.4
ray, Definition 2.2

reference point, Definition 2.2
root, Definition 2.2
self-similar set, (4.1)
self-similar structure, Definition 4.1
Sierpiński cross, Section 4.5
simple, Definition 2.1 (2)
snowflake, Example 4.48
strict 0-walk, Definition 4.44
strongly connected, Definition 4.11 (3)
strongly symmetric, Definition 4.44
sub-multiplicative inequality (conductance),

Corollary 2.24
sub-multiplicative inequality (modulus),

Theorem 2.23
sub-multiplicative inequality (neighbor

disparity), Lemma 2.34
subsystem of cubic tiling, Definition 4.11
super-exponential, Assumption 2.12
symmetry, Definition 4.7
tree, Definition 2.1 (3)
uniformly finite, Definition 2.5 (3)

Notations

A.M/
m .A1; A2; A/, Definition 2.21 (2)

A.M/

N;m
.w/, Definition 2.21 (3)

As , Definition 4.11
Bd .x; r/, Assumption 2.15
Bj;i , Definition 4.9
BL, Definition 4.9
BM;k.w/, Definition 2.11
Bw , Definition 2.5
cL;Ns , Definition 4.9
cE.L;N; p/, xcE.L;N; p/, Definition 6.4
c�.p;L;N /, xc�.p;L;N /, Definition 6.8
c� .L;N1; N2; �/, xc� .L;N1; N2; �/,

Definition 6.11
CL� , Definition 4.9
CL;Ns , Definition 4.9
C .M/
m .A1; A2; A/, Definition 2.21 (2)

C .M/

N;m
.w/, Definition 2.21 (3)

diam.K; d/, Assumption 2.15
dimAR.K; d/, (1.1)
xDk , Lemma 5.10
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E�
n , Proposition 2.8

E�
n .A/, (2.15)

E�
M;n

, Definition 2.21
E`n, Definition 4.11 (3)
En
p;A

.�/;Enp .�/, Definition 2.17 (1)
zEmp .�/, (3.6), (4.5)
yEp.�/, Theorem 3.21
Ep;m.A1; A2; A/, Definition 2.17
EM;p;m;n, Definition 3.1
EM;p;m.w;A/, Definition 2.17
xf , Definition 3.20
g.w/, (4.2)
G .L;N /, Definition 6.5
GE.L;N /, Definition 6.2
G� .L;N1; N2/, Definition 6.9
G.K;T /, Definition 4.7
h�
M;w;m

, Definition 2.20
h�
M�;w

, Lemma 3.18
H i
j1;j2

, Definition 4.10
IA;k;m, Lemma 5.3
yIA;m, Lemma 5.1
zIA;k , Lemma 5.2
	T .K; T /, Definition 4.7
J�, Example 2.30
J`, Example 2.32, (4.15)
j.w/, (4.2)
Jn, (3.5)
K.�/, (4.9)
KT, KB, KR, KL, (4.20)
`.�/, (2.10)
`w;v , (4.14)
`T, `B, `R, `L, Definition 4.32
L�, (2.3)
M0, Assumption 2.6 (3),

Assumption 2.15 (4)
M�, Assumption 2.6 (2),

Assumption 2.15 (2)
M.M/
p;m .A1; A2; A/, Definition 2.21 (2)

M.M/

N;p;m
.w/, Definition 2.21 (3)

nL.�; �/, Definition 3.7
Np.�/, Lemma 3.13
NE ; NT , Definition 2.26
N�, (2.7)
Ow , Definition 2.5
Pn, Definition 3.11

Pn;m, Definition 2.26
P .V;E/, Definition 6.5
P .G; �/, Definition 6.9
Qn, (3.14)
Rj , Ri

j1;j2
, Definition 4.10

Ri;jk , R�
i;jk

, Definition 4.35
S.w/, Sm.w/, Definition 2.2 (1)
Tm, Definition 2.2 (2)
T nn , T nC1n , Lemma 4.36
T .w/, Definition 2.2 (3)
UM .w/, Lemma 3.18
UM .x W n/, Assumption 2.15
jwj, Definition 2.2 (2)
wv, Definition 2.1 (3)
Wp , Lemma 3.13
X.e/– Definition 4.7
ˇ�, Theorem 3.35
 , Assumption 2.12
�A
M
.w/, �M .w/, Definition 2.5

ıL.�; �/, Definition 3.7
@Sm.w/, Definition 2.9
�, Assumption 2.12
�p;m.A/, z�p;m.A/, Definition 5.4
x�p;m, Definition 5.8
ƒ
g
rn , (4.3)

�m.�; �/, Definition 2.21
‚�
2

, Theorem 4.14
�n, Lemma 5.9
�n.w/, Definition 5.6
� , Definition 2.2
� , Theorem 3.30
�p;m.A/, Definition 2.26
�

J
p;m;n, �J

p;m, Definition 2.29
�p;�.G/, Definition 6.9
� , Lemma 3.10
�p , Lemma 3.34
��, Theorem 3.35
ˆs , Definition 4.11
'e , Definition 4.7
'�
M;w;m

, Definition 2.20
'�
M�;w

, Lemma 3.18
 n, Definition 4.7
 �
n;m, Definition 4.37 (1)
†, Definition 2.2 (4)
#.�/, Definition 2.5
k � kp;�, Lemma 3.13, Definition 5.4


