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Geometric valuation theory

Monika Ludwig

Abstract. A brief introduction to geometric valuation theory is given. The focus is on classifi-
cation results for valuations on convex bodies and on function spaces.

1. Introduction

Measurement is part of the literal meaning of geometry and geometric valuation
theory deals with measurement in the following sense. We want to associate to a
geometric object a real number (or, more generally, an element of an abelian semi-
group A). For example, we can associate to a sufficiently regular subset of Rn its
n-dimensional volume or the .n � 1/-dimensional measure of its boundary. Let � be
a class of subsets of Rn. We call a function Z W � ! A a valuation if

Z.K/ C Z.L/ D Z.K [ L/ C Z.K \ L/

for all K; L 2 � with K \ L, K [ L 2 � (and we set Z.;/ WD 0). Thus, the valuation
property is just the inclusion-exclusion principle applied to two sets. In particular,
measures on Rn when restricted to elements of � are valuations but there are many
additional interesting valuations.

In his Third Problem, Hilbert asked whether an elementary definition of volume
on polytopes is possible. In 1900, it was known that it is possible on R2 but the
question was open in higher dimensions. Let P n be the set of convex polytopes in Rn

and call Z W P n ! R simple if Z.P / D 0 for all lower dimensional polytopes. Using
our terminology, Hilbert’s Third Problem turns out to be equivalent to the question
whether every simple, rigid motion invariant valuation Z W P n ! R is a multiple
of n-dimensional volume for n � 3. Dehn [46] solved Hilbert’s Third Problem by
constructing a simple, rigid motion invariant valuation that is not a multiple of volume
and thereby showed that an elementary definition of volume is not possible for n � 3.

Blaschke [30] took the important next step by asking for classification results
for invariant valuations on P n and on the space of convex bodies, Kn, that is, of
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non-empty, compact, convex sets in Rn. For a class � of subsets of Rn, we say that a
function Z W � ! A is G invariant for a group G acting on Rn if Z.�K/ D Z.K/ for
all � 2 G and K 2 � . Blaschke’s question is motivated by Klein’s Erlangen Program.
We will describe some of the results that were obtained in this direction, in particular,
focusing on the special linear group, SL.n/, and the group of (orientation preserving)
rotations, SO.n/. Often additional regularity assumptions are required and for A, a
topological semigroup, we consider continuous and upper semicontinuous valuations,
where the topology on Kn and its subspaces is induced by the Hausdorff metric.

In addition to classification results and their applications, structural results for
spaces of valuations have attracted a lot of attention in recent years. We refer to the
books and surveys [14,17,21]. Valuations were also considered on various additional
spaces, in particular, on manifolds (see [12]). We will restrict our attention to sub-
spaces of Kn and to recent results on valuations on spaces of real valued functions.
On a space X of (extended) real valued functions, a function Z W X ! A is called a
valuation if

Z.u/ C Z.v/ D Z.u _ v/ C Z.u ^ v/

for all u; v 2 X such that also their pointwise maximum u _ v and pointwise mini-
mum u ^ v belong to X . Since spaces of convex bodies can be embedded in various
function spaces in such a way that union and intersection of convex bodies corre-
spond to pointwise minimum and maximum of functions, this notion generalizes the
classical notion.

2. Affine valuations on convex bodies

The first classification result in geometric valuation theory is due to Blaschke. He
worked on polytopes and aimed at a complete classification of rigid motion invariant
valuations. However, at a certain step, he had to assume also SL.n/ invariance and
established the following result (and the corresponding result on polytopes).

Theorem 2.1 (Blaschke [30]). A functional Z W Kn ! R is a continuous, translation
and SL.n/ invariant valuation if and only if there are c0; cn 2 R such that

Z.K/ D c0V0.K/ C cnVn.K/

for every K 2 Kn.

Here, V0.K/ WD 1 is the Euler characteristic of K and Vn.K/ is its n-dimensional
volume. It has become customary to refer to results that involve invariance (or covari-
ance) with respect to SL.n/ as affine results and the title of this section is to be
understood in this sense.
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We will first describe results for affine valuations on polytopes and then on gen-
eral convex bodies. While on P n a complete classification of SL.n/ invariant val-
uations has been established, we require additional regularity assumptions on Kn.
Such assumptions are also used on important subspaces of P n and Kn. We will also
describe results for affine valuations with values in tensor spaces, spaces of convex
bodies, and related spaces.

2.1. SL.n/ invariant valuations on convex polytopes

We call a function � W Œ0;1/ ! R a Cauchy function if

�.x C y/ D �.x/ C �.y/

for every x; y 2 Œ0;1/. Cauchy functions are well understood and can be completely
described (if we assume the axiom of choice) by their values on a Hamel basis.

The following result gives a complete classification of translation and SL.n/

invariant valuations on polytopes and is closely related to Theorem 2.1.

Theorem 2.2 ([94]). A functional Z W P n ! R is a translation and SL.n/ invariant
valuation if and only if there are c0 2 R and a Cauchy function � W Œ0;1/ ! R such
that

Z.P / D c0V0.P / C �
�
Vn.P /

�
for every P 2 P n.

Even without translation invariance, a complete classification can be obtained (see
[94]). We state the case when the valuation is in addition continuous. We write Œ0; P �

for the convex hull of the origin and P 2 P n.

Theorem 2.3 ([94]). A functional Z W P n ! R is a continuous and SL.n/ invariant
valuation if and only if there are c0; cn; dn 2 R such that

Z.P / D c0V0.P / C cnVn.P / C dnVn

�
Œ0; P �

�
for every P 2 P n.

Corresponding results are known on the space, P n
0 , of polytopes containing the

origin (see [94]).
Let P n

.0/
be the space of convex polytopes in Rn that contain the origin in their

interiors. Here, we have additional interesting valuations connected to polarity. For
K 2 Kn, define its polar by

K�
WD

®
y 2 Rn

W hx; yi � 1 for all x 2 K
¯
;
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where hx; yi is the inner product of x; y 2 Rn. If P 2 P n
.0/

, then P � 2 P n
.0/

. Hence,
setting

V �
n .P / WD Vn.P �/;

we obtain a finite valued functional on P n
.0/

and it follows easily from properties of
polarity that it is a valuation.

Valuations on P n
.0/

were first considered in [84], where a classification of Borel
measurable, SL.n/ invariant, and homogeneous valuations was established. Here, we
say that Z W P n

.0/
! R is homogeneous if there is q 2 R such that

Z.tP / D tq Z.P /

for every P 2 P n
.0/

and t > 0. We say that Z is Borel measurable if the pre-image
of every open set is a Borel set. We use corresponding notions on Kn and related
spaces.

The results from [84] were strengthened by Haberl and Parapatits.

Theorem 2.4 (Haberl and Parapatits [55, 57]). A functional Z W P n
.0/

! R is a Borel
measurable and SL.n/ invariant valuation if and only if there are c0; cn; c�n 2 R
such that

Z.P / D c0V0.P / C cnVn.P / C c�nV �
n .P /

for every P 2 P n
.0/

.

The regularity assumption is again required to exclude discontinuous solutions
of the Cauchy functional equation. It is an open problem to establish a complete
classification without such assumption.

We remark that lattice polytopes, that is, convex polytopes with vertices in the
integer lattice Zn, are important in many fields and subjects. The Betke–Kneser the-
orem [28] gives a complete classification of valuations on this class that are invariant
with respect to translations by integer vectors and by so-called unimodular transfor-
mations (which can be described by matrices with integer coefficients and determi-
nant ˙1). For more information on valuations on lattice polytopes, see [32].

2.2. Affine surface areas

For K 2 Kn, the affine surface area of K is defined by

�.K/ WD

Z
@K

�.K; x/
1

nC1 dx; (2.1)

where �.K; x/ is the generalized Gaussian curvature of @K at x and integration is
with respect to the .n � 1/-dimensional Hausdorff measure. For smooth convex sur-
faces, this definition is classical (see [29]). It is also classical that � is translation and
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SL.n/ invariant for smooth surfaces. The extension of the definition of affine surface
area to general convex bodies was obtained more recently in a series of papers by
Leichtweiß [73], Lutwak [98], and Schütt and Werner [126]. There it is also proved
that � is translation and SL.n/ invariant on Kn. The notion of affine surface area is
fundamental in affine differential geometry. Moreover, since many basic problems in
discrete and stochastic geometry are translation and SL.n/ invariant, affine surface
area has found numerous applications in these fields (see [47, 50]). It follows easily
from (2.1) that � vanishes on polytopes and therefore is not continuous. The long
conjectured upper semicontinuity of affine surface area (for smooth surfaces as well
as for general convex surfaces) was proved by Lutwak [98]. For a proof that � is a
valuation, see [125].

The following result gives a classification of upper semicontinuous, translation
and SL.n/ invariant valuations and represents a strengthening of Theorem 2.1. It pro-
vides a characterization of affine surface area.

Theorem 2.5 ([92]). A functional Z W Kn ! R is an upper semicontinuous, trans-
lation and SL.n/ invariant valuation if and only if there are c0; cn 2 R and c � 0

such that
Z.K/ D c0V0.K/ C cnVn.K/ C c�.K/

for every K 2 Kn.

For n D 2, this result was proved in [80], where also applications to asymptotic
approximation by polytopes were obtained.

A complete classification of translation and SL.n/ invariant valuations on Kn

appears to be out of reach. Already a weakening of upper semicontinuity to, say,
Baire-one (that is, a pointwise limit of continuous functionals) would be interesting
and would have applications in discrete and stochastic geometry.

Let Kn
.0/

be the space of convex bodies in Rn containing the origin in their interi-
ors. For such a convex body with smooth boundary, the centro-affine surface area is
a classical notion that can be defined by

�n.K/ WD

Z
@K

�0.K; x/
1
2 dVK.x/;

where dVK.x/ WD hx; uK.x/i dx with uK.x/ the outer unit normal vector to K at x

is (up to a constant) the cone measure on @K and

�0.K; x/ WD
�.K; x/˝

x; uK.x/
˛nC1

:

It is classical that �n is GL.n/ invariant. Lutwak [100] extended this notion to general
convex bodies in Kn

.0/
and showed that �n is upper semicontinuous.
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The following result gives a complete classification of upper semicontinuous and
GL.n/ invariant valuations on Kn

.0/
and provides a characterization of centro-affine

surface area.

Theorem 2.6 ([93]). A functional Z W Kn
.0/

! R is an upper semicontinuous and
GL.n/ invariant valuation if and only if there are c0 2 R and c � 0 such that

Z.K/ D c0V0.K/ C c�n.K/

for every K 2 Kn
.0/

.

Lutwak [100] defined the so-called Lp-affine surface areas which were charac-
terized in [93] as upper semicontinuous, SL.n/ invariant, homogeneous valuations.

A more general notion, now called Orlicz affine surface area, was introduced in
[93]. Let

ConcŒ0;1/ WD

²
� W Œ0;1/ ! Œ0;1/ W � concave; lim

t!0
�.t/ D lim

t!1

�.t/

t
D 0

³
:

The following result gives a classification of upper semicontinuous, SL.n/ invariant
valuations on Kn

.0/
and provides a characterization of Orlicz affine surface areas.

Theorem 2.7 ([55, 93]). A functional ZWKn
.0/

! R is an upper semicontinuous and
SL.n/ invariant valuation if and only if there are c0; cn; c�n 2 R and � 2 ConcŒ0;1/

such that

Z.K/ D c0V0.K/ C cnVn.K/ C c�nV �
n .K/ C

Z
@K

�
�
�0.K; x/

�
dVK.x/

for every K 2 Kn
.0/

.

Here, the classification of upper semicontinuous, SL.n/ invariant valuations van-
ishing on polytopes from [93] is combined with Theorem 2.4 by Haberl and Parap-
atits.

2.3. Vector and tensor valuations

We say that Z W P n ! Rn is SL.n/ equivariant if

Z.�P / D � Z.P /

for all �2SL.n/ and P 2P n. We use corresponding definitions for subspaces of P n.
The study of SL.n/ equivariant vector valuations on convex polytopes contain-

ing the origin in their interiors was started in [82], where a classification of Borel
measurable, SL.n/ equivariant, homogeneous valuations was established. Haberl and
Parapatits strengthened this result and obtained the following complete classification,
which we state for n � 3.
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Theorem 2.8 (Haberl and Parapatits [57, 58]). A function Z W P n
.0/

! Rn is a Borel
measurable and SL.n/ equivariant valuation if and only if there is c 2 R such that

Z.P / D cm.P /

for every P 2 P n
.0/

.

Here, for P 2 P n, the moment vector m.P / is defined by m.P / WD
R

P
x dx.

Zeng and Ma showed that it is possible to obtain a complete classification of
vector valuations on convex polytopes without any regularity assumptions. We state
their result for n � 3.

Theorem 2.9 (Zeng and Ma [137]). A function Z W P n ! Rn is an SL.n/ equivariant
valuation if and only if there are c; d 2 R such that

Z.P / D cm.P / C dm
�
Œ0; P �

�
for every P 2 P n.

In the same paper, a complete classification result is also established for n D 2.
The obtained valuations depend on Cauchy functions.

Also higher rank tensor valuations are important in the geometry of convex bod-
ies. In particular, the moment matrix M 2;0.K/ of a convex body K is a most valuable
tool through its connection to the Legendre ellipsoid and the notion of isotropic posi-
tion. In a certain way dual is the so-called LYZ ellipsoid, which was introduced
by Lutwak, Yang, and Zhang [102, 103]. Associated to this ellipsoid is the LYZ
matrix, which was characterized as a matrix valuation on convex polytopes contain-
ing the origin in [85]. The LYZ matrix corresponds to the Fisher information matrix
[89, 102, 103] important in statistics and information theory.

Haberl and Parapatits [58] extended the result from [85] to general symmetric
tensor valuations. For p � 1, let T p.Rn/ denote the space of symmetric p-tensors
on Rn. We identify Rn with its dual space and regard each symmetric p-tensor as a
symmetric p-linear functional on .Rn/p . We say that Z W P n

.0/
! T p.Rn/ is SL.n/

equivariant if

Z.�P /.y1; : : : ; yp/ D Z.P /.��1y1; : : : ; ��1yp/

for all y1; : : : ; yp 2 Rn, all � 2 SL.n/, and all P 2 P n
.0/

. We state the result by Haberl
and Parapatits for n � 3 and p � 2.

Theorem 2.10 (Haberl and Parapatits [58]). A function Z WP n
.0/

!T p.Rn/ is a Borel
measurable, SL.n/ equivariant valuation if and only if there are c; d 2 R such that

Z.P / D cM p;0.P / C dM 0;p.P �/

for every P 2 P n
.0/

.
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Here, the pth moment tensor of a convex polytope P 2 P n
.0/

is defined by

M p;0.P / WD
1

pŠ

Z
P

xp dx; (2.2)

where xp is the p-fold symmetric tensor product of x 2 Rn and the pth LYZ tensor
is

M 0;p.P / WD

Z
Sn�1

yp dSn�1;p.P; y/;

where Sn�1;p.P; �/ is the Lp surface area measure of P , which is a central notion in
the Lp Brunn–Minkowski theory (see [99, 100]).

For classifications of matrix valuation on P n without regularity assumptions, see
[108,109], and for tensor valuations on lattice polytopes, see [95]. Continuous tensor
valuations on complex vector spaces are classified in [4].

2.4. Convex body valued valuations and related notions

Affinely associated convex bodies play an important role in convex geometry (see
[122, Chapter 10]). We have already mentioned the Legendre and the LYZ ellipsoid
and describe here results on valuations Z W Kn ! Kn, where we choose suitable
additions on Kn. The most classical choice is the Minkowski addition, where for
K; L 2 Kn,

K C L WD ¹x C y W x 2 K; y 2 Lº;

and such valuations are called Minkowski valuations.
The first classification result for Minkowski valuations was obtained in [83] and

strengthened in [86]. It provides a characterization of projection bodies, a notion that
was introduced by Minkowski.

Theorem 2.11 ([86]). An operator Z W P n ! Kn is a translation invariant, SL.n/

contravariant Minkowski valuation if and only if there is c � 0 such that

Z P D c…P

for every P 2 P n.

Here, we describe convex bodies by their support functions, where for K 2 Kn,
the support function h.K; �/ W Rn ! R is given by

h.K; y/ WD max
®
hx; yi W x 2 K

¯
:

The support function is homogeneous of degree 1 and convex and any such function
is the support function of a convex body. For K 2 Kn, the projection body of K is
defined by

h.…K; y/ WD Vn�1.Kjy?/
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for y 2 Sn�1, where y? is the hyperplane orthogonal to y and Kjy? denotes the
image of the orthogonal projection of K onto y?. We say that Z W P n ! Kn is
SL.n/ contravariant if

Z.�P / D ��t Z P

for all � 2 SL.n/ and P 2 P n, where ��t is the inverse of the transpose of �. For
more information on projection bodies and their many applications, see [48, 122].

We say that Z W P n ! Kn is SL.n/ equivariant if

Z.�P / D � Z P

for all � 2 SL.n/ and P 2 P n. The following result establishes a classification SL.n/

equivariant valuations.

Theorem 2.12 ([86]). An operator Z W P n ! Kn is a translation invariant, SL.n/

equivariant Minkowski valuation if and only if there is c � 0 such that

Z P D c D P

for every P 2 P n.

Here, the operator P 7! D P WD ¹x � y W x; y 2 P º assigns to P its difference
body (see [48, 122]).

A classification of SL.n/ equivariant, homogeneous Minkowski valuations on the
space, Kn

0 , of convex bodies containing the origin was obtained in [86]. The result
was strengthened by Haberl [53], who was able to drop the assumption of homogene-
ity. Let n � 3.

Theorem 2.13 (Haberl [53]). An operator Z W Kn
0 ! Kn is a continuous, SL.n/

equivariant Minkowski valuation if and only if there are c0 2 R and c1; c2; c3 � 0

such that
Z K D c0m.K/ C c1K C c2.�K/ C c3 M K

for every K 2 Kn
0 .

Here, the moment body, M K, of K is defined by

h.M K; y/ WD

Z
K

ˇ̌
hx; yi

ˇ̌
dx

for y 2 Rn. When divided by the volume of K, the moment body of K is called its
centroid body and is a classical and important notion going back to at least Dupin (see
[48,122]). Results corresponding to Theorem 2.13 for SL.n/ contravariant Minkowski
valuations were obtained in [53,86]. On the space, P n

0 , of convex polytopes contain-
ing the origin, classification results for SL.n/ contravariant Minkowski valuations



M. Ludwig 102

were established in [53, 86] without assuming continuity and additional operators
appear. For the SL.n/ equivariant case, such results were established in [76].

We remark that the results from Theorem 2.13 and the corresponding results in the
SL.n/ equivariant case were complemented in [124, 135] by classification results for
continuous, homogeneous Minkowski valuations on Kn. A complete classification
for SL.n/ equivariant Minkowski valuations on P n

0 was established in [53]. On the
space of convex bodies that contain the origin in their interiors, moment bodies allow
to define SL.n/ equivariant Minkowski valuations using polarity. For continuous,
SL.n/ equivariant, homogeneous valuations, a complete classification on this space
was established in [88]. For Minkowski valuations on lattice polytopes, see [33].

Classification results for Minkowski valuations on complex vector spaces were
established by Abardia and Bernig [1–3]. They introduce and characterize complex
projection and difference bodies.

An important extension of the classical Brunn–Minkowski theory is the more
recent Lp Brunn–Minkowski theory (see [99,100]). For p > 1, the Lp sum of convex
bodies K; L 2 Kn

0 is defined by

hp.K Cp L; y/ WD hp.K; y/ C hp.L; y/

for y2Rn. An Lp Minkowski valuation Z WKn!Kn
0 is a valuation where on Kn

0 this
addition is chosen. Classification results were obtained in [76,86,117,118] and led to
the definition of asymmetric Lp projection and moment bodies (see [86]). Inequalities
for these new classes of operators were established by Haberl and Schuster [59]. They
generalize the Lp Petty projection and the Lp Busemann–Petty moment inequalities,
which were established by Lutwak, Yang, and Zhang [101], and were, in turn, gener-
alized within the Orlicz–Brunn–Minkowski inequality by Lutwak, Yang, and Zhang
[105, 106]. For information on valuations in this setting, see [77].

A classical notion of addition on full dimensional convex bodies in Rn is Blaschke
addition, which is defined using the sum of surface area measures of convex bodies
and the solution of the classical Minkowski problem. The so-called Blaschke valua-
tions were classified in [52]. For information on the corresponding question within
the Lp Brunn–Minkowski theory, see [79].

The dual Brunn–Minkowski theory, established by Lutwak [96], is, in a certain
way, dual to the classical theory. Star bodies replace convex bodies and radial addi-
tion (defined by the addition of radial functions) corresponds to Minkowski addition.
Intersection bodies in the dual Brunn–Minkowski theory correspond to projection
bodies in the classical theory. Intersection bodies were critical in the solution of the
Busemann–Petty problem [97,139]. A classification of radial valuations and a charac-
terization of the intersection body operator was established in [87]. Replacing radial
addition by Lp radial addition leads to Lp radial valuations (see [51, 54] for classifi-
cation results).
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Since convex bodies can be described by support functions and star bodies by
radial functions, a natural extension of the results described above is a classification
of valuations Z W Kn ! F.Rn/, where F.Rn/ is a suitable space of functions on Rn.
Such results were obtained by Li [74, 75] and by Li and Ma [78], where a charac-
terization of the Laplace transform on convex bodies is established. Another way to
describe convex bodies is by suitable measures and a classification of measure valued
valuations was obtained by Haberl and Parapatits [56], where characterization results
of surface area measures and of Lp surface area measures were established.

3. The Hadwiger theorem on convex bodies
The classical Steiner formula states that the volume of the outer parallel set of a
convex body at distance r > 0 can be expressed as a polynomial in r of degree at
most n. Using that the outer parallel set of K 2 Kn at distance r > 0 is just the
Minkowski sum of K and rBn (the ball of radius r), we get

Vn.K C rBn/ D

nX
jD0

rn�j �n�j Vj .K/

for every r > 0, where �j is the j -dimensional volume of the unit ball in Rj (with the
convention that �0 WD 1). The coefficients Vj .K/ are known as the intrinsic volumes
of K. Up to normalization and numbering, they coincide with the classical quermass-
integrals. In particular, Vn�1.K/ is proportional to the surface area of K and V1.K/

to its mean width (cf. [122]).
The celebrated Hadwiger theorem gives a characterization of intrinsic volumes

and a complete classification of continuous, translation and rotation invariant valua-
tions. For n D 2, it follows from the positive solution to Hilbert’s Third Problem in
this case. It was proved for n D 3 in [60] and then for general n � 3 in [61].

Theorem 3.1 (Hadwiger [61]). A functional Z W Kn ! R is a continuous, translation
and rotation invariant valuation if and only if there are c0; : : : ; cn 2 R such that

Z.K/ D c0V0.K/ C � � � C cnVn.K/

for every K 2 Kn.

The Hadwiger theorem leads to effortless proofs of numerous results in integral
geometry and geometric probability (see [63,69]). An alternate proof of the Hadwiger
theorem is due to Klain [67].

We will describe results on translation invariant and rotation equivariant valua-
tions with values in tensor spaces and spaces of convex bodies. We remark that upper
semicontinuous, translation and rotation invariant valuations were only classified in
the planar case (see [81]).
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3.1. Vector and tensor valuation

The first classification of vector valuations was established by Hadwiger and Schnei-
der [64] using rotation equivariant valuations Z W Kn ! Rn, that is, valuations such
that

Z.�K/ D � Z.K/

for all � 2 SO.n/ and K 2 Kn.

Theorem 3.2 (Hadwiger and Schneider [64]). A function Z W Kn ! Rn is a con-
tinuous, translation covariant, rotation equivariant valuation if and only if there are
c1; : : : ; cnC1 2 R such that

Z.K/ D c1 M1;0
1 .K/ C � � � C cnC1 M1;0

nC1.K/

for every K 2 Kn.

Here M1;0
i .K/ WD ˆ

1;0
i .K/ are the intrinsic vectors of K (see (3.1) below) and

see (3.2) for the definition of translation covariance.
The theorem by Hadwiger and Schneider was extended by Alesker [5,7] (based on

[6]) to a classification of continuous, translation covariant, rotation equivariant tensor
valuations on Kn. Just as the intrinsic volumes can be obtained from the Steiner
polynomial, the moment tensor (defined in (2.2)) satisfies the Steiner formula

Mp;0.K C rBn/ D

nCpX
jD0

rnCp�j �nCp�j

X
k�0

ˆ
p�k;k

j�pCk
.K/ (3.1)

for K 2 Kn and r � 0. The coefficients ˆ
p;s

k
.K/ are called the Minkowski tensors of

K (see [122, Section 5.4]). Recall that T p.Rn/ is the space of symmetric p-tensors on
Rn and let Q 2 T 2.Rn/ be the metric tensor, that is, Q.x;y/ WD hx;yi for x;y 2 Rn.

Theorem 3.3 (Alesker [5]). A function Z W Kn ! T p.Rn/ is a continuous, trans-
lation covariant, rotation equivariant valuation if and only if Z can be written as
linear combination of the symmetric tensor products Qlˆ

m;s
k

with 2l C m C s D p.

Here, a valuation Z W Kn ! T p.Rn/ is called translation covariant if there exist
associated functions Zj

W Kn ! T j .Rn/ for j D 0; : : : ; p such that

Z.K C y/ D

pX
jD0

Zr�j .K/
yj

j Š
(3.2)

for all y 2 Rn and K 2 Kn, where on the right side we sum over symmetric tensor
products. We say that Z is G equivariant for a group G acting on Rn if

Z.�K/.y1; : : : ; yp/ D Z.K/.�ty1; : : : ; �typ/
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for all y1; : : : ; yp 2 Rn, all transformation � 2 G, and all K 2 Kn, where �t is the
transpose of �.

For a classification of local tensor valuations, see [65], and for applications in
various fields, including astronomy and material sciences, see [66].

3.2. Convex body valued valuations

An operator Z W Kn ! Kn is called Minkowski additive if

Z.K C L/ D Z.K/ C Z.L/

for all K;L2Kn. Since KCLDK [LCK \L for K;L2Kn with K [ L2Kn, it
is easy to see that every Minkowski additive operator is a Minkowski valuation. While
the first classification results for Minkowski valuations were established in [83],
Schneider [120] earlier obtained the first classification results for rotation equivariant
Minkowski additive operators. For continuous, translation invariant, rotation equi-
variant Minkowski valuations, so far no complete classification has been established.
But the following representation is known to hold. Let Mcen.Sn�1/ and Ccen.Sn�1/

denote the spaces of signed Borel measures and continuous functions on Sn�1, respec-
tively, having their center of mass at the origin.

Theorem 3.4 (Schuster and Wannerer [123]). If Z WKn!Kn is a continuous, trans-
lation invariant, rotation equivariant Minkowski valuation, then there are uniquely
determined constants c0; cn � 0 and SO.n � 1/ invariant measures �i 2 Mcen.Sn�1/

for 1 � i � n� 2, as well as an SO.n� 1/ invariant function �n�1 2 Ccen.Sn�1/ such
that

h.Z K; �/ D c0 C

n�2X
iD1

Si .K; �/ � �i C Sn�1.K; �/ � �n�1 C cnVn.K/

for every K 2 Kn.

The Borel measures Si .K; �/ on Sn�1 are Aleksandrov’s area measures (see [122])
of K 2 Kn. The convolution of functions and measures on Sn�1 is induced from the
group SO.n/ by identifying Sn�1 with the homogeneous space SO.n/= SO.n � 1/

(see [123]). The above representation formula has to be read in the sense of equality
of measures and h.Z K; �/ is identified with the measure with this density.

4. More on invariant valuations on convex bodies

Translation invariant valuations on polytopes were classified using simplicity or mild
regularity assumptions. Hadwiger [62] established a complete classification of sim-
ple, weakly continuous, translation invariant valuations on convex polytopes. Here,
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informally, a valuation is weakly continuous if it is continuous under parallel dis-
placements of the facets of a polytope. Hadwiger’s result was extended by McMullen
[112] to the following result.

Theorem 4.1 (McMullen [112]). A functional Z W P n ! R is a weakly continuous,
translation invariant valuation if and only if

Z.P / D

nX
jD0

X
F 2Fj .P /

Yj

�
N.P; F /

�
Vj .F /

for every P 2 P n where Yj W Qn�j ! R is a simple valuation.

Here, Fj .P / is the set of j -dimensional faces of P and N.P; F / is the normal
cone to P at F while Qk is the system of all closed polyhedral convex cones of
dimension at most k. We remark that valuations on convex polyhedral cones (or,
equivalently, on spherical polytopes) are not yet well understood and the problems to
classify simple, rotation invariant valuations on spherical polytopes and on spherical
convex bodies are open on spheres of dimension � 3 (even if continuity is assumed).
Kusejko and Parapatits [72] extended Hadwiger’s result and established a complete
classification of simple, translation invariant valuations on polytopes using Cauchy
functions.

Hadwiger [63] proved that simple, continuous, translation invariant valuations
on Kn have a homogeneous decomposition. His result was extended by McMullen
[110].

Theorem 4.2 (McMullen [110]). If Z W Kn ! R is a continuous and translation
invariant valuation, then

Z D Z0 C � � � C Zn;

where Zj W Kn ! R is a continuous, translation invariant valuation that is homo-
geneous of degree j .

It is easy to see that every continuous, translation invariant valuation that is homo-
geneous of degree 0 is a multiple of the Euler characteristic. For the degrees of
homogeneity j D n and j D n � 1, the following results hold.

Theorem 4.3 (Hadwiger [63]). A functional Z W P n ! R is a translation invariant
valuation that is homogeneous of degree n if and only if there is c 2 R such that

Z.P / D cVn.P /

for every P 2 P n.
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Theorem 4.4 (McMullen [111]). A functional Z WKn !R is a continuous and trans-
lation invariant valuation which is homogeneous of degree .n � 1/ if and only if there
is � 2 C.Sn�1/ such that

Z.K/ D

Z
Sn�1

�.y/ dSn�1.K; y/

for every K 2 Kn. The function � is uniquely determined up to addition of the restric-
tion of a linear function.

Continuous, translation invariant valuations that are homogeneous of degree 1

were classified by Goodey and Weil [49].
While a complete classification of continuous, translation invariant valuations on

Kn is out of reach, Alesker [9] proved the following result.

Theorem 4.5 (Alesker [9]). For 0 � j � n, linear combinations of the valuations®
K 7! V

�
KŒj �; K1; : : : ; Kn�j

�
W K1; : : : ; Kn�j 2 Kn

¯
are dense in the space of continuous and translation invariant valuations that are
homogeneous of degree j .

Here, V.KŒj �; K1; : : : ; Kn�j / is the mixed volume of K taken j times and
K1; : : : ; Kn�j while the topology on the space of continuous, translation invari-
ant valuations is induced by the norm k Z k WD sup¹j Z.K/j W K 2 Kn; K � Bnº.
Alesker’s result confirms a conjecture by McMullen [111] and is based on Alesker’s
so-called irreducibility theorem, which was proved in [9] and which has far-reaching
consequences.

For simple valuations, the following complete classification was established by
Klain and Schneider.

Theorem 4.6 (Klain [67], Schneider [121]). A functional Z W Kn ! R is a simple,
continuous, translation invariant valuation if and only if there are c 2 R and an odd
function � 2 C.Sn�1/ such that

Z.K/ D

Z
Sn�1

�.y/ dSn�1.K; y/ C cVn.K/

for every K 2 Kn. The function � is uniquely determined up to addition of the restric-
tion of a linear function.

Klain [67] used his classification of simple valuations in his proof of the Hadwiger
theorem. For an alternate proof of Theorem 4.6, see [72].

A valuation Z W Kn ! R is called translatively polynomial if x 7! Z.P C x/ is
a polynomial in the coordinates of x 2 Rn for all K 2 Kn. Alesker [6] established
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a complete classification of continuous, translatively polynomial, rotation invariant
valuations on Kn. Theorem 3.3 is the version of this result for tensor valuations.

Classification results for continuous, translation invariant valuations that are in-
variant under indefinite orthogonal groups were established by Alesker and Faifman
[16] and Bernig and Faifman [23]. For subgroups of the orthogonal group O.n/, the
following result holds.

Theorem 4.7 (Alesker [8,12]). For a compact subgroup G of O.n/, the linear space
of continuous, translation and G invariant valuations on Kn is finite dimensional if
and only if G acts transitively on Sn�1.

As the classification of the such subgroups G is known, it was a natural task
(which was already proposed in [8]) to find bases for spaces of G invariant valuations
(see [9–11,13,19,20,22,24–27] for results on real valued valuations and [31,136] for
results on tensor and measure valued valuations).

5. Affine valuations on function spaces

We describe classification results for valuations on function spaces that correspond to
the results in Section 2. Let F.Rn/ be a space of functions f W Rn ! Œ�1;1� and
let G be a subgroup of GL.n/. An operator Z W F.Rn/ ! A is G invariant if

Z.f ı ��1/ D Z.f /

for all � 2 G and f 2 F.Rn/. If G acts on A, we say that an operator Z W F.Rn/ ! A
is G contravariant if for some q 2 R,

Z.f ı ��1/ D j det �jq��t Z.f /

for all � 2 G and f 2 F.Rn/. It is G equivariant if for some q 2 R,

Z.f ı ��1/ D j det �jq� Z.f /

for all � 2 G and f 2 F.Rn/. It is called homogeneous if for some q 2 R,

Z.sf / D jsjq Z.f /

for all s 2 R and f 2 F.Rn/ such that sf 2 F.Rn/. An operator is called affinely
contravariant if it is translation invariant, GL.n/ contravariant, and homogeneous.

5.1. Valuations on Sobolev spaces

For p � 1, let W 1;p.Rn/ be the Sobolev space of functions belonging to Lp.Rn/

whose distributional first-order derivatives belong to Lp.Rn/.
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The following result corresponds to Theorem 2.11. Let Kn
c be the set of origin-

symmetric convex bodies in Rn. Let n � 3.

Theorem 5.1 ([90]). An operator Z W W 1;1.Rn/ ! Kn
c is a continuous, affinely

contravariant Minkowski valuation if and only if there is c � 0 such that

Z.f / D c… hf i

for every f 2 W 1;1.Rn/.

Here, for f 2 W 1;1.Rn/, the LYZ body hf i is defined by Lutwak, Yang, and
Zhang [104] as the unique origin-symmetric convex body in Rn such thatZ

Sn�1

�.y/ dSn�1

�
hf i; y

�
D

Z
Rn

�
�
rf .x/

�
dx (5.1)

for every even continuous function � W Rn ! R that is homogeneous of degree 1.
Equation (5.1) is a functional version of the classical even Minkowski problem.

Combined with (5.1), it follows from the definition of projection bodies and sur-
face area measures that for f 2 W 1;1.Rn/ and y 2 Sn�1,

h
�
… hf i; y

�
D

1

2

Z
Rn

ˇ̌˝
rf .x/; y

˛ˇ̌
dx:

We remark that the convex body hf i has proved to be critical in geometric analysis:
the affine Sobolev–Zhang inequality [138] is a volume inequality for the polar body
of … hf i, which strengthens and implies the Euclidean case of the classical Sobolev
inequality, and it was proved in [104] that hf i describes the optimal Sobolev norm
of f 2 W 1;1.Rn/. Tuo Wang [133] studied the LYZ operator f 7! hf i on the space
of functions of bounded variation. Here, the LYZ operator is not a valuation anymore
but Wang [134] established a characterization as an affinely covariant Blaschke semi-
valuation.

The following classification of tensor valuation corresponds to Theorem 2.10 for
p D 2. Let n � 3.

Theorem 5.2 ([89]). An operator Z W W 1;2.Rn/ ! T 2.Rn/ is a continuous, affinely
contravariant valuation if and only if there is c 2 R such that

Z.f / D c J.f 2/

for every f 2 W 1;2.Rn/.

Here, we write J.h/ for the Fisher information matrix of the weakly differentiable
function h W Rn ! Œ0;1/, that is, the n � n matrix with entries

Jij .h/ WD

Z
Rn

@ log h.x/

@xi

@ log h.x/

@xj

h.x/ dx: (5.2)
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We remark that the Fisher information matrix plays an important role in information
theory and statistics (see [45]). In general, Fisher information is a measure of the
minimum error in the maximum likelihood estimate of a parameter in a distribution.
The Fisher information matrix (5.2) describes such an error for a random vector of
density h with respect to a location parameter.

For results on real valued valuations on Sobolev spaces, see [107].

5.2. Valuations on convex functions

We write Conv.Rn/ for the space of convex functions u W Rn ! .�1;1� that are
lower semicontinuous and proper, that is, u 6� 1. We equip Conv.Rn/ and its sub-
spaces with the topology induced by epi-convergence (see [119]). Let

Convcoe.R
n/ WD

®
u 2 Conv.Rn/ W lim

jxj!1
u.x/ D 1

¯
be the space of coercive, convex functions, where jxj is the Euclidean norm of x 2Rn.
The following result corresponds to Theorem 2.1.

Theorem 5.3 ([38]). A functional Z W Convcoe.Rn/ ! Œ0;1/ is a continuous, trans-
lation and SL.n/ invariant valuation if and only if there are a continuous function
�0 W R ! Œ0; 1/ and a continuous function �n W R ! Œ0; 1/ with finite .n � 1/th
moment such that

Z.u/ D �0

�
min

x2Rn
u.x/

�
C

Z
dom u

�n

�
u.x/

�
dx

for every u 2 Convcoe.Rn/.

Here, a function � W R ! Œ0;1/ has finite kth moment if
R1

0
tk�.t/ dt < 1 and

dom u is the domain of u, that is, dom u WD ¹x 2 Rn W u.x/ < 1º.
Let Conv.RnIR/ be the space of finite valued convex functions, that is, of convex

functions u W Rn ! R. We say that u 2 Conv.Rn/ is super-coercive if

lim
jxj!1

u.x/

jxj
D 1:

Let Convsc.RnI R/ be the space of super-coercive, finite valued, convex functions.
The following result corresponds to Theorem 2.4.

Theorem 5.4 (Mussnig [114]). A functional Z W Convsc.RnIR/ ! Œ0;1/ is a con-
tinuous, translation and SL.n/invariant valuation if and only if there are a continuous
�0 W R ! Œ0;1/, a continuous �n W R ! Œ0;1/ with finite .n � 1/th moment, and a
continuous ��n W R ! Œ0;1/ whose support is bounded from above such that

Z.u/ D �0

�
min

x2Rn
u.x/

�
C

Z
Rn

�n

�
u.x/

�
dx C

Z
Rn

��n

�
u.x/

�
d MA.u; x/

for every u 2 Convsc.RnIR/.
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Here, MA.u; �/ denotes the Monge–Ampère measure of u, which is also called
the nth Hessian measure. See [113] for a result on coercive functions in Conv.RnIR/.

The following results correspond to Theorems 2.11 and 2.12. Let n � 3.

Theorem 5.5 ([37]). An operator Z W Convcoe.Rn/ ! Kn is a continuous, monotone,
translation invariant, SL.n/contravariant Minkowski valuation if and only if there is
a continuous, decreasing � W R ! Œ0;1/ with finite .n � 2/th moment such that

Z.u/ D … h� ı ui

for every u 2 Convcoe.Rn/.

For u2Convcoe.Rn/ and suitable � 2C.R/, define the level set body Œ� ı u�2Kn

by

h
�

Œ� ı u�; y
�
WD

Z 1

0

h
�
¹� ı u � tº; y

�
dt

for y 2 Rn. Hence the level set body is a Minkowski average of the level sets.

Theorem 5.6 ([37]). An operator Z W Convcoe.Rn/ ! Kn is a continuous, monotone,
translation invariant, SL.n/ equivariant Minkowski valuation if and only if there is a
continuous, decreasing � W R ! Œ0;1/ with finite integral over Œ0;1/ such that

Z.u/ D D Œ� ı u�

for every u 2 Convcoe.Rn/.

We remark that the results in this section can be easily translated to classification
results for valuations on log-concave functions. In this setting, the results on convex
body valued valuations were strengthened by Mussnig [115].

6. The Hadwiger theorem on convex functions

We call a functional Z W Convsc.Rn/ ! R epi-translation invariant if

Z.u ı ��1
C c/ D Z.u/

for all translations � W Rn ! Rn and c 2 R. Hence Z.u/ is not changed by transla-
tions of the epi-graph of u. To state the Hadwiger theorem on Convsc.Rn/, we need
to define functional versions of the intrinsic volumes. Let Cb..0;1// be the set of
continuous functions on .0;1/ with bounded support. For 0 � j � n � 1, let

Dn
j WD

²
� 2 Cb

�
.0;1/

�
W lim

s!0C
sn�j �.s/ D 0;

lim
s!0C

Z 1

s

tn�j�1�.t/ dt exists and is finite
³

:
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In addition, let Dn
n be the set of functions � 2 Cb..0;1// where lims!0C �.s/ exists

and is finite, and set �.0/ WD lims!0C �.s/.

Theorem 6.1 ([39]). For 0 � j � n and � 2 Dn
j , there exists a unique, continuous,

epi-translation and rotation invariant valuation Vj;� WConvsc.Rn/ ! R such that

Vj;� .u/ D

Z
Rn

�
�ˇ̌
ru.x/

ˇ̌��
D2 u.x/

�
n�j

dx

for every u 2 Convsc.Rn/ \ C 2
C.Rn/.

Here, D2 u is the Hessian matrix of u and ŒD2 u.x/�k the kth elementary symmet-
ric functions of the eigenvalues of D2 u.x/ (with the convention that ŒD2 u.x/�0 W� 1)
while C 2

C.Rn/ is the space of twice continuously differentiable functions with posi-
tive definite Hessian. We remark that V0;� is constant on Convsc.Rn/.

The following result is the Hadwiger theorem on Convsc.Rn/. Here, a functional
Z W Convsc.Rn/ ! R is said to be rotation invariant if Z.u ı #�1/ D Z.u/ for every
# 2 SO.n/. Let n � 2.

Theorem 6.2 ([39]). A functional Z W Convsc.Rn/ ! R is a continuous, epi-transla-
tion and rotation invariant valuation if and only if there are functions �0 2 Dn

0 , : : : ;

�n 2 Dn
n such that

Z.u/ D V0;�0
.u/ C � � � C Vn;�n

.u/

for every u 2 Convsc.Rn/.

A comparison of Theorems 3.1 and 6.2 shows that for 0 � j � n and � 2 Dn
j ,

the functional Vj;� plays a role corresponding to that of the j th intrinsic volume Vj .
Hence, we call Vj;� a j th functional intrinsic volume on Convsc.Rn/. It is connected
to the classical intrinsic volume by

Vj;� .IK/ D cVj .K/

for K 2 Kn where IK is the convex indicator function (that is, IK.x/ D 0 for x 2 K

and IK.x/ D 1 otherwise) and c depends only on j , n, and � (see [42]).
We call a functional Z W Conv.RnIR/ ! R dually epi-translation invariant if

Z.v C ` C c/ D Z.v/

for all linear functions ` WRn !R and c 2R. Using the convex conjugate or Legendre
transform of u 2 Convsc.Rn/, given by

u�.y/ WD sup
x2Rn

�
hx; yi � u.x/

�
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for y2Rn, we see that v 7!Z.v/ is dually epi-translation invariant on Conv.RnIR/ if
and only if u 7!Z.u�/ is epi-translation invariant on Convsc.Rn/. It was proved in [40]
that Z is a continuous valuation on Conv.RnIR/ if and only if Z�

WConvsc.Rn/ ! R,
defined by

Z�.u/ WD Z.u�/;

is a continuous valuation on Convsc.Rn/. This fact permits us to transfer results valid
for valuations on Convsc.Rn/ to results for valuations on Conv.RnIR/ and vice versa.

The following result is obtained from Theorem 6.1 by using convex conjugation.

Theorem 6.3 ([39]). For 0 � j � n and � 2 Dn
j , the functional V�

j;�
WConv.RnIR/ !

R is a continuous, dually epi-translation and rotation invariant valuation such that

V�
j;� .v/ D

Z
Rn

�
�
jxj

��
D2 v.x/

�
j

dx (6.1)

for every v 2 Conv.RnIR/ \ C 2
C.Rn/.

Here, V�
j;�

.v/ WD Vj;� .v�/ for 0 � j � n and � 2 Dn
j . Theorem 6.2 has the fol-

lowing dual version. Let n � 2.

Theorem 6.4 ([39]). A functional Z W Conv.RnIR/ ! R is a continuous, dually epi-
translation and rotation invariant valuation if and only if there are functions �0 2 Dn

0 ,
: : : ; �n 2 Dn

n such that

Z.v/ D V�
0;�0

.v/ C � � � C V�
n;�n

.v/

for every v 2 Conv.RnIR/.

For � 2 Dn
j , the functional V�

j;�
is connected to the classical intrinsic volume by

V�
j;� .hK/ D cVj .K/

for K 2 Kn, where c depends only on j , n, and � (see [42]).
Applications of the Hadwiger theorem on convex functions including integral

geometric formulas and additional representations of functional intrinsic volumes can
be found in [42].

7. More on invariant valuations on function spaces

For continuous, epi-translation invariant valuations on Convsc.Rn/, the existence of a
homogeneous decomposition corresponding to Theorem 4.2 was established in [41],
that is, every such valuation is a linear combination of continuous, epi-translation
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invariant valuations that are epi-homogeneous of degree j and 0 � j � n. Here Z is
called epi-homogeneous of degree j if Z.u/ is multiplied by tj when the epi-graph of
u is multiplied by t > 0. It is not difficult to see that every continuous, epi-translation
invariant valuation that is epi-homogeneous of degree 0 is constant.

The following classification corresponding to Theorem 4.3 was established in
[41].

Theorem 7.1 ([41]). A functional Z WConvsc.Rn/!R is an epi-translation invariant
valuation that is epi-homogeneous of degree n if and only if there is � 2 Cc.Rn/ such
that

Z.u/ D

Z
dom u

�
�
ru.x/

�
dx

for every u 2 Convsc.Rn/.

Here, Cc.Rn/ is the space of continuous functions with compact support. The
result corresponding to Theorem 7.1 on Conv.RnIR/ is stated next.

Theorem 7.2 ([41]). A functional Z W Conv.RnIR/ ! R is a dually epi-translation
invariant valuation that is homogeneous of degree n if and only if there is � 2 Cc.Rn/

such that
Z.v/ D

Z
Rn

�.x/ d MA.v; x/

for every v 2 Conv.RnIR/.

See [41], for more information on homogeneous decompositions and why such
results do not hold for many spaces of convex functions. For more results on val-
uations on convex functions, see [15, 34, 70, 71], and for results on valuations on
quasi-concave functions, see [35, 36].

While formally not results for valuations on function spaces, classification results
for valuations on star shaped sets in Rn were the motivation for some of the results
on function spaces. Let �n.Rn/ be the space of sets S � Rn which are star shaped
with respect to the origin and whose radial functions �.S; �/ W Sn�1 ! Œ0;1�, given
by

�.S; x/ WD sup¹r � 0 W rx 2 Sº;

are in Ln.Sn�1/. Let �0 be the space of star bodies, that is, of star shaped sets with
continuous radial functions. We remark that �n

0 is the space used in the dual Brunn–
Minkowski theory (see [48, 96]). Note that union and intersection on �n.Rn/ and
on �n

0 correspond to the pointwise maximum and minimum for radial functions. We
equip �n.Rn/ with the topology induced by the Ln norm on Sn�1 and �n

0 with the
topology induced by the maximum norm.
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Klain [68] established the following classification results on star shaped sets.

Theorem 7.3 (Klain [68]). A functional Z W �n.Rn/ ! R is a continuous, rotation
invariant valuation with Z.¹0º/ D 0 if and only if there is � 2 C.Œ0; 1// with the
properties that �.0/ D 0 and j�.t/j � c C d jt jn for all t 2 R for some c; d � 0 such
that

Z.S/ D

Z
Sn�1

�
�
�.S; y/

�
dy

for every S 2 �n.Rn/.

If the valuation Z in Theorem 7.3 is in addition positively homogeneous of degree
p, then �.t/ D ctp with c 2 R and 0 � p � n and hence Z is a dual mixed volume
(as defined by Lutwak [96]).

Tsang [130] obtained classification results for valuations on Lp.X; �/, when X

is a non-atomic measure space. Here we state a special case of his results that com-
plements Theorem 7.3. Let p � 1.

Theorem 7.4 (Tsang [130]). A functional Z W Lp.Rn/ ! R is a continuous, trans-
lation invariant valuation that vanishes on the null function if and only if there is
� 2 C.R/ with the property that j�.t/j � cjt jp for all t 2 R for some c � 0 such that

Z.f / D

Z
Rn

�
�
f .x/

�
dx

for every f 2 Lp.Rn/.

We remark that also Theorem 7.3 can be written as a classification result on the
space of non-negative functions in Ln.Sn�1/ (also see [130]). For results on tensor
and Minkowski valuations on Lp space, see [91, 116, 131].

Villanueva [132] obtained classification results for non-negative valuations on star
bodies. In [127], Tradacete and Villanueva showed that a result corresponding to the
classification from Theorem 7.3 is valid on �n

0 . A complete classification on �n
0 is

given in the following result.

Theorem 7.5 (Tradacete and Villanueva [128]). A functional Z W �n
0 ! R is a con-

tinuous valuation if and only if there are a finite Borel measure � on Sn�1 and a
function � W Œ0;1/ � Sn�1 ! R that fulfills the strong Carathéodory condition with
respect to � such that

Z.S/ D

Z
Sn�1

�
�
�.S; y/; y

�
d�.y/

for every u 2 �n
0 .
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Here, we say that � W Œ0;1/ � Sn�1 ! R fulfills the strong Carathéodory condi-
tion with respect to � if �.s; �/ is Borel measurable for all s � 0 and �.�; y/ is contin-
uous for � almost every y 2 Sn�1, while for every t > 0 there is �t 2 L1.Sn�1; �/

such that �.s; y/ � �t .y/ for s < t and � almost every y 2 Sn�1. We remark that
Theorem 7.5 can be rewritten as a result on valuations on non-negative functions in
C.Sn�1/.

Classification results for valuations on Lipschitz functions on Sn�1 were obtained
in [43, 44] and on Banach lattices in [129]. A Hadwiger theorem for valuations on
definable functions was established in [18].

Funding. M. Ludwig was supported, in part, by the Austrian Science Fund (FWF):
P 34446.
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