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Convex bodies all whose sections (projections) are equal

Luis Montejano

Abstract. This work deals with the following question: if all hyperplane sections through
the origin (orthogonal projections) of a convex body are “equal”, is the convex body “equal”
to the ball? where the notion of “equal” changes throughout the paper. Topology, Lie groups,
Fourier analysis, and convex geometry interrelates in the solution and understanding of these
problems.

1. Introduction

The purpose of this paper is to answer the following question:

If all hyperplane sections through the origin of a convex body are “equal”, is the
convex body “equal” to the ball?

The meaning of the notion “equal” will change in the course of this paper.
Similarly, we are interested in the following problem:

If all orthogonal projections of a convex body onto hyperplanes are “equal”, is
the convex body “equal” to the ball?

We believe that topology and convex geometry are deeply and beautifully inter-
related in the solution and understanding of these problems.

A good reference for these problems and related problems is the book “Geometric
Tomography” by Richard Gardner [11]. In particular, see Problems 3.3 and 7.4.

During this paper, unless otherwise stated, B is always an .nC 1/-dimensional
convex body with the origin as an interior point and n � 2.

2. Sections with the same area

The first meaning of “equal” is same “area”.
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If all hyperplane sections through the origin of a convex body B have equal
n-dimensional volume, does B have the .n C 1/-dimensional volume of the corre-
sponding ball?

The answer to this question is by far a resounding no. There exist counterex-
amples. However, if we add the symmetry hypothesis to the question, the answer
becomes yes. More precisely, the following theorem holds.

Theorem 2.1. If all hyperplane sections through the origin of a centrally symmetric
convex body B have equal n-dimensional volume, then the convex body B is a ball
centered at the origin.

Proof. The proof of this theorem uses analysis. We give here a sketch of the proof
using harmonic integration. See Falconer’s paper [10] or Schneider’s book [26].

First of all, let f W Sn ! R be a continuous function such thatZ
hx;yiD0

f .x/ dx D 0; for every y 2 Sn;

where integration refers to the usual measure in the .n� 1/-sphere. Then the classical
theorem of Funk-Hecke on spherical harmonics (see [12]) implies that f is an odd
function; that is, �f .x/ D f .�x/, for almost every x 2 Sn.

Let nowB1 andB2 be two .nC 1/-dimensional convex bodies that are symmetric
with center at the origin and assume that the corresponding parallel n-dimensional
areas of their sections through the origin are equal. We shall show that B1 D B2.
For this purpose, let f1; f2WSn ! R be the radial functions of B1 and B2. Note that
because B1 and B2 are centrally symmetric, f1 and f2 are even functions. Moreover,
by hypothesis

1

n

Z
hx;yiD0

f1.x/
n dx D

1

n

Z
hx;yiD0

f2.x/
n dx;

for every y 2 Sn�1.
By our first argument, f n

1 � f n
2 is an odd function, but since f1 and f2 are even

functions, f n
1 D f n

2 . Moreover, since f1 � 0 and f2 � 0, we obtain that f1 D f2 and
hence that B1 D B2.

Suppose now that B is a centrally symmetric convex body with the property that
all its hyperplane sections through the origin have equal n-dimensional volume, and
letG 2 SOnC1 be a linear isometry. Then, by the above B DGB , for everyG 2 SOn,
and consequently B is a ball centered at the origin.

3. Congruent and similar sections

The second meaning of “equal” is congruence.
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Theorem 3.1 (Schneider’s theorem). If all hyperplane sections through the origin of
a convex body B are congruent, then the convex body B is an .nC 1/-ball centered
at the origin.

This time, the hypothesis of symmetry is not necessary. The theorem was proved
by Süss [28] for n D 2. In 1970, using topological ideas, Mani [16] proved it for
n D even and, in 1979, Burton [7] proved it for n D 3. Finally, Rolf Schneider [25]
in 1980, using analysis, proved it in general. In 1990, using the topological ideas of
Hadwiger and Gromov, Montejano [20] proved the following result which, together
with the false center theorem, allows an alternative proof of Schneider’s theorem to
be given.

Theorem 3.2. If all hyperplane sections through the origin of a convex body B are
affinely equivalent, then every hyperplane section of B through the origin is centrally
symmetric.

The proof of Theorem 3.2 uses topological ideas. Indeed, it uses the notion of
field of convex bodies introduced by Hadwiger and developed by Mani in [16].

3.1. Fields of convex bodies

Let Kn be the space of all compact convex sets in Rn with the Hausdorff metric
topology.

A field of convex bodies tangent to Sn is a continuous function

� W Sn
! KnC1;

such that �.u/ � uC u? � RnC1, for every u 2 Sn, where u? denotes the subspace
of RnC1 orthogonal to u.

If, in addition, �.u/ is congruent (affinely equivalent) to the convex bodyK �Rn,
for every u 2 Sn, then we obtain a field of convex bodies tangent to Sn and congruent
(affinely equivalent) to K. If, in addition, �.u/ � u D �.�u/ C u, then we have a
complete turning of K in RnC1.

If all hyperplane sections through the origin of a convex body B are congruent
(affinely equivalent), then there is a field of convex bodies tangent to Sn and congru-
ent (affinely equivalent) to Rn \ B:

� W Sn
! KnC1;

defined as follows:

�.u/ D uC .u? \ B/; for every u 2 Sn:

Obviously, this field is a complete turning because �.u/� u D �.�u/C u, for every
u 2 Sn.
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Note that given a field of convex bodies � W Sn ! KnC1 tangent to Sn and con-
gruent toK, we may always assume without loss of generality that, for every u 2 Sn,
the circumcenter of �.u/ is the point u 2 .uC u?/.

The link between Hadwiger’s notion of field of convex bodies and the topology of
Lie groups traces back to the work of Steenrod [27] and Gromov [13]. Every vector
bundle � WE! Sn with base the sphere Sn, fiber Rm, and structure group GL.m;R/,
can be obtained from Bn

C � Rm disjoint union Bn
� � Rm by gluing the first copy

Sn�1 � Rm � Bn
C � Rm with the second copy Sn�1 � Rm � Bn

� � Rm via a fiber
preserving homeomorphism

Sn�1
� Rm

! Sn�1
� Rm

that glue every fiber ¹xº�Rm with the fiber ¹xº�Rm using an element gx2GL.m;R/,
where Bn

C and Bn
� are respectively, the north and south closed hemisphere of Sn. The

map g W Sn�1 ! GL.m;R/, given by g.x/ D gx , is called the characteristic map of
the vector bundle � . It is not difficult to see that two vector bundles are equivalent (as
fiber bundles) if and only if their corresponding characteristic maps are homotopic.

The existence of a field of convex bodies tangent to Sn and congruent to K
implies that the tangent bundle TSn can be obtained gluing the copies Bn

C � Rm

and Bn
� � Rm using only isometries that fix K. In other words, the following holds:

There exists a field of convex bodies tangent to Sn and congruent toK if and only
if the characteristic map

Sn�1 SOn

GK

f

�n

i

factorizes through
GK D

®
g 2 SOn j g.K/ D K

¯
:

If this is so, then we say that the structure group of TSn reduces to GK .

The main idea in the proof of Theorem 3.2 is that a complete turning ofK is only
possible if K has a center of symmetry (indeed, if n D 3; 7, the fact that the tangent
bundle of S3 and S7 is parallelizable implies that a complete turning ofK is possible
if and only if K has a center of symmetry).

Since vector bundles over contractible spaces are trivial, we are going to take
advantage of the existence of the field of convex bodies � W Sn ! KnC1, tangent to
the sphere Sn and congruent to K, to construct a continuous map

ˆ W Bn
C ! SOn;

such that ˆ.x/.K/ D �.x/, for every x 2 Bn
C.
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Suppose that K is not symmetric. We may assume without generality that there
is a point x0 in the boundary of K such that �x0 … K and hence for every g 2 SOn,
g.x0/ 6D �x0.

Note that ®
ˆ.x/.x0/

¯
is a field of vectors tangent to Bn

C. Furthermore, for every u 2 Sn�1, we have that
ˆ.u/.x0/ 6D �ˆ.�u/.x0/. We are going to add a small annulus toBn

C at the boundary
to obtain a larger n-dimensional ball zBn and we are going to take advantage of this
annulus to define on it a tangent vector field that coincides with the one we have in
Bn and with an additional property. The idea is that for every point u 2 Sn�1, we will
use the annulus to rotate from the vector ˆ.u/.x0/ towards the vector ˆ.�u/.x0/.
Since ˆ.u/.x0/ 6D �ˆ.�u/.x0/, we can do this unambiguously in such a way that
at the end on the border of zBn, the tangent vector at the point u 2 @ zBn coincides
with the tangent vector at the point �u 2 @ zBn. Using this procedure, we obtain a
complete turning of a nonzero vector field in the sphere Sn, which is a contradiction
to the well-known result that there is not a section to the canonical vector bundle of
n-subspaces in RnC1; see [27].

Suppose thatK1,K2 are convex bodies who have as ellipsoid of minimal volume
containing them the unit ball. It is easy to see that ifK1 andK2 are affinely equivalent,
then they are actually congruent. Suppose now that K � Rn is a convex body with
the unit ball as the ellipsoid of minimal volume containing it, and let � W Sn ! KnC1

be a field of convex bodies tangent to Sn and affinely equivalent to the convex body
K � Rn, then there is a field of convex bodies tangent to Sn congruent to K. For
every x 2 Sn, let Ex � x C x? be the ellipsoid of minimal volume containing �.x/
and let hx be the affine map that translates and dilates the principal axes of Ex to
obtain the unit ball. It is easy to observe that the affine map hx varies continuously
with x. Hence �0 W Sn ! KnC1, given by �0.x/ D hx.�.x//, is a field of convex
bodies tangent to Sn congruent to K. By all the above, if � W Sn ! KnC1 is a field of
convex bodies tangent to Sn and affinely equivalent, then, for every x 2 Sn, �.x/ is
symmetric.

3.2. The proof of Schneider’s theorem and similar sections

Summarizing, Theorem 3.2 is true because a complete turning of K is only possible
if K has a center of symmetry. This result, in combination with Larman’s beautiful
false center theorem [14], gives rise to a topological proof of Schneider’s theorem.

Theorem 3.3 (Larman’s false center theorem). If all hyperplane sections through the
origin of a convex body B have a center of symmetry, then either B is an ellipsoid or
B is symmetric with respect to the origin.
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The proof of Schneider’s theorem (Theorem 3.1) goes as follows. If all hyperplane
sections through the origin of B are congruent, by Theorem 3.2, then every hyper-
plane section through the origin is centrally symmetric. By Larman’s false center
theorem (Theorem 3.3), eitherB is symmetric with center the origin and Theorem 2.1
implies that B is a ball centered at the origin, or B is an ellipsoid in which case it is
easy to see directly that B is again a ball centered at the origin.

The third meaning of equal is similarity. If B is an .nC 1/-ball with the origin as
an interior point but not necessarily centered at the origin, then all hyperplane sections
of B through the origin are n-balls and hence all are similar. Our next theorem states
that this is always the case.

Theorem 3.4 (Montejano). If all hyperplane sections through the origin of a convex
body B are similar, then the convex body B is an n-ball not necessarily centered at
the origin.

A sketch of the proof is the following. Since similarities are affine equivalences,
by Theorem 3.2, all hyperplane sections of B through the origin have a center of
symmetry. By Larman’s false center theorem (Theorem 3.3), either the origin is the
center of symmetry of B or B is an ellipsoid. Using a topological argument, it is pos-
sible to prove that, in the first case, all hyperplane sections of B through the origin
are not only similar but actually congruent and hence, by Schneider’s theorem (The-
orem 3.1), B is a ball or, in the second case, if B is an ellipsoid, it is easy to directly
verify that our hypothesis implies that B is actually a ball.

4. Affinely equivalent sections and the Banach conjecture

The fourth meaning of equal is affine equivalence.

Conjecture 4.1. If all hyperplane sections through the origin of a convex body B are
affinely equivalent, then the convex body B is an ellipsoid.

It turns out that Conjecture 4.1 is equivalent to the Banach conjecture over the
reals.

4.1. The Banach conjecture

In 1932, in his book [3], Stephan Banach asked the following question:

Let V be a Banach space, real or complex, finite or infinite dimensional, all of
whose n-dimensional subspaces, for some fixed integer n, 2 � n < dim.V /, are iso-
metric to each other. Is it true that V is a Hilbert space?
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This conjecture was proved first for n D 2 and real V in 1935 by Auerbach,
Mazur, and Ulam [2] and in 1959 for all n � 2 and infinite dimensional real V
by A. Dvoretzky [9]. In 1967, M. Gromov [13] proved the conjecture for even n
and all V , real or complex, for odd n and real V with dim.V / � n C 2, and for
odd n and complex V with dim.V / � 2n. V. Milman [18] extended Dvoretzky’s
theorem to the complex case, in particular, reproving Banach’s conjecture for infi-
nite dimensional complex space V . Recently, in 2021, Bor, Hernández-Lamoneda,
Jiménez-Desantiago, and Montejano [4] proved the Banach conjecture if V is real
and n � 1 mod 4, with the possible exception of n D 133, and a little later, Bracho
and Montejano [6] proved the Banach conjecture if V is complex and n � 1 mod 4.
A thorough account of the history of this conjecture is found in the notes on Section 9
in [17]. We also recommend [24].

Our next goal is to prove that the Banach conjecture over the reals is equivalent
to Conjecture 4.1. First note that Banach’s conjecture is a codimension one problem:
since every Banach space, all of whose subspaces of a fixed dimension n � 2 are
Hilbert spaces, is itself a Hilbert space, which easily follows from the elementary
characterization of a norm coming from an inner product via the “parallelogram law”,
an affirmative answer for n in codimension one implies immediately an affirmative
answer for n in all codimensions.

Note next that two Banach spaces V1 and V2 are isometric if there is a linear
isomorphism f W V1 ! V2 that preserves the norm. That is, two Banach spaces V1

and V2 are isometric if their unit balls are linearly equivalent. To conclude, note that
a finite dimensional Banach space V is a Hilbert space if and only if V is isometric
to the Euclidean space, that is, if and only if its unit ball is an ellipsoid.

Finally, in the solution of Conjecture 4.1, we may always assume that not only
B but all hyperplane sections of B through the origin have as a center of symmetry
the origin. This is so because by Theorem 3.2 every section of B has a center of
symmetry and therefore by Larman’s false center theorem (Theorem 3.3) either B is
an ellipsoid or the origin is the center of B .

4.2. Topology of Lie groups

From now on, until the end of this section, suppose that B is a convex body with
the property that all its hyperplane sections through the origin are affinely equivalent.
Our first interest is to answer the following question:

What can we say about the sections of B?

For example, due to Theorem 3.2, we know that all these sections have a center
of symmetry, but do these sections share some other property?

Choose a convex set K � Rn affinely equivalent to all hyperplane sections of B
through the origin with the additional property that the ellipsoid of minimal volume
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containing K is the unit n-ball. Define G as the group of symmetries of K, that is, G
is the subgroup of linear isomorphism in GL.n;R/ keeping fixedK and with positive
determinant. Note that every element of G fixes also the unit n-ball that therefore
G � SOn. As we shall see, G is a compact Lie group relevant in the solution of our
previous question.

As in the sketch of the proof of Theorem 3.2, in Section 3, there is a field of convex
bodies tangent to Sn and affinely equivalent to K. This implies that the structure
group of the tangent bundle of the sphere Sn can be reduced to G or, in other words,
that the characteristic map of TSn

�n W Sn�1
! SOn

can be factorized through G. See Steenrod’s book [27] or Mani’s paper [16].
If n is even and G is not transitive, the structure group of the tangent bundle of

the sphere Sn cannot be reduced to G. This is so because if there is a map

f W Sn�1
! SOn

homotopic to �n, such that f .Sn�1/�G and e W SOn ! Sn is the evaluation map (at
any point), then ef is homotopic to e�n. The non-transitivity of G implies that there
are x;y 2 Sn such that g.x/ 6D y, for every g 2 SOn. If e W SOn ! Sn is the evaluation
at x, then the map e is not surjective and therefore ef is null homotopic. Thus, e�n

is null homotopic, which is a contradiction in even dimensions, where we can easily
calculate the even degree of e�n. Consequently, if n is even, a field of convex bodies
tangent to Sn affinely equivalent to K implies that G is transitive and consequently
that K is an n-ball. In contrast, for n D 3, there is a field of convex bodies tangent to
Sn and congruent toK, for every convex bodyK � Rn, because S3 is parallelizable.

Summarizing, if n is even, the answer to our question: what can we say about
the sections of B? is that all these sections are affinely equivalent to a ball and hence
all of them are ellipsoids. This immediately implies that B is an ellipsoid, solving
conjecture 1 when n is even and the Banach conjecture when n is even and V is a
Banach space over the reals.

The case nD odd is more complicated. First note that if nD 3; 7, this topological
technique does not give us information about the sections ofB , because S3 and S7 are
parallelizable. We shall prove next that if n � 1 mod 4, with the possible exception
of n D 133, a field of convex bodies tangent to Sn affinely equivalent to K implies
that K is an affine body of revolution.

Suppose that the characteristic map of the sphere �n factorizes through the max-
imal connected subgroup G � SOn, that is,

Sn�1
! G ,! SOn :
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We have two cases:

(1) G is an irreducible representation, that is, the action of G does not fix any
proper subspace, and

(2) the action of G fixes a proper subspace �k; 1 � k � n � 1.

In the first case, mathematicians have extensively studied irreducible representa-
tions, in particular, those for which the structural group of the space tangent to the
sphere can be reduced to them. In particular, Leonard [15] proved that if G � SOn

is a maximal connected irreducible representation and the characteristic map of the
sphere �n factorizes through G, then G is a simple group.

If this is so, we have several options:

� G is a classical group; SOk , SUk , Spk ,

� G is a spin group; Spink ,

� G is one of the exceptional Lie groups, G2, F4, E6, E7 or E8.

Furthermore, in 2006, Cadek and Crabb proved that under the same hypothesis
for G, if n � 8, then G is not isomorphic to SOk , SUm, Spm, with k � 4, m � 2.
If n � 1 mod 4, this rules out the classical groups, with the exception of n D 5. We
leave this exceptional case for the next section. Furthermore, it can be proved that
every irreducible representation of Spink , which does not factor through SOm, is even
dimensional. In our case, it is clear thatG does not factor through SOm, so if n is odd,
we can rule out the possibility of a spin group for G.

Suppose now that n � 1 mod 4. If this is the case, dim.G/ is not too small with
respect to n and hence G is not an exceptional Lie group, with the possible excep-
tion of the Lie group E7 � O133. This is so because it can be proved that in this
case, dim.G/ � 2n � 3 (see [8, Proposition 3.1]). Hence to rule out the exceptional
groups, one can simply check (e.g., in Wikipedia) the following table in which we
list the smallest irreducible representation for them, and the smallest irreducible rep-
resentation congruent to 1 mod 4 is highlighted in red, verifying that in all the cases,
with the exception of E7, dim.G/ � 2n � 4.

Group G2 F4 E6 E7 E8

dimG 14 52 78 133 248

Irreps 7 26 27 56 248

14 52 78 133 3875

27 273 351 912
:::

64
::: 2925

::: 1763125

77
:::

:::
:::

:::
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All the above implies that if G is irreducible and n � 1 mod 4, then G is E7 or
is conjugate to On. Consequently, in this last case, K must be a ball, all the sections
must be ellipsoids, and B must be an ellipsoid, as we wished.

The second case is when the action ofG fixes a proper subspace �k; 1�k�n�1.
If n D 4k C 1, the tangent space of the sphere TSn splits:

TSn
D e1

˚ �4k;

where e1 is a vector bundle of dimension 1 and �4k is unsplittable.
From here, we deduce that �k is either 1 or .n � 1/-dimensional, and G is a

subset of a conjugate copy of SOn�1. Furthermore, using an argument very similar to
the argument used in the proof that G D SOn, when n is even (or see the case nD 5),
it is possible to prove that G is actually a conjugate copy of SOn�1. This gives rise to
the case in which K is a body of revolution.

Summarizing, suppose that B is an .n C 1/-dimensional convex body with the
property that all its hyperplane sections through the origin are affinely equivalent,
n � 1 mod 4, n 6D 5; 133. Then, every hyperplane section of B through the origin is
an affine body of revolution.

4.3. The case n D 5

This case is an exceptional case in our proof of the Banach conjecture but it is also
interesting enough to illustrate the true complexity of the conjecture. This section will
be dedicated to its complete proof.

LetB ,K, andG be defined as in the previous section but this timeB is a centrally
symmetric convex body in R6, and G D ¹g 2 SO5 j g.K/ D Kº is a compact Lie
subgroup of SO5. Furthermore, we know that the characteristic map of the tangent
space of S5

S4 SO5

G

f

�5

i

factorizes through G.

Suppose first that G leaves invariant a proper subspace of R5. We shall prove
that in this case K is a body of revolution.

By hypothesis, there is a k-dimensional subspace ƒ invariant under G. This
immediately implies that there is a continuous field of k-planes in S5. By [27, The-
orem 27.18], we know that S5 admits a continuous field of k-planes if and only if
k D 1 or k D 4. So, assume without loss of generality that k D 1, and therefore that
ƒ is a line invariant under G. Suppose without loss of generality that ƒ is the line
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through the origin orthogonal to R4, in such a way that G � SO4. We will prove that
G acts transitively on R4, thus proving that K is a body of revolution.

Given any 5-dimensional plane through the origin in R6, it is easy to prove that
there is a unique complex plane through the origin contained in it. It is for this reason
that there is a field of complex planes tangent to S5. This implies that the structural
group of TS5 can be reduced to SU2. Thus, we may assume that �5 W S4 ! SU2 is
the characteristic map of TS5. If e W SO4 ! S3 is the evaluation, hence, e�5 W S4 !

S3 is not null homotopic. To see this, note that SU2 is homeomorphic to S3 and
the evaluation e W SU2 ! S3 is a homeomorphism. Therefore, if e�5 W S4 ! S3 is
homotopically trivial, then the same holds for �5 W S4 ! SU2, but this implies that
the characteristic map of TS5 is homotopic to a constant, and therefore that TS5 is
parallelizable which is a contradiction.

We know that the structural group of TS5 can be reduced to G. Therefore, the
characteristic map �5 W S4 ! SU2 is homotopic on SO4 to a map f W S4 ! G. This
implies that e�5; ef W S4 ! S3 are homotopic. If G does not act transitively on R4,
hence ef is null homotopic, but this is a contradiction to the fact that e�5 is not null
homotopic. Consequently,G acts transitively on R4 andK is a body of revolution, as
we wished.

Suppose now that G � SO5 does not leave invariant a proper subspace of R6.
That is, we must study the irreducible representations on R5.

Consider S the collection of 3� 3 real symmetric matrices with zero trace. Then,
S is a real vector space of dimension 5 with the following natural interior product:
given A;B 2 S ,

Aˇ B D tr.AB/:

The group G D SO3 defines the following representation: g.A/ D gAg�1 D

gAgt , for every g 2 G and A 2 S .
Clearly, G acts linearly on S and furthermore,

g.A/ˇ g.B/ D tr.gAg�1gBg�1/ D tr.gABg�1/ D Aˇ B:

It is well known that this is a faithful, irreducible, representation. That is, we may
think G is a subgroup of SO5 with the property that G does not leave invariant any
proper subspace. Moreover, it is well known that any other irreducible representation
on R5 factors through G.

The following lemma finally proves that if B is a 6-dimensional convex body with
the property that all its hyperplane sections through the origin are affinely equivalent,
then every hyperplane section of B through the origin is an affine body of revolution.

Lemma 4.2. Let � � SO5 be a subgroup isomorphic to SO3, Then, the structural
group of TS5 cannot be reduced to �.
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Proof. Suppose that there is f W S4 ! � such that i�f W S4 ! SO5 is homotopic to
the characteristic map �5 W S4 ! SO5 of TS5, where i� W �! SO5 is the inclusion.
Let � W S3 !� be the double covering map and let g W S3 !� be such that �gD f .

Let u W SU2 ! SO5 be the inclusion. Hence �3.SO5/ D Z (every compact, sim-
ple Lie group has �3 D Z) and u� W �3.SU2/ ! �3.SO5/ is an isomorphism. On
the other hand, at the level of homology, H3.SO5;Z2/ is a directed sum of Z2’s and
u� WH3.SU2;Z2/!H3.SO5;Z2/ is not zero. Let us consider Œi��� 2 �3.SO5/DZ.
Suppose that Œi��� D m 2 Z and let � W S3 ! SU2 such that the induced homomor-
phism in homotopy is ��.1/ D m 2 �3.SU2/ D Z. Consequently, u� W S3 ! SO5 is
homotopic to i�� W S3 ! SO5. In 3-dimensional homology, .iG�/�.1/ D 0 which
implies that .u�/�.1/ D 0 and therefore, since u� W H3.SU2;Z2/! H3.SO5;Z2/ is
not zero, that m is even.

Sincem is even, the map �g WS4 ! SU2 is null homotopic, because �� W�4.S3/!

�4.SU2/ is zero. This is a contradiction to the fact that S5 is not parallelizable.

The intuitive claim that

u� W H3.SU2;Z2/! H3.SO5;Z2/

is not zero, used in the above proof, is not so easy to prove. Indeed, to justify it, it is
necessary to use the Dynkin index.

4.4. Affine bodies of revolution

A convex body K � Rn is a body of revolution if it admits an axis of revolution;
i.e., a 1-dimensional line L such that each section of K by an affine hyperplane �
orthogonal to L is an .n � 1/-dimensional Euclidean ball in �, centered at � \ L

(possibly empty or just a point). If L is an axis of revolution of K, then L? is the
associated hyperplane of revolution. Clearly, a ball is a body of revolution and any
line through its center serves as an axis of revolution.

An axis of revolution of a plane convex figure is an axis of symmetry (or reflex-
ion). Of course, a convex figure may have two different axes of symmetry without
being a disk. In dimension n � 3, the situation is different.

Theorem 4.3. A convex body of revolution K � Rn, n � 3, with two different axes
of revolution must be a ball.

Proof. Consider GK D ¹g 2 SOn j g.K/D Kº the collection of orientation preserv-
ing isometries that fixK and suppose that L 6D L0 are two different axes of revolution
of K. Without loss of generality, we may assume that L is the 1-dimensional sub-
space orthogonal to Rn�1. Clearly, the collection of orientation preserving isometries
of Rn that fixL also fixK and is equal to SOn�1 � SOn. On the other hand, the group
of orientation preserving isometries of Rn that fixes L0 fixes also K and is equal to
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SO0.n� 1/, a conjugate subgroup of SOn�1 in SOn. Thus, our hypotheses imply that

SOn�1 ¨ GK � SOn;

but it is well known that SOn�1 is a maximal connected subgroup of SOn (see [23,
Lemma 4]). Therefore, GK D SOn and K must be a ball.

An affine body of revolution is a convex body affinely equivalent to a body of
revolution. The images, under an affine equivalence, of an axis of revolution and its
associated hyperplane of revolution of the body of revolution are an axis of revolution
and associated hyperplane of revolution of the affine body of revolution (not neces-
sarily perpendicular anymore). Clearly, an ellipsoid centered at the origin is an affine
body of revolution and any hyperplane through the origin serves as a hyperplane of
revolution.

As in the Euclidean case, a non-elliptical body of revolution admits a unique axis
of revolution and a unique hyperplane of revolution.

Corollary 4.4. An affine convex body of revolutionK � Rn, n� 3, with two different
hyperplanes of revolution must be an ellipsoid.

Proof. Let E be the ellipsoid of minimal volume containing K. By translation and
dilatation of the principal axes of this ellipsoid, we obtain an affine isomorphism f W

Rn ! Rn such that f .E/ is the unit ball of Rn. Then since every affine isomorphism
that fixes f .K/ also fixes f .E/, we have that f .K/ contains two different axes of
revolution. By Lemma 4.3, f .K/ is a ball and consequently K is an ellipsoid.

4.4.1. Sections of affine bodies of revolution. It is not difficult to see that every
section of a body of revolution is a body of revolution, that is why sections of affine
bodies of revolution are affine bodies of revolution. Is the converse true? As far as I
know, nobody knows the answer.

Conjecture 4.5. Suppose that B is an .nC 1/-dimensional convex body all whose
hyperplane sections through the origin are affine bodies of revolution, n � 3. Then B
is an affine body of revolution.

We shall give a partial answer to this conjecture which will turn out to be suffi-
ciently good for our purposes. Under the same hypothesis, we shall prove that at least
one section of B through the origin is an ellipsoid. If this is so, and if, in addition,
B satisfies the hypothesis that every two or its hyperplane section through the origin
are affinely equivalent, then every section of B through the origin is an ellipsoid and
consequently B is an ellipsoid. The proof of the existence of at least one elliptical
section is a very interesting proof that combines ideas of convex geometry and alge-
braic topology. Before exposing it here, we require three intuitive lemmas, which we
will state without proof. We ask the reader to include their own proofs.
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Lemma 4.6. Every hyperplane section �\K of an affine body of revolution K�Rn,
n � 3, is an affine body of revolution. Furthermore, if H is the hyperplane of revolu-
tion of K, then either � is parallel to H or � \H is a hyperplane of revolution of
� \K.

Lemma 4.7. Let K � Rn, n � 3, be an affine body of revolution with axis of revo-
lution the line L and let � be a hyperplane containing L. Suppose that � \K is an
ellipsoid. Then K is an ellipsoid.

Lemma 4.8. Let B � RnC1 be a centrally symmetric convex body, all of whose
hyperplane sections through the origin are non-elliptical affine symmetric bodies of
revolution. For each x 2 Sn, let Lx be the (unique) axis of revolution of x? \ B ,
where x? denotes the subspace orthogonal to x. Then x 7! Lx is a continuous func-
tion Sn ! RP n. Consequently,

¹x C Lxºx2Sn

is a field of lines tangent to Sn.

Since every field of tangent lines gives rise to a trivial 1-dimensional fiber bundle
over Sn, then there is

 W Sn
! Sn;

such that for every x 2 Sn

Lx \ Sn
D

®
�  .x/;  .x/

¯
:

Note that, for every x 2 Sn,  .x/ is orthogonal to x and hence  .x/ 6D �x. This
implies that  W Sn ! Sn is homotopic to the identity map and therefore that  is
surjective.

From now on, let B � RnC1 be a centrally symmetric convex body, all of whose
hyperplane sections through the origin are non-elliptical affine symmetric bodies of
revolution, and remember that for every u 2 Sn, we denote by u? the n-dimensional
subspace of RnC1 orthogonal to u. Furthermore, by Lemma 4.4, denote by Lu the
unique affine axis of revolution of u? \ B , and by Hu the corresponding .n � 1/-
dimensional hyperplane of revolution of u? \ B . Note that the line Lu contains the
origin. The fact that u? \ B is symmetric implies that the origin is the center of the
ellipsoid Hu \ B and therefore that the origin lies in Lu.

Lemma 4.9. Let B � RnC1 be a symmetric convex body with center at origin, n� 4,
and suppose that every hyperplane section of B through the origin is a non-elliptical
affine convex body of revolution. Suppose that Lv � u? for some u; v 2 Sn. Then

Hv \ �u D Hu \ �v D Hv \Hu

are highlighted in red.
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Proof. Consider u? \ v?, the .n � 1/-dimensional subspace of v?. By hypothesis,
v? \ B is a non-elliptical affine body of revolution with affine axis of revolution
Lv . Therefore, since Lv � u? \ v?, we have that u? \ v? \ B is an affine body
of revolution with affine axis of revolution Lv . Furthermore, by Lemma 4.7, u? \

v? \ B is not an ellipsoid. Moreover, the principal affine subspace of revolution of
u? \ v? \ B is Hv \ u?.

On the other hand, u? \ v? is an .n � 1/-dimensional subspace of u?. Note
that u? \ v? 6D Hu, otherwise u? \ v? \B D Hu \B would be an ellipsoid, con-
tradicting our previous assumption. Since u? \ B is a non-elliptical affine body of
revolution and u? \ v? 6D Hu, then, by Lemma 4.6, u? \ v? \ B is an affine body
of revolution with principal affine subspace of revolutionHu \ v?. Consequently, by
Lemma 4.4, we have that Hv \ u? D Hu \ v?.

Our main result regarding affine bodies of revolution is the following theorem.

Theorem 4.10. Let B � RnC1 be a symmetric convex body with center at origin,
n � 4, and suppose that every hyperplane section of B through the origin is an affine
body of revolution. Then there is a hyperplane section through the origin of B which
is an ellipsoid.

Proof. Suppose not, suppose that B is a symmetric convex body with center at the
origin and with the property that every hyperplane section of B through the origin is
a non-elliptical affine convex body of revolution.

Let us fix a point x0 2Hu0
\ Sn. Since  W Sn ! Sn is suprayective, let v0 2 Sn

such that  .v0/ D x0. This implies that

Lv0
� Hu0

:

This is a contradiction to Lemma 4.9 because clearly Lv0
� u0

?, hence,

Lv0
� Hu0

\ v0
?
D Hv0

\ u0
?
� Hv0

;

which is impossible.

Theorem 4.10 is also true when n D 2. Indeed, in [21] Montejano proved that
if B is a 3-dimensional convex body which contains the origin as interior point and
every section through the origin is a figure that has a line of reflection (symmetry),
then there is a section through the origin that is a disk. The proof also uses topology
but it is intrinsically different to the proof of Theorem 4.10. The case n D 3 remains
open.

With this, we have finished exposing the solution to the Banach conjecture over
the reals given by Gromov [13], when n D even and by Bor–Hernández Lamoneda–
Jiménez-Desantiago–Montejano [4] when n� 1 mod 4, n 6D 133. We summarize the
results below in the following theorem.
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Theorem 4.11 (Main theorem). If all hyperplane sections through the origin of an
.nC 1/-dimensional convex body B are affinely equivalent, n � 0; 1; 2 mod 4, n 6D

133, then the convex body B is an ellipsoid.

4.5. The Banach conjecture, when n is odd and dim V � n C 2

As we have mentioned before, the cases of the Banach conjecture that have yet to
be solved are those in which n � 3 mod 4. That is, the first unsolved case from the
Banach conjecture is the following.

Conjecture 4.12. If all hyperplane sections through the origin of a 4-dimensional
convex body B are affinely equivalent, then the convex body B is an ellipsoid.

Indeed, Gromov in his original paper [13], using topology but a complete different
sort of ideas, proved the Banach conjecture over the reals, when n � 3 mod 4 and
dim V > n C 1 and the Banach conjecture over the complex numbers, when n �

3 mod 4 and dimV > 2n � 1.
The purpose of this section is to introduce these deep ideas. Let us prove the

Banach conjecture over the reals, when n > 1 is odd and dimV � nC 2.

Theorem 4.13 (Gromov). Let B be an .n C 2/-dimensional convex body with the
origin as interior point and suppose that all n-sections through the origin are linearly
equivalent, for n > 1 odd. Then the convex body B is an ellipsoid.

Denote by Vn;k the space of all orthonormal k-frames .e1; : : : ; ek/, where ei 2Rn,
n � k. For our purpose, consider the space of 4-frames .e1; e2; e3; e4/ in RnC2 and
also the two fiber bundles

p1 W VnC2;4 ! VnC2;2; p2 W VnC2;4 ! VnC2;2;

where
p1.e1; e2; e3; e4/ D .e1; e2/; p2.e1; e2; e3; e4/ D .e3; e4/:

The fiber in both cases is the Stiefel Manifold Vn;2. For more about Stiefel fiber
bundles, see the book [19].

Consider now a nonempty closed subset V � VnC2;2 and denote

zV D p�1
1 .V / D

®
.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V

¯
:

The following lemma is Proposition 3 of Gromov’s paper [13].

Lemma 4.14. If n is odd and the restriction p2j W zV ! VnC2;2 is a fiber bundle, then
V D VnC2;2.

We give only a brief sketch of the main ideas of the proof. We must consider an
arbitrary fiber Vn;2 of p2 and prove that the intersection V 0 D zV \ Vn;2 coincides
with Vn;2. Note that the dimension of Vn;2 is equal to 2n � 3. In fact, if V 0 6D Vn;2,
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then H 2n�3.V IQ/ D 0 and for p C q D 2n � 3, the second term E
p;q
2 in the spec-

tral sequence of the fiber bundle p2j W zV ! VnC2;2 is trivial, which implies that
H 2n�3. zV IQ/ is trivial, contradicting an old result of Borel in [5, p. 192] that claims
that for n D odd, the homomorphism induced by the inclusion

H 2n�3.VnC4;2IQ/! H 2n�3.Vn;2IQ/

is non-zero.

Proof of Theorem 4.13. By hypothesis, there is a convex bodyK �Rn with the prop-
erty that the ellipsoid of minimal volume containingK is the unit ball of Rn and such
that every n-dimensional section of B through the origin is linearly equivalent to K.
Let us denote, as usual, by GK the Lie group of all linear isomorphisms of Rn that
keep K fixed. Of course, GK � On.

Let us fix a 2-dimensional plane � in RnC2 through the origin and define V �

VnC2;2 as the set of 2-frames .e1; e2/ in RnC2 such that if he1; e2i is the subspace
spanned by e1 and e2, then the section he1; e2i \B is linearly equivalent to the section
� \ B . Furthermore, let V 0 � Vn;2 be the set of 2-frames .e1; e2/ in Rn such that
he1; e2i \K is linearly equivalent to � \ B . Finally, let

zV D p�1
1 .V / D

®
.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V

¯
:

We shall first prove that the restriction p2j W zV ! VnC2;2 is a locally trivial bundle
with fiber V 0. For that purpose, consider U an open contractible subset of VnC2;2.
Then, using the contractibility of U and the existence of a field of convex bodies
lineally equivalent to K, contained in the fibers of the canonical vector bundle of n-
subspaces in RnC2, it is possible to construct a continuous mapƒ WU !GL.n;nC 2/
satisfying the following properties:

(1) for every .e3; e4/ 2 U , ƒe3;e4
W Rn ! RnC2 is a linear embedding,

(2) for every .e3; e4/ 2 U , ƒe3;e4
.Rn/ is orthogonal to both e3 and e4,

(3) for every .e3; e4/ 2 U , ƒe3;e4
.K/ D ƒe3;e4

.Rn/ \ B .

Given a pair of linearly independent vectors .w1; w2/, denote by .GS1.w1; w2/;

GS2.w1; w2// the 2-frame obtained from .w1; w2/ by the Gram–Schmidt procedure
in such a way that hw1; w2i D hGS1.w1; w2/;GS2.w1; w2/i.

Define the fiber preserving map

ˆ W U � V 0
! VnC2;4;

given by

ˆ
�
.e3; e4/; .e1; e2/

�
D

�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
:
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First of all, by (2),�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
2 VnC2;4:

Moreover, by (1),�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

��
2 V

and therefore�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
2 p2j

�1.U /:

Hence, we obtain a fiber preserving homeomorphism:

U � V 0 p2j
�1.U /

U U

proj

ˆ

p2j

id

thus proving that p2j W zV ! VnC2;2 is a locally trivial bundle with fiber V 0. Further-
more, p2 is a fiber bundle with structure group GK . If this is so, by Lemma 4.14,
V D VnC2;2. This implies that for every two planes through the origin, the corre-
sponding sections of B are linearly equivalent and hence that B is an ellipsoid.

4.6. The complex Banach conjecture

The fifth meaning of equal is complex affinely equivalence.

Let V be a finite dimensional Banach space over the complex numbers all of
whose hyperplane subspaces are isometric to each other. Is it true that V is a Hilbert
space?

Our next purpose is to prove that the above problem is equivalent to the following
geometric problem. We need first some definitions.

Let S1 be the space of all unit complex numbers C. Let A be a subset of complex
space Cn. We say that A is complex symmetric if and only if there is a translated copy
A0 of A such that �A0 D A0, for every � 2 S1. In this case, if A0 D A� x0, we say that
x0 is the center of complex symmetry of A. If �A is a translated copy of A, then we
just say that A is symmetric. It will be useful to consider the empty set as a complex
symmetric set. Note that a compact convex set A � Cn is complex symmetric with
center at x0 if and only if for every complex line L through x0, the section L\A is a
disk centered at x0. Of course, any complex k-plane or a ball in a finite dimensional
Banach space over the complex numbers is complex symmetric. A complex ellipsoid
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is the image of a ball under a complex affine transformation. Thus, balls of finite
dimensional Hilbert spaces are complex ellipsoids. Of course, complex ellipsoids are
complex symmetric sets. With this definition in mind, we may state the following
problem equivalent to the complex Banach conjecture:

If all complex hyperplane sections through the origin of a convex bodyB � CnC1

with the origin as center of complex symmetry are complex linearly equivalent, is the
convex body B a complex ellipsoid?

As was already mentioned, this problem has a positive answer when n D even
(Gromov [13]) and when n � 1 mod 4 (Bracho and Montejano [6]). The purpose of
this section is to give a brief summary of the ideas and techniques used in the proof.

This time, unlike the real case in which we use the principal bundle

SOn ,! SOnC1 ! Sn;

we will use the corresponding principal bundle SUn ,! SUnC1 ! S2nC1. Here SUn

is the group of complex isometries of determinant 1 in Cn and we say that the
structure group of the principal bundle SUn ,! SUnC1 ! S2nC1 can be reduced
to G � SUn if the characteristic map �n W S2n ! SUn of the complex bundle factor-
izes through G, that is, there is a map f W S2n ! G such that the following diagram
commutes up to homotopy, where i W G ! SUn is the inclusion

S2n SUn

G:

f

�n

i

Denote by GL0
n.C/ the group of complex linear isomorphisms of Cn with deter-

minant a positive real number. Note that ifK1 andK2 are complex symmetric convex
bodies in Cn which are complex linearly equivalent, then there is g 2 GL0

n.C/ such
that g.K1/ D K2.

Given a complex symmetric convex body K � Cn, let

GK WD
®
g 2 GL0

n.C/ j g.K/ D K
¯

be the group of complex linear isomorphisms of K with positive real determinant.
By Lemma 1 of Gromov [13], there exists a complex ellipsoid of minimal volume
containing K centered at the origin. Suppose now that this minimal ellipsoid is the
.2n � 1/-dimensional unit ball, then every g 2 GK is actually an element of SUn,
because it fixes the unit ball, so in this case, GK WD ¹g 2 SUn j g.K/ D Kº.

The link between our geometric problem and the topology is via the following
lemma.
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Lemma 4.15. LetB �CnC1, n� 2, be a complex symmetric convex body with center
at the origin all of whose complex hyperplane sections through the origin are complex
linearly equivalent. Then there exists a complex symmetric convex bodyK � Cn with
center at the origin and with the property that every complex hyperplane section of B
is complex linearly equivalent toK and such that the structure group of the principal
fiber bundle SUn ,! SUnC1 ! S2nC1 can be reduced to GK � SUn.

Our main interest naturally lies in studying the structure groups of the principal
bundle �n: SUn ,! SUnC1 ! S2nC1. In particular, if n � 0 mod 2, �n cannot be
reduced to a proper subgroup of SUn�1 (see Leonard [15, Theorem 1B]). Therefore,
under the hypothesis of Lemma 4.15, GK must be SUn, and hence K must be a ball.
This implies that every section ofB is a complex ellipsoid. Of course, every section of
a complex symmetric body B � CnC1 is a complex ellipsoid only if B is a complex
ellipsoid; see [6, Lemma 3.3]. This proves the complex Banach conjecture, when n is
even.

For the case n � 1 mod 4, the proof requires first studying the case in which
GK � SUn is irreducible. If so, the topology of compact Lie groups over the complex
numbers is simpler than over the real numbers and then it is possible to prove, in a
similar way to the real case, that GK D SUn. If this is the case, then every section
of B is an ellipsoid and consequently B is also an ellipsoid. If GK � SUn is not
irreducible butGK is a proper subgroup of SUn, then we can prove thatGK D SUn�1.
To understand the convex geometry of the consequences of this result, we need the
following definition:

A complex body of revolution is a complex symmetric convex body K � Cn

for which there exists a 1-dimensional complex subspace L of Cn, called its axis of
revolution, such that for every affine complex hyperplaneH orthogonal toL, we have
thatH \K is either empty, a single point, or a .2n� 2/-dimensional ball centered at
H \ L. Of course, K is a convex body of revolution if and only if GK D SUn�1.

With this in mind, it is very clear that what we have obtained is the following
theorem.

Theorem 4.16. Let B � CnC1, n � 1 mod 4, n � 5, be a complex symmetric con-
vex body with center at the origin all of whose complex hyperplane sections through
the origin are complex linearly equivalent. Then, there exists a complex body of rev-
olution K � Cn with center at the origin and with the property that every complex
hyperplane section of B through the origin is C-linearly equivalent to K.

To conclude, we need to know what are the geometric consequences of all the
complex hyperplane sections of a convex body being complex affine bodies of revo-
lution.
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Theorem 4.17. A complex symmetric convex body B � CnC1 with center at the ori-
gin, n � 4, all of whose complex hyperplane sections through the origin are complex
affine bodies of revolution, has at least one complex hyperplane section through the
origin which is a complex ellipsoid.

The proof of Theorem 4.17 is similar to the proof of Theorem 4.10 except this
time the proofs are just technically more complicated. This concludes an sketch of
the proof of the complex Banach conjecture when n� 0; 1; 2 mod 4, because by The-
orems 4.16 and 4.17, every hyperplane section of B through the origin is a complex
ellipsoid and therefore, by [6, Theorem 3.3] we obtain that B is a complex ellipsoid
as we wished.

The following theorem follows immediately from Theorems 4.16 and 4.17. It
proves the Banach conjecture over the complex numbers for n � 0; 1; 2 mod 4, and
dimV > n.

Theorem 4.18 (Bracho–Montejano [6]). If all complex hyperplane sections through
the origin of a complex symmetric convex body B � CnC1 are linearly equivalent,
n � 0; 1; 2 mod 4, then the convex body B is a complex ellipsoid.

5. Convex bodies all whose orthogonal projections are equal

The purpose of this section is to answer the following question:

If all orthogonal projections of a convex body onto hyperplanes are “equal”, is
the convex body “equal” to the ball?

5.1. Equal area, congruence, and affine equivalence

The first meaning of “equal” is same “area”. In 1937, A. D. Aleksandrov [1] proved
that if all orthogonal projections of a symmetric convex body have the same area,
then not only does the body have the same volume of the corresponding ball but it is
actually a ball.

Theorem 5.1 (Aleksandrov’s projection theorem [1]). If all orthogonal projections
onto hyperplanes of a symmetric convex body B � RnC1 have equal n-dimensional
volume, then the convex body B is a ball.

Without the hypothesis of symmetry, Theorem 5.1 is false. However, a symmetric
convex body all whose orthogonal projections have the same area not only has the
volume of the corresponding ball but also it is actually a ball. For every v 2 Sn, denote
by Bjv the orthogonal projection of B onto v? and let �.Bjv/ be the n-dimensional
volume of Bjv. The proof of Theorem 5.1 follows immediately from the following
Aleksandrov result (see [17, Theorem 2.11.1]). Given two convex bodies B1; B2 �

RnC1 symmetric with respect to the origin and such that �.B1jv/ D �.B2jv/, for
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every v 2 Sn, then B1 is a translated copy of B2. The proof of this result is analytic
and a little more complicated than the proof of Theorem 2.1.

Using harmonic integration, it can be proved that a centrally symmetric convex
body all whose .n � 1/-dimensional perimeter areas are equal must be a ball. The
proof is similar to the proof of Theorem 2.1 but using the support functions instead of
the radial functions (see [10, Theorem 4]). Of course, without the symmetry hypoth-
esis, the result is false as it can be observed with 3-dimensional convex bodies of
constant width 1, in which the perimeter of all their orthogonal projections is � .

The next meaning of “equal” is congruence. That is, assume that all orthogonal
projections onto hyperplanes of the convex body B � RnC1 are congruent.

The collection of orthogonal projections of B � RnC1,

¹Bjvºv2Sn

give rise, not only to a field of convex bodies congruent toBje1 and tangent to Sn, but
also mainly to a complete turning of Bje1, where e1 D ¹1; 0; : : : ; º 2 RnC1. We know
that a complete turning is only possible for symmetric convex bodies (see Section 3).
So, Bjv is symmetric for every v 2 Sn and, consequently, it is not very difficult to
prove that B is symmetric, but in this last case Aleksandrov’s theorem (Theorem 5.1)
implies that B is also a ball. That is, we have the following theorem.

Theorem 5.2. If all orthogonal projections onto hyperplanes of a convex body B �

RnC1 are congruent, then the convex body B is a ball.

Suppose now all orthogonal projections onto hyperplanes of the convex body
B � RnC1 are affinely equivalent to a convex body K and suppose without loss of
generality that the ellipsoid of minimal volume containing K is the unit ball. Denote
GK WD ¹g 2 GLn.R/ j g.K/ D K and det.g/ is positiveº � SOn. As in the case of
the hyperplane sections, we have that the existence of the collection of projections
¹Bjvºv2Sn gives rise directly to the following lemma which is the link between the
topology and the geometric problem. Note that from the arguments given in the pre-
ceding paragraph and Theorem 3.2, we may assume without loss of generality that B
and K are symmetric with center at the origin.

Lemma 5.3. Let B � RnC1, n � 2, be a symmetric convex body all of whose orthog-
onal projections onto hyperplanes are linearly equivalent. Then there exists a sym-
metric convex bodyK � Rn, with the property that every orthogonal projection of B
onto a hyperplane is linearly equivalent toK and such that the structure group of the
principal fiber bundle SOn ,! SOnC1 ! Sn can be reduced to GK � SOn.

Once we have this technical lemma, we are in a position to know, using the topo-
logical arguments from Section 4.2, how the projections of B are. That is, we have
the following theorem.
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Theorem 5.4. Let B � RnC1, n � 0; 1; 2 mod 4, n � 2, n 6D 133, be a convex body
all of whose orthogonal projections onto hyperplanes are affinely equivalent. Then,
there exists a body of revolution K � Rn, with the property that every orthogonal
projection of B is affinely equivalent to K.

To conclude, we need to know the geometric consequences of all orthogonal
projections of a convex body being affine bodies of revolution. Every orthogonal
projection of a body of revolution is a body of revolution, this is why projections of
affine bodies of revolution are affine bodies of revolution. Is the converse true? As far
as I know, nobody knows the answer. The following geometric question is of great
interest. Suppose that B is an .nC1/-dimensional convex body all whose orthogonal
projections are affine bodies of revolution, n � 3. Is B an affine body of revolution?

We shall give a partial answer to this question which will turn out to be suffi-
ciently good for our purposes. Under the same hypothesis of the above question, we
shall prove that at least one orthogonal projection of B is an ellipsoid. If this is so,
and if, in addition, B satisfies the hypothesis that every two of its orthogonal pro-
jections are affinely equivalent, then every orthogonal projection of B is an ellipsoid
and consequently B is an ellipsoid. The proof of the next theorem is very similar to
the proof of Theorem 4.10, with the different adjustments that are always necessary
when trying to adapt a proof for sections to one for projections.

Theorem 5.5. Let B � RnC1 be a symmetric convex body, n � 4, and suppose that
every orthogonal projection onto hyperplanes of K is an affine body of revolution.
Then there is an orthogonal projection of B which is an ellipsoid.

This result, together with Theorem 5.4, immediately implies the following char-
acterization of the ellipsoid first proved by Montejano in [22].

Theorem 5.6. Let B � RnC1, n � 0; 1; 2 mod 4, n � 2, n 6D 133, be a convex body
all of whose orthogonal projections onto hyperplanes are affinely equivalent. Then B
is an ellipsoid.

5.2. The codimension 2 case for orthogonal projections

In this section, we will adapt Gromov’s ideas from Section 4.5 to the context of
orthogonal projections.

We need first a technical lemma.

Lemma 5.7. Given a linear embedding h W Rn ! Rm, 2 < n < m, there is a contin-
uous map h� W Vn;2 ! Vm;2 such that, for every u 2 Vn;2, (i) hh�.u/i � h.Rn/ and
(ii) h.hui?/ is orthogonal to hh�.u/i, where hui denotes the plane generated by u.

Furthermore, h� varies continuously with h, while h varies in the space of linear
embeddings from Rn to Rm.
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Proof. Let H � h.Rn/ be the plane such that H is orthogonal to h.hui?/ and let
� W h.Rn/! H be the orthogonal projection. Then, given u D .u1; u2/ 2 Vn;2, let

h�.u1; u2/ D
�

GS1
�
�.u1/; �.u2/

�
;GS2

�
�.u1/; �.u2/

��
2 Vm;2;

where given a pair of linearly independent vector .w1;w2/, denote by .GS1.w1;w2/;

GS2.w1; w2// the 2-frame obtained from .w1; w2/ by the Gram–Schmidt procedure
in such a way that hw1; w2i D hGS1.w1; w2/;GS2.w1; w2/i.

Here is the analogue of Theorem 4.13 for orthogonal projections:

Theorem 5.8 (Montejano). Let B be an .nC 2/-dimensional convex body and sup-
pose that all orthogonal projections onto n-planes are linearly equivalent, for n > 1
odd. Then the convex body B is an ellipsoid.

Proof. There is a convex body K � Rn with the property that the minimal ellipsoid
containingK is the unit ball of Rn and such that all orthogonal projections of B onto
an n-dimensional subspace are linearly equivalent to K. Let us fix a 2-dimensional
plane � � RnC2 through the origin and define V � VnC2;2 to be the set of 2-frames
.e1; e2/ in RnC2 such that the orthogonal projection of B onto he1; e2i is linearly
equivalent to the orthogonal projection ofB onto�. Furthermore, let V 0 � Vn;2 be the
set of 2-frames .e1; e2/ in Rn such that the orthogonal projection of K onto he1; e2i

is linearly equivalent to the orthogonal projection of B onto �. Finally, let zV D

p�1
1 .V / D ¹.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V º.

We shall first prove that the restriction p2j W zV ! VnC2;2 is a locally trivial bundle
with fiber V 0. For that purpose, consider U an open contractible subset of VnC2;2.
Then, using the contractibility of U and the existence of a field of convex bodies,
lineally equivalent to K, contained in the fibers of the canonical vector bundle of n-
subspaces in RnC2, it is possible to construct a continuous mapƒ WU !GL.n;nC 2/
satisfying the following properties:

(1) for every .e3; e4/ 2 U , ƒe3;e4
W Rn ! RnC2 is a linear embedding,

(2) for every .e3; e4/ 2 U , ƒe3;e4
.Rn/ is orthogonal to both e3 and e4,

(3) for every .e3; e4/ 2 U , ƒe3;e4
.K/ is the orthogonal projection of B onto

ƒe3;e4
.Rn/.

Define the fiber preserving map

ˆ W U � V 0
! VnC2;4

given by ˆ..e3; e4/; .e1; e2// D .h�.e1; e2/; e3; e4/.
First of all, by (2), .h�.e1; e2/; e3; e4/ 2 VnC2;4. Moreover, by (1) and Lemma 5.7,

.h�.e1; e2// 2 V and therefore .h�.e1; e2/; e3; e4/ 2 p2j
�1.U /. Hence, we obtain a
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fiber preserving homeomorphism

U � V 0 p2j
�1.U /

U U:

proj

ˆ

p2

id

Thus proving that p2j W zV ! VnC2;2 is a locally trivial bundle with fiber V 0. If this is
so, by Lemma 4.14, V D VnC2;2. This implies that every two orthogonal projections
onto 2-dimensional planes are linearly equivalent and hence, by Theorem 5.6, for
n D 2, that K is an ellipsoid.
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