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Finite groups of birational transformations

Yuri Prokhorov

Abstract. We survey new results on finite groups of birational transformations of algebraic
varieties.

1. Introduction

We work over a field k of characteristic 0. Typically, unless otherwise mentioned,
we assume that k is algebraically closed. The Cremona group Crn.k/ of rank n is
the group of k-automorphisms of the field k.x1; : : : ; xn/ of rational functions in n
independent variables. Equivalently, Crn.k/ can be viewed as the group of birational
transformations of the projective space P n. It is easy to show that for nD 1, the group
Crn.k/ consists of linear projective transformations:

Cr1.k/ D PGL2.k/:

On the other hand, for n � 2, the group Crn.k/ has an extremely complicated struc-
ture. In particular, it contains linear algebraic subgroups of arbitrary dimension and
has a lot of normal non-algebraic subgroups [18,24]. We refer to [3,22,23,38,48,95]
for surveys, historical résumés, and introductions to the subject.

Examples. (i) Any matrix A D kai;j k 2 GLn.Z/ defines an element 'A 2 Crn.k/
via the following action on k.x1; : : : ; xn/:

'A W xi 7! x
a1;i

1 x
a2;i

2 � � � x
an;i
n :

Such Cremona transformations are called monomial. For n D 2 and A D �id, the
transformation 'A is known as the standard quadratic involution

.x1; x2/ 7! .x�1
1 ; x�1

2 /:
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(ii) Let S be an algebraic variety admitting a generically finite rational map

� W S Ü P n�1

of degree 2. In an affine piece and suitable coordinates, S can be given by the equation
y2 D f .x1; : : : ; xn�1/. One can associate with .S;�/ an involution � 2 Crn.k/ acting
on k.x1; : : : ; xn�1; y/ via

� W .x1; : : : ; xn�1; y/ 7!
�
x1; : : : ; xn�1; f .x1; : : : ; xn�1/ � y

�1
�
:

If n D 2 and S is a hyperelliptic curve, then � is known as the de Jonquières involu-
tion.

The study of the Cremona group has a very long history. Basically, it was started
in earlier works of A. Cayley and L. Cremona, and since then, this group has been
the object of many studies. In these notes, we concentrate on the following particular
problem.

Problem 1.1. Describe the structure of finite subgroups of Crn.k/.

Note, however, that the projective space is not an exceptional variety from the
algebro-geometric point of view. So one can ask a similar question replacing Crn.k/
with the group of birational transformations Bir.X/ of an arbitrary algebraic variety
X . Hence it is natural to pose the following problem.

Problem 1.2. Describe the structure of finite subgroups of Bir.X/, where X is an
algebraic variety.

We deal with the most recent results related to these problems. Definitely, our
survey is not exhaustive.

2. Equivariant minimal model program

In this section, we collect basic facts on the so-called G-minimal model program
(abbreviated as G-MMP). This program is the main tool in the study of finite groups
of birational transformations. For a detailed exposition, we refer to [89].

LetG be a finite group. Following Yu. Manin [68], we say that an algebraic variety
X is a G-variety if it is equipped with a regular faithful action G Õ X , i.e., if there
exists an injective homomorphism ˛ WG ,!Aut.X/. A morphism (resp. rational map)
f W X ! Y of G-varieties is a G-morphism (resp. G-map) if there exists a group
automorphism ' W G ! G such that, for any g 2 G,

f ı ˛.g/ D ˇ
�
'.g/

�
ı f;
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where ˛ W G ,! Aut.X/ and ˇ W G ,! Aut.Y / are the embeddings corresponding to
the actions G Õ X and G Õ Y , respectively.

For anyG-varietyX , the actionGÕX induces an embeddingG ,!Autk.k.X//
to the automorphism group of the field of rational functions k.X/. Conversely, given
any finitely generated extension K=k and any finite subgroup G � Autk.K/, there
exists aG-varietyX and an isomorphism k.X/'k K inducingG � Autk.K/. Thus,
we have the following fact.

Proposition 2.1. Let K=k be finitely generated field extension. Then there exists a
1-1 correspondence between finite subgroups G � Autk.K/ considered modulo con-
jugacy and G-varieties X such that k.X/ 'k K considered modulo G-birational
equivalence.

Recall that a variety X is said to be rational if it is birationally equivalent to the
projective space P n or, equivalently, if the field extension k.X/=k is purely transcen-
dental.

Corollary. There exists a 1-1 correspondence between finite subgroups G � Crn.k/
considered modulo conjugacy and rationalG-varietiesX such that k.X/'k K con-
sidered modulo G-birational equivalence.

Next, due to the equivariant resolution theorem (see e.g. [1]), it is possible to
replace X with a smooth projective model.

Proposition 2.2 (see, e.g., [89, Lemma 14.1.1]). For any G-variety X , there exists a
smooth projective G-variety Y that is G-birationally equivalent to X .

Thus the above considerations allow us to reduce the problem of classification
of finite subgroups of Bir.X/ to the study of subgroups in Aut.Y /, where Y is a
smooth projective variety. The main difficulty arising here is that this G-variety Y is
not unique in its G-birational equivalence class. So, given G-birational equivalence
class of algebraic G-varieties, we need to choose some good representative in it. This
can be done by means of the G-MMP. The higher-dimensional MMP forces us to
consider varieties with certain very mild, so-called terminal singularities.

Definition. A normal variety X has terminal singularities if some multiple mKX of
the canonical Weil divisorKX is Cartier, and for any birational morphism f W Y !X ,
one can write

mKY D f �mKX C

X
aiEi ;

where Ei are all the exceptional divisors and ai > 0 for all i . The smallest positivem
such that mKX is Cartier is called the Gorenstein index of X .
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Definition. A G-variety X has GQ-factorial singularities if a multiple of any G-
invariant Weil divisor on X is Cartier.

It is important to note that terminal singularities lie in codimension � 3. In par-
ticular, terminal surface singularities are smooth.

Example ([72, 93]). Let the cyclic group �r act on A4 diagonally via

.x1; x2; x3; x4/ 7! .—x1; —
�1x2; —

ax3; x4/; —D —r D exp.2  i =r/; gcd.a; r/D 1:

Then for a polynomial f .u; v/, the singularity of the quotient®
x1x2 C f .xr

3; x4/ D 0
¯
=�r

at 0 is terminal whenever it is isolated.

The aim of the G-MMP is to replace a G-variety with another one, which is
“minimal” in some sense. As we mentioned above, running the G-MMP we have to
consider singular varieties, and the class of terminal GQ-factorial singularities is the
smallest class that is closed under the G-MMP.

Definition (For simplicity, we assume that k is uncountable). A varietyX is uniruled
if for a general point x 2X , there exists a rational curve C �X passing through x. A
variety X is rationally connected if two general points x1; x2 2 X can be connected
by a rational curve.

Note that a rationally connected surface is rational, and an uniruled surface is
birationally equivalent to C � P 1, where C is a curve.

Definition. Let Y be a G-variety with only terminal GQ-factorial singularities and
let f W Y ! Z be aG-equivariant morphism with connected fibers to a lower-dimen-
sional variety Z, where the action of G on Z is not necessarily faithful. Then f is
called G-Mori fiber space (abbreviated as G-Mfs) if the anti-canonical class �KY is
f -ample and rk Pic.Y=Z/G D 1. If Z is a point, then �KY is ample, and Y is called
GQ-Fano variety. Two-dimensionalGQ-Fano varieties are traditionally calledG-del
Pezzo surfaces.

Definition. A G-variety Y is said to be a G-minimal model if it has only terminal
GQ-factorial singularities and the canonical class KY is numerically effective (nef).

It is not difficult to show that the concepts of G-minimal model and G-Mori fiber
space are mutually exclusive. Moreover, if f W Y ! Z is a G-Mfs, then its general
fiber is rationally connected; hence Y is uniruled. On the other hand, a G-minimal
model is never uniruled [70]. The following assertions are usually formulated for
varieties without group actions. The corresponding equivariant versions can be easily
deduced from non-equivariant ones (see [89]).
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Theorem 2.3 ([14]). Let X be an uniruled G-variety. Then there exists a birational
G-map X Ü Y , where Y has a structure of G-Mfs f W Y ! Z.

Conjecture 2.4. Let X be a non-uniruled G-variety. Then there exists a birational
G-map X Ü Y , where Y is a G-minimal model.

The conjecture is known to be true in dimension � 4 (see [73, 99]), as well as
in the case where KX is big [14], and in some other cases. In arbitrary dimension, a
weaker notion of quasi-minimal models works quite satisfactory [82].

3. Cremona group of rank 2

The G-MMP for surfaces is much more simple than in higher dimensions. It was
developed in the works of Yu. Manin and V. Iskovskikh (see [68]). In the two-dimen-
sional case, the G-MMP works in the category of smooth G-surfaces, and all the
birational transformations are contractions of disjoint unions of .�1/-curves. For a
G-Mfs f W Y ! Z, there are two possibilities:

(i) Z is a point and then Y is a G-del Pezzo surface,

(ii) Z is a curve, any fiber of f is a reduced plane conic and rk Pic.Y /G D 2.
In this case, f is called G-conic bundle.

Thus to study finite subgroups of Cr2.k/, one has to consider the above two classes
of G-Mfs’s in detail. The classification of del Pezzo surfaces is well known and very
short. Hence, to study the case (i) one has to list all finite subgroups G�Aut.Y / sat-
isfying the condition rk Pic.Y /G D 1. The full list was obtained by Dolgachev and
Iskovskikh [40]. In contrast, the class of conic bundles is huge and consists of an
infinite number of families. In this case, a reasonable approach is to find an algorithm
of enumerating conic bundles Y=Z together with subgroups G � Aut.Y=Z/ satisfy-
ing rk Pic.Y /G D 2. This also was done by Dolgachev and Iskovskikh [40] (see also
[103]). However, even using this algorithm, it is very hard to get a complete list of
corresponding groups.

As an example, we present a well-known classical result on the classification of
subgroups of order 2 in Cr2.k/. It was obtained by E. Bertini [12] in 1877; however,
his arguments were incomplete from a modern point of view. A new rigorous proof
was given by L. Bayle and A. Beauville [8].

Theorem 3.1. Let G D ¹1; �º � Cr2.k/ be a subgroup of order 2. Then the embed-
ding G�Cr2.k/ is induced by one of the following actions on a rational surface X :
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� X and �

1o Linear involution P 2

2o de Jonquières involu-
tion of genus g � 1

X D ¹y1y2 D p.x1; x2/º � P .1; 1; g C 1; g C 1/

p is a homogeneous form of degree 2g C 2,
� is the deck involution of the projection

X
2W1
ÜP .1; 1; gC1/, .x1; x2; y1; y2/ 7!.x1; x2; y1Cy2/

3o Geiser involution X D ¹y2 D p.x1; x2; x3/º � P .1; 1; 1; 2/,
p is a homogeneous form of degree 4,
� is the deck involution of the projection

X
2W1
��! P .1; 1; 1/ D P 2

4o Bertini involution X D ¹z2 D p.x1; x2; y/º � P .1; 1; 2; 3/,
p is a quasihomogeneous form of degree 6,
� is the deck involution of the projection

X
2W1
��! P .1; 1; 2/

Here P .w1; : : : ; wn/ denotes the weighted projective space with corresponding
weights.

In the cases 1o, 3o, and 4o, the variety X is a del Pezzo surface of degree 9, 2,
and 1, respectively. In the case 2o, the projection X Ü P .1; 1/ D P 1 becomes a
G-conic bundle after blowing up the indeterminacy points.

The G-MMP was successfully applied for the classification of various classes
of finite subgroups in Cr2.k/: groups of prime order [36], p-elementary groups [9],
abelian groups [15,16], and finally, arbitrary groups [40]. Here is another example of
classification results.

Theorem 3.2 ([40]). LetG � Cr2.C/ be a finite simple group. ThenG is isomorphic
to one of the following:

A5; A6; PSL2.F7/;

where An is the alternating group of degree n and PSLn.Fq/ is the projective special
linear group over the finite field Fq .

Moreover, if G 6' A5, then the embedding G � Cr2.k/ is induced by one of the
following actions on a del Pezzo surface X :

G jGj X

A6 360 P 2

PSL2.F7/ 168 P 2

PSL2.F7/ 168 ¹y2 D x3
1x2 C x3

2x3 C x3
3x1º � P .1; 1; 1; 2/

A complete classification of embeddings A5 ,! Cr2.k/ can be found in [31].
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4. Cremona group of rank 3

The MMP in dimension 3 is more complicated than the two-dimensional one, but still,
it is developed very well. In particular, terminal threefold singularities are classified
up to analytic equivalence [72,93]. The structure of all intermediate steps of the MMP
and Mfs’s is also studied relatively well (see [89] for a survey).

For a three-dimensional G-Mori fiber space f W Y ! Z, there are three possibil-
ities:

(i) Z is a point, then Y is a (possibly singular) GQ-Fano threefold,

(ii) Z is a curve, then f is called a GQ-del Pezzo fibration,

(iii) Z is a surface, then f is a GQ-conic bundle.

A GQ-conic bundle can be birationally transformed into a standard G-conic bundle,
i.e., GQ-conic bundle such that both X and Z are smooth [6]. For GQ-del Pezzo
fibrations, there are only some partial results of this type (see [35,66]). Nevertheless,
the main difficulty in the application G-MMP to the classification of finite groups of
birational transformations is the lack of a complete classification of Fano threefolds
with terminal singularities. At the moment, only some very particular classes of GQ-
Fano threefolds are studied (see [4, 5, 52, 79, 80, 88] and references therein). Some
roundabout methods work in the case of “large” in some sense (in particular, simple)
finite groups.

Theorem 4.1 ([78]). LetG � Cr3.C/ be a finite simple subgroup. ThenG is isomor-
phic to one of the following:

A5; A6; A7; PSL2.F7/; PSL2.F8/; PSp4.F3/;

where PSp4.F3/ is the projective symplectic group over F3. All the possibilities occur.

This classification is a consequence of the following more general result.

Theorem 4.2 ([78]). Let Y be a rationally connected threefold and let G � Bir.Y /
be a finite simple group. If G is not embeddable to Cr2.C/, then Y is G-birationally
equivalent to one of the following GQ-Fano threefolds:

G X Rational?

1o A7 X 0
6 D ¹¢1;7 D ¢2;7 D ¢3;7 D 0º � P 5 � P 6 no

2o A7 P 3 yes
3o PSp4.F3/ P 3 yes
4o PSp4.F3/ Burkhardt quarticXb

4 D ¹¢1;6 D ¢4;6 D 0º � P 4 � P 5 yes
5o PSL2.F8/ Special Fano threefold Xm

12 � P 8 of genus 7 yes
6o PSL2.F11/ Klein cubicXk

3 D¹x1x
2
2 C x2x

2
3 C � � �x5x

2
1 D 0º�P 4 no

7o PSL2.F11/ Special Fano threefold X a
14 � P 9 of genus 8 no
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Here ¢d;k D ¢d;k.x1; : : : ; xk/ is the elementary symmetric polynomial of degree
d in k variables.

Below we outline the proof of Theorem 4.2.
Assume that G is not embeddable to Cr2.k/, i.e., it is not isomorphic to any

of the groups listed in Theorem 3.2. First, Proposition 2.2 allows us to assume that
the action of G is regularized on some smooth projective G-variety X . By running
the equivariant MMP, we may assume that X has a structure of a G-Mfs f W X ! Z

(becauseX is rationally connected). Consider the case dimZ > 0. SinceG is a simple
group, it must act faithfully on the baseZ or on the general fiber F . Since the varieties
F and Z are rational, this means that G is contained in the plane Cremona group
Cr2.k/. The contradiction proves Theorem 4.2 in the case dimZ > 0.

Hence, we may further assume that Z is a point and X is a GQ-Fano threefold.
Consider the case where X is not Gorenstein, i.e., the canonical class KX is not a
Cartier divisor. It turns out that this case does not occur. Let P1; : : : ; Pn 2 X be all
non-Gorenstein points and let r1; : : : ; rn be the corresponding Gorenstein indices.
Arguments based on Bogomolov–Miyaoka inequality (see [55, 57] and [89, §12])
show that X�

ri �
1

ri

�
< 24:

Hence, n � 15. Then using the classification of transitive actions of simple groups
[33] and analyzing the action of stabilizers of Pi , one obtains the only possibility:

� n D 11, G ' PSL2.F11/, r1 D � � � D rn D 2.

This case is excluded by a more detailed geometric consideration (see [78, §6]).
Thus, we may assume thatKX is a Cartier divisor. In this case, according to [74],

the varietyX has a smoothing, that is, there exists a one-parameter flat family X=B 3

o such that the special fiber Xo is isomorphic to X , and a general geometric fiber Xt

is a smooth Fano threefold. Hence some discrete invariants of X , such as the Picard
lattice Pic.X/ and the anticanonical degree �K3

X , are the same as for smooth Fano
threefolds, which are completely classified (see [52]). Recall that the Fano index �.X/
of X is the maximal integer that divides the canonical class KX in the lattice Pic.X/
[52]. By [80], we have rk Pic.X/ � 4. Since Pic.X/G ' Z and a simple group that
is not isomorphic to A5 cannot have a nontrivial integer representation of dimension
� 4, we have rk Pic.X/D 1. If �.X/� 4 (resp, �.X/D 3), thenX is isomorphic to the
projective space P 3 (resp. a quadric in P 4) [52]. Then from the classification of finite
subgroups in PSL4.k/ and PSL5.k/, we get cases 2o and 3o. Three-dimensional Fano
varieties with �.X/D2 are called del Pezzo threefolds. G-Fano threefolds of this type
were studied in [79]. As a consequence of these results, we get the case of the group
G D PSL2.F11/ acting on the Klein cubic (case 6o).
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Finally, let Pic.X/ D Z �KX . Recall that in this case, the anticanonical degree is
written in the form �K3

X D 2 g.X/ � 2, where g.X/ 2 ¹2; 3; : : : ; 10; 12º [52]. For
g.X/ � 5, the variety X has a natural embedding to a (weighted) projective space as
a complete intersection [52]. Using this and some facts from representation theory,
we obtain for the group G two cases, 1o and 4o. The case g.X/ D 6 can be excluded
using [37, Corollary 3.11]. For g.X/ � 7, the variety X must be smooth (see [78,
Lemma 5.17] and [88]). Further, using some facts about automorphisms of smooth
Fano threefolds [63], we obtain for the group G two possibilities, 5o and 7o. This
completes our sketch of the proof of Theorem 4.2.

A similar technique was applied to the study of finite p-subgroups and quasi-
simple subgroups in Cr3.k/ (see [17, 64, 67, 77, 81, 86]).

Note that Theorem 4.2 does not describe embeddings of groups A5, A6, and
PSL2.F7/ to the space Cremona group. It is obvious that such embeddings exist,
but their full classification should be significantly more difficult. There are only some
partial results in this direction (see e.g. [26–29, 62]).

5. Jordan property

The methods and results of [40] show that one cannot expect a reasonable classifi-
cation of all finite subgroups of Cremona groups of higher rank. Thus it is natural to
concentrate on the study of general properties of these subgroups. Recall the follow-
ing two famous results by C. Jordan and H. Minkowski.

Theorem 5.1 ([53]). There exists a function j.n/ such that for any finite subgroup
G � GLn.C/, there exists a normal abelian subgroup A � G of index at most j.n/.

Theorem 5.2 ([69]). There exists a function b.n/ such that for every finite subgroup
G � GLn.Q/, one has jGj � b.n/.

J.-P. Serre [94, 96] asked if these properties hold for Cremona groups. Complete
answers to these questions were given in [82, 83] (see below). The following very
convenient definitions were suggested by V. L. Popov [75].

Definition. � A group � is Jordan if there exists a constant j.�/ such that any finite
subgroup G � � has a normal abelian subgroup A of index ŒG W A� � j.�/.

� A group � is bounded (or satisfy bfs property) if there exists a constant b.�/ such
that for any finite subgroup G � � , one has jGj � b.�/.

Rationally connected varieties

Theorem 5.3 ([13,83]). LetX be a rationally connected variety. Then Bir.X/ is Jor-
dan. Moreover, Bir.X/ is uniformly Jordan; that is, the constant j.Bir.X// depends
only on dim.X/.
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As a consequence, we obtain that the group Crn.k/ is Jordan.
Originally, Theorem 5.3 was proved modulo the so-called BAB conjecture (in a

weak form), which is now settled by C. Birkar:

Theorem 5.4 ([13]). Fix d > 0. The set of all Fano varieties X of dimension at
most d with at worst terminal singularities form a bounded family; i.e., they are
parameterized by a scheme of finite type.

It follows from Theorem 5.3 that there is a constant L D L.n/ such that for any
rationally connected variety X of dimension n and for any prime p > L.n/, every
finite p-subgroup of Bir.X/ is abelian and generated by at most n elements (see
[83]). Recently this result was essentially improved by Jinsong Xu [104]; he showed
that L.n/ D nC 1. The proof is based on a result by O. Haution [47]. Thus we have
the following theorem.

Theorem 5.5. Let X be a rationally connected variety of dimension n and let G �

Bir.X/ be a finite p-subgroup. If p > nC 1, then G is abelian and is generated by
at most n elements.

The results of Theorems 5.3 and 5.5 were applied in the proof of Jordan property
of local fundamental groups of log terminal singularities [20, 71].

Varieties over non-closed fields

Theorem 5.6 ([13, 82]). Let X be a variety over a field k of characteristic 0, which
is finitely generated over Q. Then the group Bir.X/ is bfs.

Similar to Theorem 5.3, the proof of this result is based on the BAB conjecture
(Theorem 5.4).

In the case X D P 2, an explicit bound was obtained in [94] (see also [41]) in
terms of cyclotomic invariants of the field k. Theorem 5.6 can be reformulated in an
algebraic form, which gives the positive answer to a question of J.-P. Serre [96].

Theorem 5.6a. Let K be a finitely generated field over Q. Then the group Aut.K/ is
bfs.

Jordan constants. Define the Jordan constant of a group � as the number j.�/ that
appears in the definition of Jordan property. The weak Jordan constant Nj.�/ of � is
the minimal j such that for any finite subgroup G � � , there exists an abelian (not
necessarily normal) subgroup A � G such that ŒG W A� � j . Easy group-theoretic
arguments show that

Nj.�/ � j.�/ � Nj.�/2:
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The exact value of the Jordan constant is known only for the Cremona group of rank
two: j.Cr2.k// D 7200 (see [105]). On the other hand, weak Jordan constants are
easier to compute. It was proved in [84] that

Nj.Cr2/ D 288; Nj.Cr3/ D 10368:

Moreover, the inequality Nj.Bir.X//� 10368 holds for any rationally connected three-
fold X .

Jordan property of arbitrary varieties. It turns out that the group of birational
transformations of an algebraic variety is not always Jordan. The first example was
discovered by Yu. Zarhin.

Example ([106]). Let C be an elliptic curve and let X D C � P 1. Then the group
Bir.X/ is not Jordan.

On the other hand, the exceptions as above are very rare.

Theorem 5.7 (V. L. Popov [75]). Let X be an algebraic surface. The group Bir.X/
is not Jordan if and only if X is birationally equivalent to P 1 � C , where C is an
elliptic curve.

The proof of this theorem given in [75] essentially uses a result of I. Dolgachev,
which in turn is based on the classification of algebraic surfaces. Later, Theorem 5.7
was generalized to higher dimensions with classification independent proofs.

Theorem 5.8 ([82]). Let X be an algebraic variety. Then the following assertions
hold.

(i) If X either is non-uniruled or has irregularity q.X/ D 0, then Bir.X/ is
Jordan.

(ii) If X is non-uniruled and q.X/ D 0, then Bir.X/ is bfs.

Similar to Theorems 5.6 and 5.3, the proof of Theorem 5.8(i) is based on the
boundedness of terminal Fano varieties (Theorem 5.4).

In dimension three, there is the following much more precise result.

Theorem 5.9 ([85]). Let X be a three-dimensional algebraic variety. Then Bir.X/ is
not Jordan if and only if either

(i) X is birationally equivalent to C � P 2, where C is an elliptic curve, or

(ii) X is birationally equivalent to S � P 1, where S is one of the following:

� a surface of Kodaira dimension ~.S/ D 1 such that the Jacobian fibra-
tion of the pluricanonical map �WS ! B is locally trivial;

� S is either an abelian or bielliptic surface (and ~.S/ D 0).
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Below we explain the main idea of the proof of the necessity. So we assume that
Bir.X/ is not Jordan. By Theorems 5.3 and 5.8, the variety X is uniruled, but it is not
rationally connected. Hence there exists a map X Ü Z with rationally connected
fibers (so-called maximal rationally connected fibration) such that Z is not uniruled
and dim.Z/ D 1 or 2 (see [56]). We have a natural exact sequence

1! Bir.X�/! Bir.X/! Bir.Z/;

where X� is the generic scheme-theoretic fiber. Since X� is rationally connected and
Z is not uniruled, the groups Bir.X�/ and Bir.Z/ must be Jordan. Then group-
theoretic arguments show that both groups Bir.X�/ and Bir.Z/ are not bfs (see,
e.g., [82, Lemma 2.8]). In the case where Z is a curve, this implies that Z is elliptic,
and applying the following fact with K D k.Z/ and S WD X� , we obtain that X is
birationally equivalent to Z � P 2.

Proposition 5.10 ([85]). Let K be a field containing all roots of 1 and let S be a
surface over K such that S is not K-rational, S is NK-rational, and S.K/ ¤ ¿. Then
the group Bir.S/ is bfs.

Note that the condition of the existence of a K-point on S in the above statement
is important. The groups of (birational) automorphisms of geometrically rational sur-
faces without rational points were studied in the series of papers [100–102].

Now assume thatZ is a surface. According to the main result of [7], the threefold
X is birationally equivalent to Z � P 1. By Theorem 5.8 we have q.Z/ > 0. Thus in
the case ~.Z/D 0, the surface Z must be either abelian or bielliptic. Since the group
Bir.Z/ is not finite in our case, Z cannot be a surface of general type. Consider the
case ~.Z/ D 1. Then the pluricanonical map � W Z ! B is a Bir.Z/-equivariant
elliptic fibration. Let

Jac.�/ W E ! B

be the corresponding Jacobian fibration. The automorphism group Aut.Z�/ of the
generic fiber Z� over B is embedded to Bir.Z/ as a normal subgroup. Analyzing
singular fibers, one can conclude that Aut.Z�/ is of finite index in Bir.Z/. In turn,
Aut.Z�/ has a subgroup Aut0.Z�/ of index at most 6 isomorphic to the group of
k.B/-points of E� . Assume that the fibration Jac.�/ is not locally trivial. Then by
the functional version of Mordell–Weil theorem, known as Lang–Néron theorem (see,
e.g., [32]), the group of k.B/-points of E� is finitely generated, and in particular, the
torsion subgroup of the group of points of E� is finite. This implies that Aut0.Z�/ is
finite.
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6. Invariants and rigidity

The most important part of the classification of finite subgroups in Bir.X/ is to dis-
tinguish conjugacy classes.

Problem 6.1. Let G;G0 � Bir.X/ be finite subgroups such that G ' G0. How can
one conclude that G and G0 are not conjugate?

This is equivalent to the following.

Problem 6.1a. Let X and X 0 be G-varieties. How can one conclude that X and X 0

are not G-birational?

Below we describe a few approaches to solve the above problems. Note, however,
that there are no universal methods.

Fixed point locus. LetX be a smooth projectiveG-variety. By Fix.X;G/, we denote
the set of G-fixed points. It is not difficult to show (see [87]) that Fix.X; G/ has at
most one codimension one component that is not uniruled. Denote this component by
Fnu.X; G/. This is a natural birational invariant in the category of smooth projective
G-varieties.

Proposition 6.2 ([87]). Let X and X 0 be smooth projective G-varieties. If X and X 0

are G-birational, then Fnu.X; G0/ and Fnu.X 0; G0/ are birational for any subgroup
G0 � G.

If G0 � G is a normal subgroup, then the set Fnu.X;G0/ (if it is not empty) has
a structure of .G=G0/-variety. Clearly, the birational type of this .G=G0/-variety is
also a birational invariant (cf. [16]).

Example. According to Theorem 3.1 for subgroups G � Cr2.k/ of order 2, we have
one of the following possibilities:

Involution � 2 G Fnu.X;G/

1o Linear on P 2 ¿
2o de Jonquières of genus g � 1 Hyperelliptic curve of genus g

3o Geiser Non-hyperelliptic curve of genus 3
4o Bertini Special non-hyperelliptic curve of genus 4

Thus the curve Fnu.X;G/ distinguishes conjugacy classes in this case. The same
assertion is true for subgroups of prime order [36], but it fails in general [15].
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Cohomological invariants. It is not difficult to see that for a smooth projective G-
variety X , the cohomology group

H 1
�
G; Pic.X/

�
is a G-birational invariant (see [19]). More generally, we say that G-varieties X and
X 0 are stably G-birationally equivalent if for some n and m the products X � P n

and X 0 � P m are G-birationally equivalent, where the action of G on P n and P m is
supposed to be trivial. Then we have the following theorem.

Theorem 6.3 ([19]). Let X and X 0 be smooth projective G-varieties. If X and X 0

are stably G-birationally equivalent, then

H 1
�
G;Pic.X/

�
' H 1

�
G; Pic.X 0/

�
:

Surprisingly, in some cases, the invariant H 1.G; Pic.X// can be computed in
terms of G-fixed locus.

Theorem 6.4 ([19]). LetG be a cyclic group of prime order p and letX be a smooth
projective rational G-surface. Assume that Fnu.X;G/ is a curve of genus g. Then

H 1
�
G;Pic.X/

�
' .Z=pZ/2g :

This theorem was slightly generalized with a more conceptual proof in [97]. An-
other cohomological invariant which is called Amitsur group was introduced in [17].

As a consequence of Theorem 6.4, one can see that involutions from different
families in Theorem 3.1 are not stably conjugate in Cr2.k/. Note, however, that
H 1.G; Pic.X// is a discrete invariant. For example, stable conjugacy of involutions
whose curves Fnu.X;G/ are non-isomorphic but have the same genus is not known.

A natural question that arises here is to find examples of subgroups in Crn.k/
that are stably conjugate but not conjugate. This question is similar to the birational
Zariski problem [11].

Example. Let G D S3 � �2. There are two embeddings of this group into the Cre-
mona group Cr2.k/ induced by the following actions:

(i) action on P 2 D ¹x1 C x2 C x3 D 0º � P 3 by permutation and reversing
signs;

(ii) action on the sextic del Pezzo surface ¹y1y2y3 D y0
1y

0
2y

0
3º �P 1 �P 1 �P 1

by permutation and taking inverses.

It was shown in [65] that these two subgroups in Cr2.k/ are stably conjugate; in fact,
they are conjugate in Cr4.k/. On the other hand, they are not conjugate [51].

Here is another example of this kind, which was pointed out to us by Yuri
Tschinkel.
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Example ([92]). Let V andW be faithful linear representations ofG with dim.V /D
dim.W /D n. Assume that the images ofG in GL.V / and GL.W / do not contain non-
identity scalar matrices. Then by a variant of the no-name lemma [39], we have the
following G-birational equivalences of G-varieties:

P .V / � knC1
�
bir
V �W �

bir
P .W / � knC1;

where knC1 is viewed as the trivial representation. Hence G-varieties V and W are
stably G-birationally equivalent. On the other hand, it may happen that they are not
G-birationally equivalent.

For example, Reichstein and Youssin [92] showed that the determinant of the
action in the tangent space at a fixed point of a finite abelian group, up to sign, is a
birational invariant of the action. This allowed them to produce nonbirational linear
actions, e.g., of groups �pn on P n, with p � 5. Many new examples of nonbirational
linear actions were given in [60, Section 10-11]; these are based on new invariants
introduced in [61] (see also [46,59]). These invariants take into account more refined
information about the action on subvarieties with nontrivial abelian stabilizers.

A prime number p is said to be a torsion prime for the group Bir.X/ if there is a
finite abelian p-subgroupG � Bir.X/ not contained in any algebraic torus of Bir.X/
[76]. Note that if a group G is contained in an algebraic torus T � Bir.X/, then for
any smooth projective birational model Y of X on which T acts biregularly, we have
H 1.G; Pic.Y // D 0. Then by Theorem 6.3, the inequality H 1.G; Pic.Y // ¤ 0 for
a finite p-subgroup G � Aut.Y / implies that a prime number p is a torsion prime
for Bir.Y / and for Bir.Y � P n/ for any n. Using Theorem 6.4 and the classification
[36], one can immediately see that the set of all torsion primes for Cr2.k/ is equal to
¹2;3;5º, and the numbers 2, 3, and 5 are torsion primes for Crn.k/ for any n� 2. This
fact was proved in [76] by using another argument. In the case n � 3, the collection
of all torsion primes for Crn.k/ is unknown.

Maximal singularities method. The maximal singularities method is the most pow-
erful tool to study birational maps between Mfs’s. It goes back to the works of G. Fano
and even earlier works of other Italian geometers. However, the first application of
this technique with rigorous proofs appeared much later in the breakthrough paper of
Manin and Iskovskikh [49]. For an introduction to the “standard,” non-equivariant
maximal singularities method, we refer to the book [90]. Below we outline very
briefly an equivariant version of the method.

Definition ([40, Definition 7.10], [29, Definition 3.1.1]). A GQ-Fano variety X is
said to be G-birationally rigid if given birational G-map ˆ W X Ü X] to the total
space of another G-Mfs X]=Z], there exists a birational G-selfmap  W X Ü X
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such that the composition ˆ ı  W X Ü X] is an isomorphism (in particular, Z] is
a point; i.e., X] is also a GQ-Fano variety).

A GQ-Fano variety X is said to be G-birationally superrigid if any birational
G-mapˆ W X Ü X] to the total space of another G-Mfs X]=Z] is an isomorphism.

The maximal singularities method allows to check G-birational (super)rigidity
using only internal geometry of the original variety, without considering all other
G-Mfs’s. We need the following technical definition which has become common
nowadays.

Definition. Let X be a normal variety, let M be a linear system of Weil divisors on
X without fixed components, and let � be a rational number. We say that the pair
.X; �M/ is canonical if some multiple m.KX C �M/ is Cartier, where M 2 M, and
for any birational morphism f W Y ! X , one can write

m.KY C �MY / D f �m.KX C �M/C
X

aiEi ;

where MY is the birational transform of M, Ei are prime exceptional divisors, and
ai � 0 for all i .

In the surface case, the canonical property is very easy to check: a pair .X; �M/
is canonical if and only if

multP .M/ � 1=�

for any point P 2 X .
Now, suppose that a GQ-Fano variety X is not G-birationally superrigid. Then

the Noether–Fano inequality [34, Theorem 4.2] implies the existence of aG-invariant
linear system M on X without fixed components such that the pair .X; �M/ is not
canonical, where � 2 Q is taken so that KX C �M is numerically trivial. Moreover,
any M as above defines a birational G-map X Ü X] to the total space of a G-Mfs
X]=Z]. To show the existence or non-existence of such M, one needs to analyze the
geometry of the variety X carefully.

Example. Let X be a del Pezzo surface of degree 1. Assume that X is a G-del
Pezzo with respect to some group G � Aut.X/. This means that G acts on X so that
rk Pic.X/G D 1. For example, this holds for any subgroup G � Aut.X/ containing
the Bertini involution. Let M be a G-invariant linear subsystem without fixed com-
ponents. Since Pic.X/G D Z �KX , we have M � j � nKX j for some n > 0. Suppose
that the pair .X; 1

n
M/ is not canonical. Then multP .M/ > n. Since M has no fixed

components,
n2

D .�nKX /
2
D M2

�
�

multP .M/
�2
> n2:

The contradiction shows that X is G-birationally superrigid.



Finite groups of birational transformations 429

Similar arguments show that any G-del Pezzo surface X of degree � 3 is G-
birationally rigid. Moreover, it is G-birationally superrigid if and only if G has no
orbits of length � K2

X � 2 on X . In particular, PSL2.F7/-del Pezzo surface from
Theorem 3.2 is G-birationally superrigid.

Example. All the GQ-Fano threefolds from Theorem 4.2 are G-birationally super-
rigid [17,28,30]. In particular, different embeddings of PSp4.F3/ and PSL2.F11/ are
not conjugate in Cr3.k/.

There is another relevant and very important notion called G-solidity [25]. For
Fano varieties without group action, this notion has been introduced earlier by
Shokurov [98] (who called solid Fano varieties primitive) and by Ahmadinezhad and
Okada [2].

Definition ([25]). AG-Fano varietyX isG-solid ifX is notG-birational to aG-Mfs
with a positive dimensional base.

For example, a G-del Pezzo surface X of degree 4 is G-solid if and only if G has
no fixed points on X [40, §8].

A part of the maximal singularities method is the so-called Sarkisov program
[34, 45]. It allows us to decompose any birational map between Mfs’s into a compo-
sition of elementary ones. Refer to [50] for an explicit description of this program in
dimension two and to [31] for examples and applications.

7. Application: Essential dimension

The notion of the essential dimension of a finite group G, denoted by ed.G/, was
introduced by Buhler and Reichstein [21]. Informally, ed.G/ is the minimal number
of algebraic parameters needed to describe a faithful representation. More precisely,
given a faithful linear representation V of G viewed as a G-variety, the essential
dimension ed.G; V / is the minimal value of dim.X/, where X is taken from the set
of all G-varieties admitting dominant rational G-equivariant map V Ü X . It can be
shown that ed.G; V / does not depend on V , so we can omit V in the notation. It is
easy to see that ed.G/ D 1 if and only if G is cyclic or dihedral of order 2n where n
is odd. Finite groups of essential dimension � 2 have been classified [43].

The essential dimension of symmetric groups Sn is important because it is equal
to the minimal number of parameters needed to describe the general polynomial of
degree n modulo Tschirnhaus transformations [21]. The values of ed.Sn/, as well as
of ed.An/, are known for n � 7, and bounds exist for any n as follows.
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Theorem 7.1 ([21, 42]). If n � 6, then

n � 3 � ed.Sn/ � bn=2c;

ed.Sn/ � ed.An/ �

´
n
2

if n is even,

2bnC2
4

c if n is odd.

In many cases, the computations of ed.G/ use the machinery of G-varieties. As
an example, following Serre [95], we show that ed.A6/ D 3. Let V be the standard
six-dimensional permutation representation of A6. There exists an equivariant open
embedding V � .P 1/6. On the other hand, the group PSL2.k/ also acts on .P 1/6 so
that the two actions commute. Hence we have a dominant rational A6-map

V ,! .P 1/6 ! .P 1/6=PSL2.k/;

where .P 1/6=PSL2.k/ is a birational quotient. Since dim..P 1/6=PSL2.k// D 3, we
have ed.A6/ � 3. Thus it is sufficient to show that ed.A6/ is not equal to 2. If so,
there exists a dominant rational G-map V Ü X to a surface which must be rational.
According to Theorem 3.2, we may assume that X D P 2. But in this case, a Sylow
3-subgroup S � A6 is abelian and acts without fixed points on P 2. On the other hand,
S has a fixed point on V , and the same should be true for the image of any rational
S -map to a projective variety [58]. Therefore, ed.A6/ D 3 as claimed.

Using similar arguments and the classification of embeddings of A7 to groups of
birational transformations of rationally connected threefolds (Theorem 4.2), A. Dun-
can proved that ed.A7/ D ed.S7/ D 4 [42].

Denote by rdim.G/ (resp. cdim.G/) the minimal dimension of faithful represen-
tations of G (resp. the smallest n such that G is embeddable to Crn.k/). It immedi-
ately follows from the definition that

ed.G/ � rdim.G/:

If G is a p-group, then the equality holds ed.G/ D rdim.G/ [54]. In general, this
equality fails, but there is a bound in terms of Jordan constants.

Theorem 7.2 ([91]). rdim.G/ � ed.G/ � j.ed.G//, where j.n/ is the Jordan constant.

I. Dolgachev conjectured that ed.G/� cdim.G/ (see [44]). It would be interesting
to test this conjecture for the group G D PSL2.F11/. In fact, we have

3 � ed
�

PSL2.F11/
�
� 4

by Theorem 3.2 and because the group PSL2.F11/ is simple and has a faithful five-
dimensional representation. Assuming Dolgachev’s conjecture, by Theorem 4.2 we
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would have ed.PSL2.F11// D 4. But this is unknown. See [44] for interesting dis-
cussions. The computation of the essential dimension of PSL2.F11/ should complete
Beauville’s classification of finite simple groups of essential dimension � 3 [10].
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