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Bogoliubov excitation spectrum of Bose gases

Phan Thành Nam

Abstract. We review some rigorous results on the derivation of Bogoliubov excitation spec-
trum of interacting Bose gases from many-body Schrödinger equations.

1. Introduction

The Bose–Einstein condensation (BEC) has been an important topic in quantum
physics for a long time since the first predictions in 1924 [11, 24], and especially
after the experimental observations in 1995 [2, 19]. Roughly speaking, BEC is the
phenomenon when many bosons occupy a common quantum state at very low temper-
atures, thus allowing to observe in our macroscopic scales many interesting quantum
phenomena such as superfluidity and quantized vortices.

While the pioneer works of Bose and Einstein [11, 24] concern only the non-
interacting gas, in reality the particles do interact and the rigorous understanding
of interacting systems remains a very challenging problem in mathematical physics.
The theory of interacting Bose gases essentially started in 1947 when Bogoliubov
[10] proposed an approximation theory and used it to predict the excitation spec-
trum of Bose gases. In particular, Bogoliubov’s theory gives a satisfactory explana-
tion of Landau’s criterion for superfluidity [32]. Since then, there have been several
attempts to justify Bogoliubov’s theory from first principles, namely from many-body
Schrödinger equations, and some rigorous results will be reviewed below.

Heuristically, Bogoliubov’s theory based on the key assumption that the interac-
tion is sufficiently weak. In this case, the total interaction felt by each particle can
be effectively replaced by a one-body mean-field potential, in the spirit of the law of
large number in probability theory. This so-called mean-field approximation leads to
Hartree’s theory (or the Gross–Pitaevskii theory) which has been used widely to study
the condensate. Moreover, the weak interaction ansatz also allows to treat excited par-
ticles by the second-order perturbation method. Consequently, Bogoliubov’s theory
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gives an effective description for the fluctuations around the condensate, as some sort
of the central limit theorem.

In this review, we will focus on two specific scaling regimes where the interac-
tions are weak but still play a leading order role.

� The mean-field regime: the interaction range is long, but the interaction strength
is weak. Thus there are many but weak collisions, which is an ideal situation to
apply the mean-field approximation.

� The Gross–Pitaevskii regime: the interaction range is short, but the interaction
strength is strong. Thus there are few but strong collisions, making the mean-field
behavior less obvious.

Although the mean-field and Gross–Pitaevskii regimes correspond to different
physical systems, it turns out that Bogoliubov’s arguments apply successfully to both
cases. In fact, thanks to a series of works by many authors in the last 10 years, the
validity of Bogoliubov excitation spectrum has been proved in both regimes. In 2011,
Seiringer [55] for the first time justified the Bogoliubov excitation spectrum in the
mean-field regime for the homogeneous Bose gas in the torus T 3. Later his result was
extended to general trapped systems in R3 in [30,36]; see also [8,13,21,46,49,52,54]
for various extensions. On the other hand, in the Gross–Pitaevskii regime, which
is most relevant to the physical setup in [2, 19], the analysis is significantly more
challenging since Bogoliubov’s theory admits a subtle correction. The correction
to Bogoliubov’s theory in the Gross–Pitaevskii regime was established by Boccato,
Brennecke, Cenatiempo, and Schlein [7] for the homogeneous gas. Very recently, this
result was finally extended to general trapped systems in R3 in [17, 50].

In the following, I will explain in detail Bogoliubov’s theory and review the
results obtained in [36, 50]. I will also discuss some possible extensions and open
problems in the end.

2. Bogoliubov’s theory

To make the idea transparent, let us start with a trapped system in the mean-field
regime. We consider a system of N bosons in R3 described by the Hamiltonian

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

1

N � 1

X
1�i<j�N

W.xi � xj / (2.1)

which acts on the symmetric space HN D
NN

sym L2.R3/. Here xi 2 R3 stands for the
coordinate of the i th particle (we ignore the spin for simplicity) and HN consists of
functions in L2..R3/N / satisfying

‰.x1; : : : ; xN / D ‰.x�.1/; : : : ; x�.N //; 8� 2 SN :
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We assume that the external potential Vext W R3 ! R satisfies

.Vext/� 2 L3=2.R3/ C L1.R3/; .Vext/C 2 L1
loc.R

3/; lim
jxj!1

Vext.x/ D1 (2.2)

and that the interaction potential W W R3 ! R satisfies

W 2
2 L3=2.R3/ C L1.R3/: (2.3)

Under these conditions, HN is well defined on the core domain
NN

sym C1
c .R3/ and

it is bounded from below. Consequently, HN can be extended to be a self-adjoint
operator on HN by Friedrichs’ method. The trapping condition limjxj!1 Vext.x/D1

ensures that HN has a compact resolvent, and hence it has eigenvalues

�1.HN / � �2.HN / � � � � ; lim
j!1

�j .HN / D 1:

We are interested in the asymptotic behavior of the eigenvalues of HN when N !1.
In the non-interacting gas, namely W D 0, the spectrum of HN can be computed

explicitly from the spectrum of the one-body operator �� C Vext as follows:

�.HN / D

²X
i�1

niei j ei 2 �.�� C Vext/; ni 2 ¹0; 1; 2; : : :º;
X
i�1

ni D N

³
:

On the other hand, for the interacting gas, namely W ¤ 0, it is in general impos-
sible to compute the spectrum of HN when N becomes large, even numerically.
Therefore, it is important to derive effective theories, which are less precise (describ-
ing only some collective properties of the system) but easier to deal with.

One of the most popular approximation methods used in computational quantum
physics and chemistry is the mean-field approximation, which was first introduced by
Curie and Weiss to describe phase transitions in statistical mechanics. Heuristically,
the mean-field theory is based on the assumption that the particles are independent,
leading to a replacement of the linear problem of N particles by a non-linear prob-
lem of one particle. Mathematically, N independent and identical particles can be
described by the Hartree state

‰.x1; : : : ; xN / D u˝N .x1; : : : ; xN / D u.x1/ � � �u.xN /;

where u is a normalized function in L2.R3/. The energy per particle of the factorized
wave function u˝N is given by the Hartree functional

EH.u/ D

Z
R3

�ˇ̌
ru.x/

ˇ̌2
C Vext.x/

ˇ̌
u.x/

ˇ̌2� dx

C
1

2

Z
R3

Z
R3

ˇ̌
u.x/

ˇ̌2ˇ̌
u.y/

ˇ̌2
W.x � y/ dx dy:
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In Hartree’s theory, the lowest energy per particle is

eH D inf
kuk

L2.R3/
D1

EH.u/:

It is not difficult to show that eH has a minimizer u0 which is non-negative and solves
the self-consistent equation

Du0 D 0; D D �� C Vext C ju0j
2
� W � "0; (2.4)

where "0 is a real constant (it is the Lagrange multiplier associated with the mass con-
straint kukL2.R3/ D 1). Thus the mean-field approximation suggests that the ground
state energy of HN in (3.7) satisfies

EN D NeH C o.N /N!1 (2.5)

and that u0 describes the Bose–Einstein condensate. We refer to [34] and the reviews
[33, 53] for rigorous results on the validity of Hartree’s theory.

In this review, we are interested in the next order correction to Hartree’s theory,
which is given by Bogoliubov’s theory. We will give below two different heuristic
derivations of Bogoliubov’s theory: the first is obtained by applying the second-order
perturbation method to the Hartree functional, and the second is obtained by manip-
ulating the many-body Hamiltonian in the second quantization language. While the
first is shorter and easier to access for a general audience, the second is closer to
Bogoliubov’s original argument [10] and easier to justify mathematically.

2.1. Bogoliubov’s theory from the second-order perturbation

To describe the excited particles, namely the particles outside of the condensate, we
can apply the second-order perturbation method to the Hartree functional. More pre-
cisely, if u0 is a Hartree minimizer, then for v?u0 we have the Taylor expansion

EH

 
u0 C vq
1 C kvk2

L2

!
D eH C

1

2

� �
v

v

�
; E 00

H.u0/

�
v

v

� �
C o

�
kvk2

H 1.R3/

�
(2.6)

with the Hessian matrix

E 00
H.u0/ D

�
D C K K

K D C K

�
;

where K is the operator on L2.R3/ with kernel

K.x; y/ D u0.x/u0.y/w.x � y/:
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Roughly speaking, Bogoliubov’s theory suggests that we may lift the Taylor expan-
sion (2.6) to the many-body level, leading to the following refinement of (2.5):

�.HN / D NeH C �.HBog/ C o.1/N!1; (2.7)

where the Bogoliubov Hamiltonian HBog is the second quantization of 1
2
E 00

H.'/ that
we will introduce later.

Note that we always have E 00
H.'/� 0 since u0 is a Hartree minimizer (in particular

D � 0 and u0 is a ground state of D). Moreover, it is known that if the Hessian matrix
is non-degenerate, namely

E 00
H.'/ � � > 0 on HC ˚ HC (2.8)

with HC D ¹u0º
? � L2.R3/ and a constant � > 0, then it can be diagonalized by a

symplectic matrix of the form

V D

 p
1 C s2 s

s
p

1 C s2

!
; V�

�
1 0

0 �1

�
V D

�
1 0

0 �1

�
; (2.9)

namely

V�E 00
H.'/V D

�
E1 0

0 E1

�
; (2.10)

where E1 is unitarily equivalent to .D1=2.D C 2K/D1=2/1=2. Consequently, up to
a constant, the Bogoliubov Hamiltonian HBog is unitarily equivalent to d�.E1/, the
quantization of E1 (see (2.14) below). We refer to [20, 48] for general discussions
on the diagonalization procedure, in particular for the emergence of the symplectic
structure in (2.9). In summary, (2.8) implies that the excitation spectrum of HN can
be described by the spectrum of E1 as follows:

�.HN / � �1.HN / � �
�
d�.E1/

�
D

²X
i�1

niei j ei 2 �.E1/; ni 2 ¹0; 1; : : :º

³
: (2.11)

2.2. Bogoliubov’s theory from the microscopic equation

Now we explain Bogoliubov’s theory from the microscopic description of the many-
body system, which is closer to the original argument in [10].

Let us recall the Fock space formalism. Let K be L2.R3/ or a subspace of L2.R3/.
We define the bosonic Fock space

F .K/ D

1M
nD0

Kn; Kn
D

nO
sym

K: (2.12)
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For g 2 K, we define the creation and annihilation operators a�.g/, a.g/ on F .K/

by

�
a�.g/‰

�
.x1; : : : ; xnC1/ D

1
p

n C 1

nC1X
jD1

g.xj /‰.x1; : : : ; xj�1; xjC1; : : : ; xnC1/;

�
a.g/‰

�
.x1; : : : ; xn�1/ D

p
n

Z
R3

g.xn/‰.x1; : : : ; xn/ dxn; 8‰ 2 Kn; 8n:

It is also convenient to define the operator-valued distributions

a�
x D

1X
nD1

fn.x/a�.fn/; ax D

1X
nD1

fn.x/a.fn/; x 2 R3;

where ¹fnº
1
nD1 is an orthonormal basis of K (the definitions of ax; a�

x are independent
of the choice of the basis). Equivalently, we have

a�.g/ D

Z
R3

g.x/a�
x dx; a.g/ D

Z
R3

g.x/ax dx; 8g 2 K:

These operators satisfy the canonical commutation relations (CCR)�
a.g1/; a.g2/

�
D
�
a�.g1/; a�.g2/

�
D0;

�
a.g1/; a�.g2/

�
Dhg1; g2i; 8g1; g22K;

Œa�
x; a�

y �D Œax; ay �D0; Œax; a�
y �Dı.x�y/; 8x; y2R3: (2.13)

It turns out that many important operators on Fock space can be expressed in the
second quantization form using the creation and annihilation operators. For example,
for any one-body self-adjoint operator A we can write its second quantization as

d�.A/ WD

1M
nD0

� nX
iD1

Axi

�
D

“
R3

A.x; y/a�
xay dx dy; (2.14)

where A.x; y/ is the kernel of A. Similarly, the Hamiltonian in (2.1) can be extended
to be an operator on F .L2.R3// as

HN D

Z
R3

a�
x

�
� �x C Vext.x/

�
ax dx

C
1

2N

Z
R3

Z
R3

W.x � y/a�
xa�

yaxay dx dy: (2.15)

Roughly speaking, Bogoliubov’s theory [10] contains three key steps.

Step 1 (c-number substitution). From the assumption on the complete condensation
on the Hartree minimizer u0, namely˝

‰N ; a�.u0/a.u0/‰N

˛
D N C o.N /; (2.16)
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and the commutation relation�
a.u0/; a�.u0/

�
D 1 �

˝
‰N ; a�.u0/a.u0/‰N

˛
D N0 � N;

we see that a.u0/ and a�.u0/ “mostly commute.” Pushing this idea further, we may
heuristically think of a.u0/ and a�.u0/ as the scalar number N

1=2
0 . Put differently,

we may factor out the contribution of the condensate as a scalar field as

ax � N
1=2
0 u0.x/ C cx; (2.17)

where ax , cx are annihilation operators on F .H/, F .HC/, respectively, where H D

L2.R3/ and HC D ¹u0º
? � H. This allows us to focus on the Fock space F .HC/

which corresponds to excited particles.

Step 2 (Quadratic reduction). Inserting (2.17) in (2.15) and expanding to second
order, we obtain

HN � NeH C HBog C o.1/N!1; (2.18)

where

HBog D d�.D/

C
1

2

Z
R3

Z
R3

W.x � y/u0.x/u0.y/.2c�xcy C c�xc�y C cxcy/ dx dy: (2.19)

Here we have ignored all terms containing more than 2 operators cx or c�x thanks
to the BEC (heuristically cx � N 1=2 � N

1=2
0 ). Moreover, the terms containing only

one operator cx or c�x are canceled due to the Hartree’s equation (2.4).
Note that the Bogoliubov Hamiltonian in (2.19) can be rewritten as

HBog D

Z
R3

c�x .D C K/xcx dx C
1

2

Z
R3

Z
R3

K.x; y/.c�xc�y C cxcy/ dx dy

which is exactly the second quantized version of the Hessian energy

1

2

� �
v

v

�
; E 00

H.'/

�
v

v

� �
D

Z
v.x/.D C K/v.x/ dx

C
1

2

“
K.x; y/

�
v.x/v.y/ C v.x/v.y/

�
dx dy

via the simple rules v.x/ 7! a�
x , v.x/ 7! ax .

Step 3 (Diagonalization). The Bogoliubov Hamiltonian HBog in (2.18) can be diag-
onalized by a unitary operator on F .HC/ of the form

T D exp
�Z

R3

Z
R3

�
k.x; y/c�xc�y � h.c.

�
dx dy

�
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with an appropriate kernel k.x; y/. The actions of T are characterized by

T �c.v/T D c.
p

1 C s2v/ C c�.sv/;

T �c�.v/T D c�.
p

1 C s2v/ C c.sv/; 8v 2 HC;

where

s D sh.k/ D
ek � e�k

2

with k being the operator with kernel k.x;y/. If we choose the operator s as in (2.10),
then a simple computation using the CCR (2.13) leads to the identity

T �HBogT D
1

2
T rHC

.E1 � D � K/ C d�.E1/: (2.20)

Thus from (2.18) we deduce that, up to a unitary transformation,

HN � NeH C
1

2
T rHC

.E1 � D � K/ C d�.E1/ C o.1/N!1; (2.21)

which is consistent with the prediction in (2.11) for the excitation spectrum.

3. Validity of Bogoliubov’s theory

3.1. The mean-field regime

In this subsection we focus on the mean-field regime, namely we consider the Hamil-
tonian in (2.1),

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

1

N � 1

X
1�i<j�N

W.xi � xj /;

with time-independent potentials Vext; W .
From the heuristic discussion in Section 2, we can easily extract two natural

conditions which are necessary to justify Bogoliubov’s prediction for the excitation
spectrum.

� The Hartree minimizer is unique. This is the necessary and sufficient condition to
have the complete BEC in (2.16) for low-lying eigenfunctions of HN ; see, e.g.,
[33, 34, 53].

� The non-degeneracy (2.8) holds true. This condition ensures that the Taylor ex-
pansion in (2.6) makes sense, namely the Hessian dominates the error term, and
that the Bogoliubov Hamiltonian in (2.19) is bounded from below and diagonal-
izable; see [20, 48].
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In a joint work with M. Lewin, S. Serfaty, and J. P. Solovej [36], we proved
that Bogoliubov’s prediction is indeed correct under those general conditions on the
Hartree minimizer. More precisely, we have the following theorem.

Theorem 3.1 (Validity of Bogoliubov excitation spectrum [36]). Consider the Hamil-
tonian HN in (2.1), where Vext and W satisfy (2.2) and (2.3). Assume that the Hartree
minimizer u0 is unique and non-degenerate. Then for every j 2 N, the j th eigenvalue
of HN satisfies

lim
N!1

�
�j .HN / � NeH

�
D �j .HBog/;

where the Bogoliubov Hamiltonian is an operator on F .HC/ defined in (2.19).

The result in [36] holds in a more general setting; in particular, it holds in all
dimensions and the external potential Vext may vanish at infinity which is relevant to
unconfined systems. In the later case, some particles may escape to infinity and we
have to add the assumption that any minimizing sequence of the Hartree functional
is pre-compact in L2.R3/, which is the necessary and sufficient condition for the
complete BEC to hold (see [34]).

Our result in [36] was inspired by the pioneer works of Seiringer [55] and Grech
and Seiringer [30] who have for the first time derived the Bogoliubov excitation spec-
trum for a class of trapped bosons in the mean-field model. In [30,55], the interaction
potential W is assumed to be bounded and of positive type, namely its Fourier trans-
form satisfies

0 � yW 2 L1.R3/:

Under this condition, we haveZ
R3

Z
R3

f .x/f .y/W.x � y/ dx dy D

Z
R3

Z
R3

ˇ̌
Of .k/

ˇ̌2 yW .k/ dk � 0: (3.1)

Therefore, the uniqueness of the Hartree minimizer is an easy consequence of the
convexity of juj2 7! EH.u/ (the convexity of the kinetic part follows from the dia-
magnetic inequality jru.x/j � jrjuj.x/j). Moreover, (3.1) also implies that the oper-
ator K with kernel u0.x/u0.y/W.x � y/ is a positive operator, and hence the non-
degeneracy condition (2.8) holds true.

Note that thanks to (2.20), the spectrum of HBog is known explicitly in terms
of the spectrum of the one-body operator E1 given in (2.11). For the homogeneous
gas studied in [55], when particles are confined on the torus Œ0; L�3 with periodic
boundary condition and Vext D 0, the eigenvalues of E1 are simply given by

ep D
�
jpj4 C 2jpj2 yW .p/

�1=2
; p 2 .2�=L/Z3

n¹0º:
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As already mentioned by Bogoliubov [10], the fact that the elementary excitation ep

behaves linearly for small jpj corresponds to Landau’s criterion for superfluidity [32].
More precisely, it implies the wedge-like shape of the joint spectrum of the Hamil-
tonian momentum, which in particular guarantees that adding a drop with a small
velocity will not change the ground state of the system, namely the drop can move
without friction. Strictly speaking, the mean-field regime discussed in this subsection
corresponds to the choice L � 1 and jpj is not very small. However, the same pic-
ture holds true in the large volume limit L D LN ! 1; see [21] for rigorous results
(the results in [7, 8], up to a suitably scaling argument, are also relevant to the large
volume limit).

Ingredients of the proof. Now let us explain the main ideas of the proof in [36]. Our
important tool is an excitation operator which implements Bogoliubov’s c-number
substitution. Thanks to the isomorphism of Fock spaces

F
�
L2.R3/

�
D F

�
Span.u0/ ˚ ¹u0º

?
�
� F

�
Span.u0/

�
˝s F .HC/

we can decompose any function ‰N 2 HN uniquely as

‰N D u˝N
0 �0 C u˝N�1

0 ˝s �1 C u˝N�2
0 ˝s �2 C � � � C �N

with �k 2 Hk
C. Recall that for two functions ‰k 2 Hk and ‰` 2 H`, we define the

symmetric tensor product by

‰k ˝s ‰`.x1; : : : ; xkC`/

D
1p

kŠ`Š.k C `/Š

X
�2SN

‰k.x�.1/; : : : ; x�.k//‰`.x�.kC1/; : : : ; x�.kC`//:

As proved in [36], the operator

U W ‰N ! .�0; �1; : : : ; �N / (3.2)

is a unitary transformation from HN to the truncated Fock space

F �N .HC/ D 1NC�N F .HC/;

where NC D d�.1HC
/ is the number operator on the excited Fock space F .HC/.

The operator U essentially maps a.u0/ and a�.u0/ to
p

N � NC, namely

ax 7!
p

N � NCu0.x/ C cx;

where cx is the annihilation operator on F .HC/. More precisely, we have on
F �N .HC/

UHN U �
D 1N �N

� 4X
iD0

Li

�
1N �N ; (3.3)
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where

L0 D NeH C
NC.NC C 1/

2N

�Z
ju0j

2
�
W � ju0j

2
��

;

L1 D
p

N � NC

Z ��
� � C Vext C ju0j

2
� W

�
u0

�
.x/cx dx C h.c.

C
NC

p
N � NC

N � 1

Z ��
ju0j

2
� W

�
u0

�
.x/cx dx C h.c.;

L2 D

Z
c�x .D C K/xcx dx C

1 � NC

N � 1

Z
c�x
�
ju0j

2
� W C K

�
x
cx dx

C

p
.N � NC/.N � NC � 1/

2.N � 1/

“
K.x; y/cxcy dx dy C h.c.;

L3 D

p
N � NC

N � 1

“
W.x � y/'.x/c�y cxcy dx dy C h.c.;

L4 D
1

N � 1

“
W.x � y/c�xc�y cxcy dx dy:

By formally taking the limit N !1, we obtain immediately the desired convergence

UHN U �
� NeH ! HBog: (3.4)

Rigorously, we proved in [36, Proposition 5.1] that for every 1 � M � N ,

˙1NC�M .UHN U �
� NeH � HBog/1NC�M

� C

r
M

N
.HBog C C / (3.5)

as quadratic forms on F �M .HC/. This justifies the convergence (3.4) in the sectors of
low excitations, namely NC � N . The contribution of the sectors of high excitations,
namely NC � N , is negligible thanks to the complete BEC (2.16). Using (3.5), we
can derive the convergence of quadratic forms in (3.5), which in turns implies the
convergence of eigenvalues by the min-max principle.

As a byproduct of our method, we also obtain the information for eigenfunctions.

Theorem 3.2 (Norm approximation for eigenfunctions [36]). Under the same condi-
tions in Theorem 3.1, the ground state ‰N of HN is simple and satisfies

lim
N!1

kU ‰N � ˆkF .HC/ D 0; (3.6)

where ˆ 2 F .HC/ is the unique ground state of the Bogoliubov Hamiltonian HBog. A
similar convergence holds for the higher eigenfunctions (possibly up to subsequences
of N ! 1 in case of degenerate eigenvalues).
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The norm approximation (3.6) is much stronger than the complete BEC (2.16).
In fact, while (2.16) describes a macroscopic property, (3.6) really contains micro-
scopic information: changing the behavior of a single particle can change the many-
body state in norm to the leading order. In particular, (3.6) implies that in the non-
interacting case (W 6� 0), ‰N is never close to u˝N

0 in norm, namely the fluctuations
around the Hartree state u˝N

0 are nontrivial.

3.2. The Gross–Pitaevskii regime

In this subsection, we consider the N -body Hamiltonian

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

X
1�i<j�N

N 2V
�
N.xi � xj /

�
(3.7)

on HN D
NN

sym L2.R3/ with time-independent potentials Vext; V . For simplicity, we
assume that the external and interaction potentials satisfy

0 � Vext.x/ � CeC jxj for some constant C > 0; lim
jxj!1

Vext.x/ D 1; (3.8)

0 � V 2 L1.R3/; V is radially symmetric and compactly supported. (3.9)

In this so-called Gross–Pitaevskii regime, the system is very dilute and the strong
correlation between particles at short distances leads to a subtle correction to the
leading order which is captured by the scattering length

8�a0 D inf
²Z

R3

�
2
ˇ̌
rf .x/

ˇ̌2
C V.x/

ˇ̌
f .x/

ˇ̌2� dx; lim
jxj!1

f .x/ D 1

³
: (3.10)

More precisely, the Hartree functional has to be replaced by the Gross–Pitaevskii
functional

EGP.u/ D

Z
R3

�ˇ̌
ru.x/

ˇ̌2
C Vext.x/

ˇ̌
u.x/

ˇ̌2
C 4�a0

ˇ̌
u.x/

ˇ̌4� dx: (3.11)

Note that by simply restricting to the Hartree states u˝N and using N 3V.N �/ �

yV .0/ı0, we would obtain a wrong functional with 8�a0 replaced by its first Born
approximation yV .0/. It is not difficult to prove that the Gross–Pitaevskii functional
has a unique normalized minimizer ' which is positive and exponentially decay (see
[39]).

In [39], Lieb, Seiringer, and Yngvason proved that the ground state energy of HN

in (3.7) satisfies

lim
N!1

�1.HN /

N
D inf

kuk
L2.R3/

D1
EGP.u/: (3.12)
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Later, in [37,38], Lieb and Seiringer proved that if ‰N is an approximate ground state,
namely h‰N ; HN ‰N i D �1.HN / C o.N /, then the complete BEC on the Gross–
Pitaevskii minimizer ' holds:˝

‰N ; a�.'/a.'/‰N

˛
D N C o.N /: (3.13)

Recently, the BEC with optimal rate˝
‰N ; a�.'/a.'/‰N

˛
D N C O.1/ (3.14)

was obtained in [6, 9, 31] (the homogeneous case) and [18, 47] (the general trapped
case).

Since there are only finitely many excited particles due to (3.14), it is still reason-
able to predict the excitation spectrum by Bogoliubov’s approximation. A straightfor-
ward application of the heuristic arguments in Section 2 predicts that the elementary
excitations are eigenvalues of the one-body operator�

D1=2
�
D C 2 yV .0/'2

�
D1=2

�1=2
;

where D is the mean-field operator associated with the Gross–Pitaevskii equation,

D' D 0; D D �� C Vext C 8�a0 � "0:

However, as mentioned already by Bogoliubov [10] (which goes back to a remark of
Landau), the number yV .0/ should be replaced by the scattering length 8�a0, similarly
to the leading order correction. Therefore, to put Bogoliubov’s theory in a good use,
after the three steps written in Section 2.2, we need an important modification.

Step 4 (Landau’s correction). yV .0/ should be replaced by 8�a0 everywhere, with a0

the scattering length of V .

It is Step 4 that makes the implementation of Bogoliubov’s arguments in the
Gross–Pitaevskii regime much more challenging than that of the mean-field regime.

In [7], Boccato, Brennecke, Cenatiempo, and Schlein solved this problem for the
homogeneous gas. Recently, in a joint work with A. Triay [50], we extended the result
for general trapped systems. We have the following theorem.

Theorem 3.3 (Bogoliubov’s theory in the Gross–Pitaevskii regime [50]). Consider
the Hamiltonian HN in (3.7). Let �1.HN / be the ground state energy of the Hamil-
tonian HN in (3.7). Then the spectrum of HN � �1.HN / below an energy ƒ 2

Œ1; N 1=12� is equal to finite sums of the formX
i�1

niei C O.ƒ3N�1=12/; ni 2 ¹0; 1; 2; : : :º;

where ¹eiº
1
iD1 are the positive eigenvalues of .D1=2.D C 16�a0'2/D1=2/1=2.
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Independently to us, a result similar to Theorem 3.3 was obtained by Brennecke,
Schlein, and Schraven in [17]. While our overall approach is similar to that of [7,
17], the detailed implementations are different. In fact, in [50] we introduced several
conceptual simplifications and generalizations, which could be helpful for the study
of dilute gases in the future. Let us explain some key ideas below.

Ingredients of the proof. Our proof is based on the rigorous approximation

T �
2 T �

c T �
1 UHN U �T1TcT2 � �1.HN / C d�.E1/ C o.1/N!1 (3.15)

on the excited Fock space FC D F .HC/ with HC D ¹'º? D QL2.R3/ with Q D

1 � j'ih'j.
Here U is the same transformation in (3.2), which factors out the condensation

described by the Gross–Pitaevskii minimizer u0. Consequently, the excited particles
are captured by the Hamiltonian in (3.3). Unlike the mean-field regime where L3

and L4 are of order o.1/, in the Gross–Pitaevskii regime L4 � N and L3 � O.1/.
Therefore, these terms have to be renormalized by the unitary transformations T1

and Tc , respectively. After that, we obtain a quadratic Hamiltonian which can be
diagonalized by the final unitary transformation T2.

To define the quadratic transformation T1, we need to capture the correlation
structure of particles. Let 0 � f � 1 be the scattering solution

�2�f C Vf D 0 in R3; lim
jxj!1

f .x/ D 1: (3.16)

We write ! D 1 � f and for every 0 < ` � 1 introduce the truncated functions

!`;N .x/ D �.x=`/!.Nx/; "`;N D 2�
�
!`;N .x/ � !.Nx/

�
; (3.17)

where 0 � � � 1 is a smooth function satisfying �.t/ D 1 if jxj � 1=2 and �.x/ D 0

if jxj � 1. By choosing T1 such that

T �
1 a�.g/T1 D a�.

q
1 C s2

1g/ C a.s1g/; 8g 2 H; (3.18)

where
s1 D Q˝2

Qs1 2 H2
C; Qs1.x; y/ D �N!`;N .x � y/'.x/'.y/;

we can replace the short range potential V.N.x � y// in L2 by the longer range
potential "`;N .x � y/. Note that "`;N is supported in ¹`=2 � jxj � `º and

N 3

Z
R3

"`;N D 8�a0: (3.19)

When ` grows slowly, we are essentially placed in the mean-field regime.
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The idea of renormalizing the short-range potential by a Bogoliubov transfor-
mation was introduced by Benedikter, de Oliveira, and Schlein [4] to derive the
Gross–Pitaevskii dynamics on Fock space. In [16], Brennecke and Schlein adapted
the approach in [4] to study the quantum dynamics on HN , where they used a gener-
alized Bogoliubov transformation on F �N

C of the form

exp
�

1

2

“
K1.x; y/b�

xb�
y dx dy � h.c.

�
with bx D

p
1 � N =N ax : (3.20)

The transformation (3.20) has been also an essential tool in the study of the spectral
problem in a series of papers [6–9,17,18]. Our choice of T1 in (3.18) is different from
(3.20) in three aspects.

� First, the operator bx in (3.20) is not an exact annihilation operator, and hence zT1

only satisfies an approximate form of (3.18). Here our T1 is a proper Bogoliubov
transformation and the exact formula (3.18) simplifies several computations.

� Second, the truncated scattering solution in [4, 16] is defined using Neumann
boundary condition on jxj D `N . Here our choice of !`;N in (3.17) is simpler
and works for a larger class of potentials.

� Third, and most importantly, we take ` � 1 instead of ` � 1 as in [4,7,16]. Thus
T1 renormalizes L2 efficiently but and leaves the cubic terms L3 invariant.

To remove the cubic term L3, we introduce a cubic transformation of the form

Tc D eS ; S D �M

“
kc.x; y; y0/a�

xa�
yay dx dy � h.c.;

where �M � 1.N � M/ and kc.x; y; y0/ is the kernel of the operator kc W H ! H2

defined by

kc D Q˝2 QkcQ; Qkc.x; y; y0/ D �N 1=2'.x/!`;N .x � y/ıy;y0

with Qkc.x;y;y0/ the kernel of the operator kc WH!H2. The projections Q WH!HC

and Q˝2 W H2 ! H2
C ensure that kc W HC ! H2

C, namely the cubic kernel S acts only
on excited particles. The cut-off parameter 1 � M � N in �M allows us to control
the number of excitations. Consequently, we have the simple expansion

T �
c ATc � A � ŒS; A� C

1

2

�
S; ŒS; A�

�
and the above choice of S comes from the cancelation

L3 �
�
S; d�.��/ C L4

�
� 0:

Here our cubic transformation is slightly simpler than that of [7] since we did not
change L3 in the previous step. The idea of using a cubic generator goes back to the
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work of Yau and Yin [56] on the Lee–Huang–Yang formula in the thermodynamic
limit. The choice ` � 1 is again very helpful to separate high and low momenta.

Finally, we end up with the quadratic Hamiltonian

d�.D/ C
1

2

Z
N 3"`;N .x � y/'.x/'.y/.2a�

xay C a�
xa�

y C axay/ dx dy

which can be diagonalized similarly as in the mean-field regime. We find that

T �
2 T �

c T �
1 HT1TcT2 � const C d�.E/; (3.21)

where

E D
�
D1=2.DC2K/D1=2

�1=2
; K DQ zKQ; zK.x;y/D '.x/N 3"`;N .x�y/'.y/:

Since `� 1, we have N 3"N;` ! 8�ı0, which implies that E !E1 in an appropriate
sense. This completes the overview of our proof of Theorem 3.3.

4. Further results and open problems

Excitation spectrum. In the mean-field regime, the validity of Bogoliubov’s theory
for the ground state energy and the excitation spectrum were extended in various
directions, including the large volume setting [21], multiple-condensations [49, 54],
mixture of Bose gases [41], and higher-order expansions [13, 42, 46, 52]. The inter-
mediate regime between the mean-field and the Gross–Pitaevskii regime was studied
in [8]. The regime beyond the Gross–Pitaevskii was studied in [14] (see also [1, 27]
for results on the BEC). It is an interesting open problem to extend the results in the
Gross–Pitaevskii regime (or beyond) to trapped systems in bounded domains with
Neumann or Dirichlet boundary conditions, since this will have interesting implica-
tions to systems in the thermodynamic limit.

Quantum dynamics. In the mean-field regime, the method in [36] was developed
in [35] to derive the norm approximation for the many-body Schrödinger dynamics.
Higher-order expansions in the mean-field regime were also obtained in [12]. The
validity of Bogoliubov’s theory for the quantum dynamics with singular interaction
potentials of the form N 3ˇ W.N ˇ x/ with 0 < ˇ < 1 was obtained in [15, 43–45].
When ˇ D 1, the Gross–Pitaevskii dynamics was derived in [25,26], but the justifica-
tion of Bogoliubov’s theory for the dynamics remains open. We refer to the reviews
[5, 51] for further discussions on the dynamical problem.

Positive temperatures. As discussed in Section 3, Bogoliubov’s theory holds true
for eigenvalues belonging to an interval of order 1 above �1.HN /. This implies the
validity of Bogoliubov’s theory for the free energy of a temperature of order 1; see,
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e.g., [36, Theorem 2.3] for an explicit statement. It is an open problem to extend the
analysis to higher temperatures. For the homogeneous gas in a unit torus, the critical
temperature where we see the BEC phase transition is of order N 2=3. In this case, the
validity of the Gross–Pitaevskii theory has been understood [22], but the validity of
Bogoliubov’s theory remains unknown.

Thermodynamic limit. In the thermodynamic limit, Bogoliubov’s theory is con-
sistent with the Lee–Huang–Yang formula on the ground state energy of dilute Bose
gases. In this problem, the leading order behavior is already difficult: the upper bound
was proved in 1957 [23] but the lower bound was obtained only some 40 years later
[40]. The second order, which requires a correction to Bogoliubov’s theory similar
to that in the Gross–Pitaevskii regime, was proved recently in [3, 56] (upper bound)
and [28, 29] (lower bound). While the second-order lower bound in [29] covers a
large class of interaction potentials, including the hard core case, extending this uni-
versality to the second-order upper bound remains an open problem. The excitation
spectrum seems to be completely out of reach by current techniques; a simple reason
is that the existence of the BEC in the thermodynamic limit remains a major open
problem in mathematical physics.
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