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Bernoulli random matrices

Alice Guionnet

Abstract. Random matrix theory has become a field on its own with a breadth of new results,
techniques, and ideas in the last thirty years. In these proceedings, I illustrate some of these ad-
vances by describing what we now know about the spectrum and the eigenvectors of Bernoulli
matrices.

1. Introduction

Jacques (or Jakob) Bernoulli (1654–1705) was a renowned Swiss mathematician who
made important contributions to probability theory and partial differential equations.
He was the first to discover the number e. But his most famous result is, at least
for probabilists, the first proof of the law of large numbers. To this end, he analyzed
the concept of the Bernoulli law, which is the simplest non-trivial distribution you
can think of, being the sum of two Dirac masses. It is the distribution of a random
variable b which can only take two values 0 and 1. We denote

p D P .b D 1/ D 1 � P .b D 0/:

A very common example is a coin that, once thrown, falls either on head (modeled by
the state 1) or tail (modeled by 0). Even if one would expect in general the probability
of each event to be equal to 1=2, it may well be rather p 2 .0; 1/ if the coin is rigged.
In Ars Conjectandi, Bernoulli showed that if one throws such a coin independently
a number n of times, then, with large probability, one should see approximately pn

heads if n is large enough. To state this law of large numbers more precisely, he
showed that if b1; : : : ; bn denotes the outcome of n-independent Bernoulli trials, then
for any a < p < b

lim
n!1

P

 
1

n

nX
iD1

bi 2 Œa; b�

!
D 1:
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But how close can we choose a, b to p so that this result remains true? Few years
later, A. de Moivre (1667–1754) quantified the size of the error and proved the first
central limit theorem, namely that a; b can be at a distance of about 1=

p
n of p in the

sense that

lim
n!1

P

 
1p

np.1 � p/

nX
iD1

.bi � p/ 2 Œa; b�

!
D

1
p

2�

Z b

a

e�
x2

2 dx:

This was the first occurrence of the central limit theorem and the start of modern
probability theory and statistics. Implicitly, we so far assumed that p does not depend
on n and belongs to .0; 1/. Later on, we shall also be interested in the case where
p depends on n. Then, it can be checked that the central limit theorem still holds
as long as pn goes to infinity. If pn goes to a finite constant c, then it cannot hold
since

Pn
iD1 bi is an integer so that the above random variable is discrete. In fact, it

converges towards the Poisson distribution

lim
n!1

P

 
1p

np.1 � p/

nX
iD1

.bi � p/ 2 Œa; b�

!
D

X
k2cC

p
cŒa;b�

1

kŠ
cke�c :

We will see later that this transition between such continuous and discrete limits is
also key to describing the spectrum of Bernoulli random matrices. The last concept
which is central in probability theory and important in these notes is entropy. It was
introduced by Ludwig Boltzmann (1844–1906) and Claude Shannon (1916–2001) in
physics and information theory, respectively, as a way to measure disorder. For again
n-independent Bernoulli trials with parameter p, it is defined for any q 2 Œ0; 1� by

lim
"#0

lim
n!1

1

n
ln P

 
1

n

nX
iD1

bi 2 Œq � "; q C "�

!
D �Sp.q/;

where Sp.q/ D q
p

ln q
p
C

1�q
1�p

ln 1�q
1�p

is the entropy or rate function.
In this survey, I will discuss Bernoulli random matrices. A Bernoulli random

matrix is an n � n symmetric matrix with independent Bernoulli entries (modulo the
symmetry constraint) whose size n is going to infinity. I will discuss the law of large
numbers, the fluctuations, and the entropy for their spectrum and eigenvectors. There
are many motivations to study random matrices. The first goes back to Wishart who
considered random matrices to study correlations in large data sets. Such questions
are very modern, with the need to analyze larger and larger data sets and machine
learning. The second comes from physics and works of Wigner and Dyson. They pro-
posed to model the Hamiltonian of excited nuclei by random matrices, an idea which
turned out to be quite successful as indeed real nuclei turned out to have energy
levels distributed like the eigenvalues of random matrices. But Bernoulli matrices
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Figure 1. Courtesy of D. Coulette.

are special among all other random matrices because they describe the adjacency
matrix of an Erdős–Rényi graph G.n; p/. Indeed, the latter is just a graph built on n

(labeled) vertices, with an edge drawn independently between each couple of vertices
with probability p. Studying the eigenvalues of the adjacency matrix of a graph gives
valuable geometric information, such as the size of its boundary (expanders) or the
number of specific configurations, such as triangles, that it contains. One can also
be interested in the combinatorial properties of such matrices and for instance focus
on the probability that the matrix is singular; see e.g. [68]. My viewpoint will be to
investigate the properties of the eigenvalues and eigenvectors of Bernoulli random
matrices, as a particularly nice and well-documented example of random matrices.

To simplify, I will restrict myself to symmetric Bernoulli matrices Bn throughout
these notes:

Bn.i; j / D Bn.j; i/;

and assume that .Bn.i; j /; i � j / follows a Bernoulli law with parameter p. Also, I
will take Bn.i; i/ random, but could take it equal to zero without changing much the
statements of most of the results.

My goal is to understand the spectrum of Bn as well as the properties of its eigen-
vectors as n goes to infinity. One can easily guess that these properties should depend
on the parameter p. Indeed, thinking about the Erdős–Rényi graph, one sees that the
average degree of a vertex is pn. The graph will be very dense if pn goes to infinity
fast enough but sparse if it is finite.

Indeed, it is well known since the breakthrough paper of Erdős and Rényi (see
Figure 1) that if np < 1, G.n; p/ will almost surely have no connected component
of size greater than O.ln n/; if np D 1, there is a giant connected component but it
is of size of order n2=3; if np goes to a constant c > 1, it will have a unique giant
component but lots of small components, and isolated vertices will continue to exist
until np < .1 � "/ ln n; whereas if np > .1 C "/ ln n the graph will almost surely be
connected. Here " is some positive real number as small as wished. In the case where
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np is of order c, the finite size connected components will create small diagonal
blocks in the Bernoulli matrix, with entries equal either to zero or one and therefore
finitely many possible eigenvalues. Hence, we expect the spectrum to accumulate at
these possible values. But should there be other possible eigenvalues? Similarly, we
see that the eigenvectors related with these eigenvalues are localized on a few vertices.
But should we also have delocalized eigenvectors? On the contrary, in the case where
np > .1 C "/ ln n, we may expect eigenvectors to be delocalized and the spectrum to
be nicely continuous. In this case, a whole theory has been developed to show that
the spectrum and the eigenvalues of Bernoulli matrices have the same properties as
those of a random matrix with Gaussian entries. The latter is well known to be much
easier to study, for instance, because the joint law of its eigenvalues is rather simple
and independent of the eigenvectors. Conversely, Bernoulli matrices resemble more
heavy-tailed matrices when pn is of order one, in the sense that it has mostly very
tiny entries but a few large entries. Understanding the transition between these two
behaviors is at the heart of random matrix theory.

In this survey, I will start discussing the asymptotic behavior of the spectrum in
both sparse and dense cases. Then, I will consider its fluctuations, both local and
global, as well as the properties of its eigenvectors. Finally, I will discuss the large
deviations of the spectrum, for instance how to estimate the probability that the sec-
ond eigenvalue of Bernoulli matrices takes an unexpected value.

2. Law of large numbers

In this section, we shall see that the limiting distribution of the spectrum differs a lot
according to whether pn goes to infinity or not.

A first remark should be made about the matrix Bn: its entries are not centered. It
will be more convenient to center them and renormalize the matrix properly. To this
end, we make the decomposition

Bn D
p

np.1 � p/Xn C p1;

where 1 is a matrix whose entries are all equal to one, whereas the entries of Xn are
centered and renormalized to have covariance 1=n:

Xn.i; j / D
Bn.i; j / � pp

np.1 � p/
:

The matrix 1 has one non-trivial eigenvalue which equals n, and flat eigenvector

1 D .1=
p

n; 1=
p

n; : : : ; 1=
p

n/:
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Figure 2.

Conversely, the spectrum of Xn has eigenvalues mostly of order one in the sense that
EŒTr.X2

n/� D EŒ
P

�2
i � D n. Therefore, the above decomposition shows that Bn has a

very large eigenvalue of order n, and the rest is roughly given by the eigenvalues of Xn

taken on 1?. Moreover, by Weyl’s interlacing properties, the eigenvalues .�B
i /1�i�n

of Bn=
p

np.1 � p/ and .�X
i /1�i�n of Xn are interlaced:

�X
n � �B

n � �X
n�1 � � � � �X

1 � �B
1 :

Therefore, it is in general not difficult to retrieve the properties of the eigenvalues of
Bn=

p
np.1 � p/ from those of Xn. Hereafter, we will therefore concentrate mostly

on Xn.

2.1. Dense case

The first result describes the asymptotic distribution of the spectrum in the dense case
and shows that the limit is described by the famous semi-circle law; see Figure 2.

Theorem 2.1. Assume that pn goes to infinity as n goes to infinity. Then, almost
surely, for any a < b

lim
n!1

1

n
#
®
i W �B

i 2
p

np.1 � p/Œa; b�
¯
D lim

n!1

1

n
#
®
i W �X

i 2 Œa; b�
¯
D �

�
Œa; b�

�
;

where � is the semi-circle law given by

�.dx/ D
1

2�

p

4 � x21jxj�2dx: (2.1)

The semi-circle law is ubiquitous to random matrix theory as it describes the
asymptotic behavior of random matrices with Gaussian entries, but in fact any ran-
dom matrix with independent centered entries .aij /i;j such that EŒj

p
naij j

2C"� is
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Figure 3. Simulation for c D 1; 2; 3 (courtesy of J. Salez).

uniformly bounded for some " > 0. Such a convergence was proved first by Wigner
in the case where p is independent of n based on the computation of the moments
EŒTr Xk

n�. Indeed, one can expand the trace of moments of matrices in terms of the
entries, and observe that the indices which contribute to the first order of this expan-
sion can be described by rooted trees, whereas �.xk/ is equal to the Catalan numbers
which enumerate them.

2.2. Sparse case

On the other hand, the limiting distribution of the spectrum is very different when pn

is of order one. Namely, we have the following theorem; see [52, 70].

Theorem 2.2. Assume that pn goes to c 2 .0;C1/ as n goes to infinity. Then, almost
surely, for any a < b

lim
n!1

1

n
#
®
i W �B

i 2
p

np.1 � p/Œa; b�
¯
D lim

n!1

1

n
#
®
i W �X

i 2 Œa; b�
¯
D �c

�
Œa; b�

�
:

The limit law �c depends on c; some plots are shown in Figure 3.
The simulations indicate the presence of atoms. They were shown to be exactly

given by totally real algebraic integers in [58] for all c>0; these are the roots of monic
polynomials with integer coefficients. It is easy to understand that the atoms should
be totally algebraic integers as finite connected components are diagonal blocks with
0 or 1 entries whose characteristic polynomials have such roots. It is a much stronger
statement to show that all such roots are atoms, in particular since totally algebraic
integers are dense in the real numbers. �c has also a continuous spectrum: it was
indeed proved in [30] that �c has a non-trivial continuous part if and only if c > 1.
This result is in fact hard to prove as the limit laws �c’s are described as the solution
of complicated equations [28]; see also [17, 20]. However, such description could be
used in [8] to prove the existence of an absolutely continuous part for sufficiently
large c. Moreover, the first-order expansion of �c in c going to infinity was derived
in [38]. The spectrum at the origin seems to have a Dirac mass whose weight could
be computed [29].
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2.3. Idea of the proof

The first proof of Theorem 2.1 estimated the moments 1
n

Tr.Xn/k for all integer num-
bers k; see [69] for the first theorem and [17, 52, 70] for the sparse case. However, in
order to go into more local results like the behavior of the eigenvectors or the local
fluctuations, and as well to have more explicit formulas for the limit law, it is more
convenient to study the resolvent. This path can be used to study the asymptotics
of the spectral measure of any self-adjoint matrix Xn with independent entries mod-
ulo the symmetry constraint, and was generalized to study heavy-tailed matrices in
[17, 20, 52] based on the ideas from [35]. The idea is to derive the asymptotics of the
Stieltjes transform

Gn.z/ D
1

n
Tr.z � Xn/�1

D
1

n

nX
iD1

1

z � �X
i

for a complex number z away from the real line. To this end, we use the Schur com-
plement formula which reads

.z � Xn/�1
i i D

1

z � Xi i �
˝
Xi ; .z � X.i//�1Xi

˛ ; (2.2)

where Xi D .Xij /j¤i and X.i/ is the associated principal minor, namely the .N � 1/�

.N � 1/ matrix obtained from Xn by removing the i th row and column. Xi i goes to
zero with N and we can check (e.g. by estimating the L2 norm of the difference) that
with probability going to one˝

Xi ; .z � X.i//�1Xi

˛
D

X
j Wj¤i

X2
ij .z � X.i//�1

jj C o.1/: (2.3)

This is where the “light tail” hypothesis pn going to infinity starts to matter. Then,
the entries X2

ij go to zero and have variance 1=n so that, since the Xij are independent
of X.i/, the law of large numbers (or a second moment computation) asserts that with
probability going to oneX
j Wj¤i

X2
ij .z�X.i//�1

jj D

X
j Wj¤i

EŒX2
ij �.z�X.i//�1

jj Co.1/D
1

n

X
j Wj¤i

.z � X.i//�1
jj C o.1/:

But again X.i/ and Xn vary only by a rank two matrix (if we complete X.i/ by zero
entries at the i th row and column), so that their spectrum is interlaced by Weyl’s
interlacing property. As a consequence

1

n

X
j¤i

.z � X.i//�1
jj D

1

n

X
i

.z � Xn/�1
jj C O

�
1

=.z/n

�
:



A. Guionnet 52

This approximation, together with (2.2) and (2.3), implies that with high probability

Gn.z/ D
1

n

X
i

.z � Xn/�1
jj D

1

z � Gn.z/
C o.1/: (2.4)

After recalling that Gn.z/ goes to zero as N goes to infinity, we conclude that since
Gn.z/ goes to zero as the imaginary part of z goes to infinity,

Gn.z/ D
1

2
.z �

p

z2 � 4/ C o.1/

is approximately the Stieltjes transform of the semicircle law G� .z/D 1
2
.z�

p
z2�4/.

Since Gn is analytic and uniformly bounded for =z > ", Montel’s theorem implies
that Gn converges to this limit away from the real line, which yields the vague con-
vergence of the empirical measure of the eigenvalues. Because 1

n
Tr.X2

n/ is in L1, the
weak convergence follows.

On the contrary, in the heavy-tailed case where pn is of order one, the entries
of Xij are often very small but of order one with a positive probability. Hence, the
previous law of large numbers does not hold true any more and we cannot expect such
a simple equation as (2.4). In fact,

P
j¤i X2

ij .z � X.i//�1
jj , if it converges, will a priori

converge to a random variable. To study this convergence, we make the following
assumption on the law �n of Xij :

lim
n!1

n

�Z
.e�iux2

� 1/ d�n.x/

�
D ˆ.u/ (2.5)

with ˆ such that there exists g on RC, with g.y/ bounded by Cy� for some � > �1,
such that for u 2 C�,

ˆ.u/ D

Z 1

0

g.y/e
iy
u dy: (2.6)

This is satisfied by the adjacency matrix of Erdős–Rényi graph with ˆ.u/Dc.eiu�1/

if pn goes to c and g is a Bessel function [20], but also for other cases, for instance
for ˛ stable laws with ˆ.u/ D c.iu/˛=2 and g.y/ D Cy˛=2�1 for some constants
c; C . Then, it was shown in [17, 20] that Gn.z/D 1

n
Tr.z � Xn/�1 converges almost

surely towards G given by

G.z/ D i

Z
eitze�z.t/ dt; z 2 CC; (2.7)

where �z W RC ! ¹x C iyI x � 0º is the unique solution, analytic in z 2 CC, of the
non-linear equation

�z.t/ D

Z 1

0

g.y/e
iy
t zC�z. y

t / dy: (2.8)
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This entails the convergence of the spectral measure of Xn, with � replaced by a
probability measure with Stieltjes transform given by (2.7). The argument to prove
(2.7) and (2.8) is as follows. We first remark that Gn concentrates in the sense that it
is close to its average; see Theorem 3.2. We let �n be the order parameter �n

z .x/ WD

EŒ 1
n

P
ˆ.x.z � X.i//�1

jj /�. By (2.2) and (2.3), we find that, if =z > 0,

Gn.z/ ' E
�
Gn.z/

�
D �iE

� Z 1

0

e
itz�it

P
j¤i X2

ij
.z�X.i//�1

jj dt

�
C o.1/

D i

Z 1

0

eitzE

�Y
j¤i

EŒe
�itX2

ij
.z�X.i//�1

jj � dt

�
C o.1/

D �i

Z 1

0

eitzE

�Y
j¤i

�
1 C

1

n
ˆ
�
t .z � X.i//�1

jj

��
dt

�
C o.1/

D i

Z 1

0

eitzC�n
z .t/ dt C o.1/:

To conclude, we need to show the convergence of �n. But �n can be seen to be analytic
away from the real axis, and uniformly bounded under our hypothesis. This is enough
to see that it is tight and any limit point will be analytic by Montel theorem. Hence, it
is enough to show that it has a unique limit point for z with large imaginary part. To
this end, we get an equation for �n which follows from (2.6) by

�n
z .t/ D

Z 1

0

g.y/E
h
e

iy

x.z�X.i//�1
11

i
dy

'

Z 1

0

g.y/E
h
e

iy
x .z�

P
j�2 X2

ij
.z�X.1//�1

jj
/
i

dy C o.1/

'

Z 1

0

g.y/e
iy
x ze�n

z . y
x / dy C o.1/;

where in the second line we used (2.2) and (2.3). One can conclude by proving the
uniqueness of the solutions to this equation when z is far from the real line by show-
ing that the non-linear equation is then a contraction. The above arguments were
made complete in [17, 19, 20]. Another approach to heavy-tailed matrices and sparse
Bernoulli matrices based on Aldous’ Poisson-weighted infinite tree was proposed
in [25].

2.4. Extreme eigenvalues

The asymptotic behavior of the extreme eigenvalues also depend on c: they stick to the
bulk when pn�lnn and then go away at distance of order

p
ln n. We, more precisely,

have the following result, putting together the article of Benaych-Georges, Borde-
nave, and Knowles [18] and that of Alt, Ducatez, and Knowles [4]; see also [65].
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Theorem 2.3. � Assume that pn= ln n ! C1. Then the largest eigenvalue of Xn

sticks to the bulk: �X
1 ! 2.

� Assume that pn= ln n ! 0. Then �X
1 '

p
ln n= ln.ln n=pn/.

� Assume that pn ' C ln n. Then for C > 1=.ln 4 � 1/ WD C � the eigenvalues stick
to the bulk, whereas for C < 1=.ln 4 � 1/

�X
1 D

˛
p

˛ � 1
; ˛ D max

1

pn

X
j

Bij :

Observe that
P

j Bij is the degree of vertex i : the largest eigenvalue is hence
created by the largest degree in the graph. In fact, in the work of Alt, Ducatez, and
Knowles [4], it is shown that all eigenvalues outside the bulk are created by vertices
with large degrees when pn � C � ln n.

3. Fluctuations

3.1. Concentration of measure

Concentration of measure has become a central tool in probability and, in particular,
in random matrix theory. It allows us to prove that some quantities, such as smooth
function of independent variables, are not much random. It was crucial in the previous
proof of the convergence of the spectral measure. However, it generally depends on
the tails of the random variables. Herbst’s argument allows considering random vari-
ables with sub-Gaussian tails and more precisely random variables whose distribution
satisfies log-Sobolev inequalities, which is the case for instance when their density is
strictly log-concave as for Gaussian’s variables. To deal with bounded variables such
as the entries of Bernoulli matrices, one should rather use the theory developed by
Talagrand [61]. This was done in [44], where the spectrum of random matrices was
observed to be a smooth function of its entries and the associated Lipschitz norm
was computed. It resulted in the following theorem [44, Theorem 1.1]. We hereafter
consider a symmetric matrix A with independent entries above the diagonal with dis-
tribution aij =

p
n, where aij is distributed according to Pij supported in a compact

set K with width jKj.

Theorem 3.1. (1) Take f convex and Lipschitz with Lipschitz norm kf kL. Then,
for any ı > ı0.n/ D 8jKjkf kL=n,

P

�ˇ̌̌̌
1

n
Tr
�
f .A/

�
�E

�
1

n
Tr
�
f .A/

��ˇ̌̌̌
>ıkf kL

�
�4exp

´
�n2

�
ı� ı0.n/

�2
16jKj2

µ
:
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(2) There exists a finite constant c > 0 such that for any ı > ı1.n/ '
p

ı0.n/

P

�
sup

f 2LipK

ˇ̌̌̌
1

n
Tr
�
f .A/

�
� E

�
1

n
Tr
�
f .A/

��ˇ̌̌̌
> ıkf kL

�
� exp

²
� n2

�
ı � ı1.n/

�2
cjKj2

³
:

(3) Let �A
1 be the largest eigenvalue of A. Then

P
�ˇ̌

�A
1 � EŒ�A

1 �
ˇ̌
� ıjKj

�
� exp

²
�

�
ı � 8jKj=

p
n
�2

n

16

³
:

This result is a direct application of Talagrand’s beautiful theory and the com-
putation of Lipschitz constants of functions of the spectral measure in terms of the
entries; see [6, 45]. The original statement proves concentration around the median
rather than the mean, but it is easy to go from one result to the other up to some error
ı0.n/, ı1.n/. The second point is deducted from the first by approximating a general
function by convex functions. It applies to Bernoulli matrices straightforwardly by
taking jKj D 1=

p
p.1 � p/.

Theorem 3.2. Take f convex and Lipschitz with Lipschitz norm kf kL. Then, for any
ı > ı0.n/ D 8

p
�jf jL=np.1 � p/,

P

�ˇ̌̌̌
1

n
Tr
�
f .Xn/

�
� E

�
1

n
Tr
�
f .Xn/

��ˇ̌̌̌
> ı C ı0.n/

�
� exp

²
� p.1 � p/n2 .ı/2

16jf j2L

³
:

Moreover, for any ı > ı00.n/ D O.1=
p

p.1 � p/n/

P
�ˇ̌

�1 � EŒ�1�
ˇ̌

> ı C ı00.n/
�
� exp

®
� p.1 � p/nı2

¯
:

As we can see, the speed of the concentration deteriorates with p going to zero
to be of order n when np is of order one. In fact, it can be shown that the worse
concentration estimates for the empirical measure are of the order of exponential
in n. Indeed, we have the following result due to Bordenave, Caputo, and Chafai [24]
which is based on the Azuma–Hoeffding inequality and requires only the indepen-
dence of the vectors of the random matrix.

Lemma 3.3. Let kf kT V be the total variation norm:

kf kT V D sup
x1<���<xp

pX
iD2

ˇ̌
f .xi / � f .xi�1/

ˇ̌
:
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Then, for any self-adjoint matrix Xn with independent vectors ..Xij ; i � j /;

1 � j � n/ and eigenvalues .�i /1�i�n for any function f with finite total variation
norm so that EŒj 1

n

Pn
iD1 f .�i /j� < 1, and any ı > 0

P

 ˇ̌̌̌
ˇ1n nX

iD1

f .�i / � E

"
1

n

nX
iD1

f .�i /

#ˇ̌̌̌
ˇ � ıkf kT V

!
� 2e�

nı2

8 :

In the general case, however, the extreme eigenvalues do not concentrate and can
be very large for heavy-tailed entries [4, 9].

3.2. Global fluctuations

It is a natural question to wonder how the empirical measure of the eigenvalues fluc-
tuates and, in particular, whether the concentration result of Theorem 3.2 is on the
optimal scale. In the case where p is of order one, this question was first answered
by Jonsson [51] by estimating moments, and in the context of Gaussian matrices by
Johansson [50] by using loop equations. The main point is that the central limit theo-
rem does not require a renormalization by the famous

p
n as for the classical central

limit theorems.

Theorem 3.4. Assume that p 2 .0; 1/ independent of n. Let f be a continuously
differentiable function. Let �i be the eigenvalues of Xn. Then

nX
iD1

f .�i / � E

"
nX

iD1

f .�i /

#
converges in distribution towards a centered Gaussian variable with variance

V.f / D
1

2�2

Z 2

�2

Z 2

�2

�
f .x/ � f .y/

x � y

�2
.4 � xy/

p
4 � x2

p
4 � y2

dx dy:

The central limit theorem also holds if one recenters with respect to the limit
rather than the expectation; see e.g. [56].

On the contrary, if pn goes to a constant c, we see that Theorem 3.3 gives the
optimal speed and we have a “more” classical central limit theorem [7, 20, 59]:

Theorem 3.5. Assume that pn goes to c 2 .0;C1/. Let f be a C 1
b

function. Then

1
p

n

 
nX

iD1

f .�i / � E

"
nX

iD1

f .�i /

#!
converges in law towards a centered Gaussian variable with non-trivial variance.
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Together with [46], we claim that at least for pn of order one, or in Œn"; n1�"�, or
p of order one, we have the following theorem.

Theorem 3.6. Let f be a C 1
b

function. Then

p
p

 
nX

iD1

f .�i / � E

"
nX

iD1

f .�i /

#!
converges in law towards a centered Gaussian variable with non-trivial covariance.

This result should hold for any p > 1=n.

3.3. Local laws

An important breakthrough towards the understanding of local fluctuations and eigen-
vectors is to analyze the so-called local laws as foreseen in [41]. Namely, to esti-
mate

P
f .�i / for less smooth functions, in fact for functions on a mesoscopic scale

f .x/ D g.N ˛.x � E// for some ˛ 2 .0; 1/. Equivalently, one can look at f .x/ D

.z � x/�1 with z DE C i� with � of order N�˛ (indeed the latter can serve to approx-
imate conveniently the first). In this scale, it was proved that if pn goes to infinity,
the mesoscopic distribution of the eigenvalues is still very close from the semi-circle
distribution. Indeed, let us define the Stieltjes transform to be given by

Gn.z/ D
1

n

nX
iD1

1

z � �i

; G�.z/ D

Z
1

z � �
d�.�/:

In [40, Theorems 2.8 and 2.10], the following result was proved, where �-high prob-
ability means a probability greater than or equal to 1 � e�v.ln n/�

for some v > 0.

Theorem 3.7. There are universal constants C1; C2 > 0 such that the following
holds. Assume that

pn � .ln n/C1� ; � D C2 ln ln n:

Then, for E 2 Œ�3; 3� and D D ¹z D E C i�; 0 < � < 3º,\
z2D

²ˇ̌
Gn.z/ � m� .z/

ˇ̌
� .ln n/C2�

�
min

²
1

pn
p

�E C �
;

1
p

pn

³
C

1

n�

�³
holds with �-high probability. Moreover, for � > .ln n/C �n�1

#
®
i W �i 2 ŒE � �; E C ��

¯
D n�

�
ŒE � �; E C ��

��
1 C O.ln n/C �

�
1

n�
3
2

C
1

pn�

��
with �-high probability.
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The above theorem applies for any p such that pn goes to infinity much faster
than any ln n; see e.g. [4]. Below ln n, the extreme eigenvalues were shown to be
dictated by the largest degree in the graph [18].

A similar statement in the sparse case where pn goes to a finite constant is still
open. Indeed, the fact that �c has a dense set of atoms and a continuous part makes the
analysis a priori much more involved and the local law more difficult to conjecture.
An easier heavy tail matrix model was studied in [17, 26, 35], namely the random
matrices with alpha-stable independent entries. In this case, the entries follow the
alpha-stable law P .jAij j � t / ' t�˛=n. When ˛ < 2, it was shown in [17, 35] that
the empirical measure converges towards a limiting law �˛ which is different from
the semi-circle law. One of the advantages of this model is that �˛ is absolutely
continuous except possibly for a discrete set of atoms. Of course, one cannot expect
the eigenvalues to be as rigid in the heavy-tailed case since this would contradict the
central limit theorem (which holds as in Theorem 3.6; see [20]). Hence, in this case,
large eigenvalues should be less rigid, creating large fluctuations. The following result
was proved if the Aij are ˛-stable variables in [26, 27]: for all t 2 R,

E
�

exp.i tA11/
�
D exp

�
�

1

n
w˛jt j

˛

�
; (3.1)

for some 0 < ˛ < 2 and w˛ D �=.sin.�˛=2/�.˛//. We put

� D

8̂̂<̂
:̂

1
2

if 8
5
� ˛ < 2;

˛
8�3˛

if 1 < ˛ < 8
5
;

˛
2C3˛

if 0 < ˛ � 1:

(3.2)

Then, there exists a finite set E˛ � R such that if K � RnE˛ is a compact set and
ı > 0, the following holds. There are constants c0; c1 > 0 such that for all integers
n � 1, if I � K is an interval of length jI j � c1n��.ln n/2, thenˇ̌

NI � n�˛.I /
ˇ̌
� ınjI j; (3.3)

with probability at least 1 � 2 exp.�c0nı2jI j2/. The fact that our result might not be
true on a finite set of values should only be technical. This result was improved in
[2, Theorems 3.4 and 3.5] in order to tackle I of size n�!.˛/ with !.˛/ > 1=2 (and
<.z/ small enough when ˛ < 1). Such an optimal scale is important in the study of
the local fluctuations of the spectrum.

In both light and heavy tails, the main point is to estimate the Stieltjes transform
Gn.z/ D 1

n

Pn
iD1.z � �i /

�1 for z going to the real axis: z D E C i� with � of order
nearly as good as n�1 for light tails, n�� for heavy tails. This is done by showing
that Gn is characterized approximately by a closed set of equations. In the case of
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lights tails, one has simply a quadratic equation for Gn and needs to show that the
error terms remain small as z approaches the real line. In the heavy-tailed case, the
equations are much more complicated, see (2.7) and (2.8), and therefore more diffi-
cult to handle. Similar questions are completely open for other heavy-tailed matrices,
including Bernoulli matrices with pn of order one.

3.4. Local fluctuations

When the average degree pn is large, one expects the eigenvalues to behave exactly as
the eigenvalues of a symmetric matrix with independent Gaussian entries (so-called
GOE matrices). The advantage of Gaussian matrices is that they are an integrable
model of random matrices in the sense that many of their properties can be exactly
computed. To start with, the joint distribution of its eigenvalues .�G

i /1�i�n is explicit:

dP .�G/ D
1

Z
�.�/e�

n
4

P
.�G

i
/2
Y

d�G
i ; (3.4)

where
�.�/ D

Y
i<j

j�i � �j j

is the Vandermonde determinant. In particular, this formula does not depend on the
eigenvectors. Based on this formula, Tracy and Widom could study the local fluctua-
tions of the spectrum .�G

i /1�i�n [66, 67] and they proved that

lim
n!1

P
�
n2=3.�G

1 � 2/ � s
�
D F1.s/;

where F1 is the distribution function of the Tracy–Widom law. For the eigenvalues in
the bulk, it was proved [55] that, for all smooth compactly supported function,

EGn
.O; E/ D E

�
O
�
n.�G

i � E/; : : : ; n.�G
iCp � E/

��
converges as n goes to infinity and the limit is described in terms of Pfaffian distribu-
tions.

The universality in the bulk was obtained after a series of works including notably
[41,42,62] and [39, Theorem 2.5] (for � � 2=3) and improved in [48] (for � > 0) to
finally get the following theorem.

Theorem 3.8 (Bulk universality). Suppose that pn > n� with � > 0. There exists bn

going to zero so that for all smooth compactly supported function O , any E 2 .�2;2/,

lim
n!1

Z ECbn

E�bn

dE 0

2bn

�
EGn

.O; E 0/ � EBn
.O; E 0/

�
D 0:

Moreover, the universality at the edge was obtained in [39, Theorem 2.7]; see also
[60].
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Figure 4.

Theorem 3.9 (Edge universality). Suppose that pn > n� , � > 2=3. Then there exists
ı > 0 such that

P
�
n2=3.�B

2 � 2/ � s
�
D P

�
n2=3.�G

2 � 2/ � s C O.n�ı/
�
C O.n�ı/:

This statement was generalized to pn > n1=3 but the largest eigenvalue then needs
to be shifted by a deterministic drift of order 1=pn [53]. Beyond this threshold, the
fluctuations of the second largest eigenvalue starts to be Gaussian.

When pn decreases below 1=3, it was proved that universality stops to hold
and fluctuations of the largest eigenvalue start to be Gaussian. The precise transi-
tion between Tracy–Widom law and Gaussian fluctuations when p is of order n�2=3

was described in [49]. When no.1/ � pn � n1=3, the papers [47, 49] show that the
fluctuations of the extreme eigenvalues are Gaussian, even if they stick to the bulk.
In the case where pn � ln n, Theorem 2.3 asserts that the eigenvalues go away from
the bulk, at distance of order

p
ln n. The corresponding eigenvectors are localized

close to the vertices with a high degree. In an even more recent preprint [5], the same
authors show that these eigenvalues follow a Poisson point process. Such questions
are open for Bernoulli random matrices with pn of order c 2 .0;C1/ and eigenval-
ues in the bulk. Indeed, as we have seen, the limiting density is a mixture of atoms
and continuous density and it is not yet clear how to zoom in the spectrum in such a
situation. However, such questions could be analyzed for Lévy matrices with ˛-stable
entries in the regime where local law can be obtained on the optimal scale n�1=2 [2].
Figure 4 depicts the expected regimes. In fact, one expects the following transition to
occur (see [63]).

� If ˛ 2 Œ1; 2�, all eigenvectors corresponding to finite eigenvalues are completely
delocalized. Further, for any E 2 R, the local statistics of the eigenvalues near E

converge to those of the GOE as N goes to infinity.

� If ˛ 2 .0; 1/, there exists a mobility edge E˛ such that for jEj < E˛ the local
statistics of the eigenvalues near E converge to those of the GOE as N goes to
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infinity. But if jEj > E˛ , the local statistics of the eigenvalues near E converge to
those of a Poisson point process and all eigenvectors in this region are localized.
The fact that local statistics are given by those of Gaussian matrices for ˛ 2 .1; 2/

or ˛ 2 .0; 1/ and E small enough, except for E in some finite set, was proved in
[2, Theorems 2.4 and 2.5].

3.5. Properties of the eigenvectors

The properties of the eigenvectors are intimately related with local laws. Indeed, by
definition of the eigenvectors, if v is an eigenvector of the symmetric matrix Xn for
the eigenvalue E and we set hv; ei i D vi , then X1 is the first column vector of Xn

while X.1/
n is the .n � 1/ � .n � 1/ principal minor of Xn obtained by removing the

column and row vector given by X1 and XT
1 :

v2
1 D

�
1 C

˝
X1; .E � X.1/

n /�2X1

˛��1
;

where, at least in the dense cases hX1; .E � X.1/
n /�2X1i is close to 1

n
Tr.E � Xn/�2,

and so is governed by the local law. In [40, Theorem 2.16], the following theorem
was proved.

Theorem 3.10 (Complete delocalization of eigenvectors). Assume the hypotheses of
Theorem 3.7 with pn > n� with � > 0. Let vi be the eigenvectors of Bn for the
eigenvalues �n � �n�1 � � � � �1. Then

max
i�n

kvik1 �
.ln n/4�

p
n

with �-high probability.

This result was extended to q going to infinity logarithmically only more recently
[3]. We roughly state their result:

� (Semilocalized phase) Assume that C
p

ln n ln ln n �
p

pn � 3 ln n and let w be a
normalized eigenvector of Bn with non-trivial eigenvalue E � 2 C C �1=2. We let
ƒ.˛/D ˛=

p
˛ � 1 and ˛x D

P
y Bxy=pn. We let WE;ı be the set of vertices such

that ƒ.˛x/ 2 ŒE � ı; E C ı�. Then for each x 2 WE;ı , there exists a normalized
vector v.x/ supported in a ball around x and radius c

p
ln n, such that the support

of v.cx/ and v.y/ is distinct if x ¤ y andX
x2WE;ı

˝
v.x/; w

˛2
� 1 � C

�
p

ln npn ln pn C
p

ln npn
1

E � 2

�2

ı�2:

Moreover, X
y2Br .x/

�
v.x/

�2
y
�

1

.˛x � 1/rC1
:
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� (Delocalized phase) For any � > 0 and � > 0, there exists a constant C > 0 such
that for pn 2 ŒC

p
ln n; .ln n/3=2�, if w is a normalized eigenvector for Bn with

eigenvalue E 2 Œ�2 C �;��� [ Œ�; 2 � ��,

kwk
2
1 � n�1C�

with probability greater than 1 � n�� .

This question is completely open for Bernoulli random matrices with pn of order one
but the understanding of Lévy matrices is again more complete. Based on [2, 26, 27],
we can assert that Tarquini, Biroli, and Tarzia’s conjecture [63] is partly proved.
Indeed the complete delocalization is proved for ˛ 2 .1; 2/ and ˛ 2 .0; 1/ and small
enough eigenvalues. A sort of localization for ˛ 2 .0; 1/ for large enough eigenvalue
was derived in [26], and was shown to be not true for small enough eigenvalues in
[27]: the transition and the value of the mobility edge is still an open question. In fact,
even in the case where the eigenvalue statistics belong to the universality class of
Gaussian matrices, the fine properties of the eigenvectors of Lévy matrices differ [1].
Let us also mention [57] which shows under quite general assumptions that eigenvec-
tors are somehow uniformly delocalized in the sense that any subset of at least eight
coordinates carries a non-negligible part of the mass of an eigenvector.

4. Rare events
It is sometimes important to estimate the probability of rare events, such as the prob-
ability that the extreme eigenvalues take unlikely values or the empirical measure of
the eigenvalues shows an unlikely profile, and what kind of optimal strategy can lead
to such deviations from the expected behavior. In the case of Gaussian symmetric
matrices, the joint density of the eigenvalues is known (3.4). One finds by sort of
Laplace’s principle [15, 16] the large deviations for the empirical measure and the
largest eigenvalue.

Theorem 4.1. Let �G
n � �G

2 � � � � �G
1 be the eigenvalues of a GOE matrix. Then, the

following holds.

� Let E.�/ D 1
2

’
.x2

4
C

y2

4
� ln jx � yj/ d�.x/d�.y/ and set E.�/ D E � inf E.

Then E is a good rate function and the distribution of the empirical measure of
the eigenvalues y�n D

1
n

P
ı�G

i
satisfies a large deviations principle (LDP) with

speed n2 with rate function 	 , that is for every closed set F

lim sup
n!1

1

n2
ln P .y�n 2 F / � � inf

F
E;

whereas for any open set O

lim sup
n!1

1

n2
ln P .y�n 2 O/ � � inf

O
E:
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� Let IG.x/ D 1
2

R x

2

p
4 � y2dy for x � 2 and IG.x/ D C1 for x < 2. Then I

is a good rate function and the distribution of �G
1 satisfies an LDP with speed n

and good rate function IG .

In this case, deviations of the spectrum can be created independently from the
eigenvectors which stay uniformly distributed. On the other hand, if the entries have
sharp exponential decay, large deviations can be created by large entries. Assume that
for some ˛ 2 .0; 2/, there exists a > 0 so that for all i; j

lim
t!1

2�1iDj t�˛ ln P
�
j
p

nXij j � t
�
D �a:

Theorem 4.2. � The law of the empirical measure satisfies an LDP in the speed
n1C˛

2 and good rate function which is infinite unless � D � � � and then equals
a
R
jxj˛d�.x/ [22].

� The law of the largest eigenvalue satisfies an LDP with rate n
˛
2 and GRF propor-

tional to .
R

.x � y/�1d�.y//�˛ [10].

However, the situation is much less understood for Bernoulli matrices and again
the sparse and the dense regimes lead to very different results and techniques. We
discuss these questions hereafter.

4.1. Large deviations for the extreme eigenvalues

Let us first consider the dense case. In [12, 43], we considered the large deviations
for the largest eigenvalue of Wigner matrices and showed that if the entries are
Rademacher, then the same large deviation principle holds, whereas in general there
is a transition between deviations close to two where the rate function is the Gaus-
sian one whereas for large deviations towards large enough values the rate function
is more of a heavy tail type. In a work in progress with F. Augeri, R. Ducatez and J.
Husson, we prove the following theorem.

Theorem 4.3. � Assume that p D 1=2. Then the law of �X
1 satisfies an LDP in the

scale n and with the same rate function IG as for the GOE matrix.

� Assume that p 2 .0; 1=2/. Then for x close enough to 2, the probability that �X
1

is close to x is the same as in the Gaussian case. But for x large enough,

lim sup
ı#0

lim sup
n!1

1

n
ln P

�
j�X

1 � xj < ı
�
D �Ip.x/;

where Ip.x/ < IG.x/.

The case p 2 .1=2; 1/ is under investigation. In fact, analyzing the large deviation
requires to understand good strategies to create the deviations. For p D 1=2, it is
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shown that an optimal strategy is to tilt the law of the entries in order to change their
expectation so that the matrix looks like a rank one deformation of Bernoulli matrix
with a delocalized deformation. The eigenvectors also stay delocalized through this
deformation. When p < 1=2 and x is large, it turns out that the optimal strategy is
to create fully connected components of size

p
n. For p > 1=2, the picture is less

clear and we suspect that vertices with high degree are optimal ways to create large
eigenvalues.

Let us now consider the sparse case following [21]: in this case we already saw
that large eigenvalues are created by vertices with large degree, namely with row or
column vectors with many entries equal to one.

Theorem 4.4. Let Lp D
ln n

ln ln n�ln.np/
and assume that

ln.1=np/ � ln n and np �
p

ln n= ln ln n:

Let �2 be the second largest eigenvalue of Bn. Then for any ı � 0,

lim
n!1

� ln P
�
�2 � .1 C ı/

p
Lp

�
ln n

D 2ı C ı2;

whereas

lim
n!1

� ln P
�
�2 � .1 � ı/

p
Lp

�
ln n

D 2ı � ı2:

4.2. Large deviations for the empirical measure

In [23, Theorem 1.6], a large deviation for the empirical measure of the eigenvalue in
the sparse case was derived: we do not make precise the rate function as it is obtained
by contraction from the large deviation for the empirical neighborhood distribution.

Theorem 4.5. Assume that pn is fixed. Then the law of y�n satisfies a large deviation
principle with speed n.

This question is still open when pn � 1. When p is of order one, we should
expect to have a large deviation with speed n2 according to the concentration of
measure, but the rate function should not be equal to the Gaussian one even when
p D 1=2 because the Dirac at the origin should have rate function bounded above by
ln p (whereas it is infinite in the Gaussian case).

4.3. Large deviations for triangle counts

The traces of Bernoulli matrices have a combinatorial interpretation. For instance,
Tr.B3

n/ is the number Tn;p of triangles in the Erdős–Rényi graph. Observe that its
expectation is of order p3n3. In the well-known paper [34, Theorem 4.1], the follow-
ing theorem was proved.
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Theorem 4.6. Let

Ip.f /D sup
�

²Z 1

0

Z 1

0

f .x;y/�.x;y/dx dy �
1

2

“
ln
�
pe2�.x;y/

C .1�p/
�
dx dy

³
and set '.p; t/ D2 ¹Ip.f /;

R
f .x; y/f .y; v/f .v; x/dxdydv � 6tº. Then for each

p 2 .0; 1/,

lim
n!1

1

n2
ln P .Tn;p � tn3/ D �'.p; t/:

This result extends to any moment Tr.Bk
n/. However, observe that it does not tell

us about deviations of the empirical measure since x ! xk is unbounded so that
deviations of the extreme eigenvalues matter. It is natural to wonder what happens as
well when p goes to zero. This question was attacked in [33,36,37], but we state here
[11, Proposition 1.19]

Theorem 4.7. Let p go to zero with n so that .ln n/4�np2. Set vnDn2p2 ln.1=p/.
Then for t � 1,

lim
n!1

1

vn

ln P
�

Tr.Bd
n / � tnd pd

�
D �ˆ.t/;

where ˆ.t/ D 1
2
.t � 1/2=d if n�1 � p � n�1=2, but ˆ.t/ D min¹�t ;

1
2
.t � 1/2=d º

if p � n�1=2 and �t is the solution of PCd
.�t / D t , where PCd

is the independence
polynomial of the d -cycle.

4.4. The singularity probability

A well-known problem has been to estimate the probability that a matrix zBn with all
independent Bernoulli entries (hence not self-adjoint) is singular. In a breakthrough
paper, Tikhomirov [64] (see also [54]) could exactly estimate it, by showing that the
best strategy to achieve singularity is to have a zero column or row vector.

Theorem 4.8. There exists a finite constant C such that if C ln n=n � p �
1
2

,

P .zBn is singular/ D
�
2 C on.1/

�
.1 � p/nn:

Such an optimal estimate is not yet known for the symmetric Bernoulli matrix Bn

(even though it is conjectured) but the paper [32] proves that the probability that it is
singular is bounded above by e�O.

p
n/. This was improved in an exponential upper

bound in [31].

5. Open problems

(1) Local law for Bernoulli matrices when pn is of order one. This could be at
best on the scale

p
n but is tricky even to state because of the atoms of the

limit law.



A. Guionnet 66

(2) Localization/delocalization of the eigenvectors of Bernoulli matrices for pn

of order one (one would conjecture that Dirac masses yield localization but
the continuous part yields delocalization, however the right criteria to express
this remains to be given). Find a critical c� such that for np > c� there exists
delocalized vectors with connected support with high probability.

(3) Large deviations for the empirical measure of the eigenvalues of Bernoulli
matrices (all p so that pn � 1). Even when p D 1=2, one does not expect to
retrieve the Gaussian rate function since the entropy should be finite at ı0 (as
can be seen by requiring all entries to be equal).

(4) Precise estimate on the singularity probability in the symmetric case.

(5) In comparison, d -regular graphs which are picked uniformly at random are
conjectured to be in the universality class of Gaussian random matrices for
all d � 3. This was proved for d going to infinity fast enough [13, 14], and
recently Huang and Yau could get the local law and the delocalization of the
eigenvectors up to d D 3.
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[42] L. Erdős, B. Schlein, and H.-T. Yau, Universality of random matrices and local relaxation
flow. Invent. Math. 185 (2011), no. 1, 75–119 Zbl 1225.15033 MR 2810797

[43] A. Guionnet and J. Husson, Large deviations for the largest eigenvalue of Rademacher
matrices. Ann. Probab. 48 (2020), no. 3, 1436–1465 Zbl 1444.60021 MR 4112720

[44] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices.
Electron. Comm. Probab. 5 (2000), 119–136 Zbl 0969.15010 MR 1781846

[45] A. Guionnet and O. Zeitouni, Large deviations asymptotics for spherical integrals. J.
Funct. Anal. 188 (2002), no. 2, 461–515 Zbl 1002.60021 MR 1883414

[46] Y. He, Bulk eigenvalue fluctuations of sparse random matrices. Ann. Appl. Probab. 30
(2020), no. 6, 2846–2879 Zbl 1482.15037 MR 4187130

[47] Y. He and A. Knowles, Fluctuations of extreme eigenvalues of sparse Erdős–Rényi graphs.
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