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From branching singularities in minimal surfaces to
non-smoothness points in ice-water interfaces

Joaquim Serra

Abstract. We review some recent developments on the regularity theory of two classical free
boundary problems: the obstacle problem and Stefan’s problem.

We emphasize the similarities and differences between these recent results (for the obstacle
problem and Stefan’s problem) and the regularity theory of integer rectifiable area-minimizing
currents (and related problems) developed during the XXth century.

1. Introduction

The aim of this note is to review some recent developments on the regularity theory
of two classical free boundary problems: the obstacle problem and Stefan’s problem.

We believe that these new developments are better understood and appreciated
when one can recognize in them strong parallelisms, and yet crucial differences, with
the regularity theories of Plateau’s problem, Signorini’s problem, and Almgren’s prob-
lem. (Throughout the note, we will use the non-standard (but convenient) keyword
Almgren’s problem to refer to the analog of Plateau’s problem in context of integer
rectifiable area-minimizing currents of codimension 2 or higher, which was studied
by Almgren in his famous work [4].) Consequently, we provide, in addition to a rather
complete background on the former two problems, a (partial) historical overview of
the latter three, focusing on their connections and analogies with the obstacle problem
and Stefan’s problem.

Finally, we describe the methods and results in recent works [25-27, 29] con-
cerned with the fine structure of the singular sets in the obstacle problem and Stefan’s
problem.

2. Five “classical” problems

We begin by presenting—in chronological order of their first appearance—the five
problems that will be discussed throughout the note: Plateau’s problem (1760s),
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Figure 1. Soap films spanning the red “curves”.

Stefan’s problem (1890s), Signorini’s problem (1950s), the obstacle problem (1960s),
and Almgren’s problem (1970s).

2.1. Plateau’s problem: The elegant shapes of soap films

Given a curve in R3, can one find a surface with minimal area having it as boundary?
Raised by Joseph-Louis Lagrange in the 1760s, this problem is one of the most clas-
sical and influential ones in the calculus of variations and geometry. It is named after
the Belgian physicist, J. Plateau (1801-1883), who experimentally investigated the
(physical) geometric laws of soap films and bubbles. By the effect of surface tension,
soap films are natural examples of area-minimizing surfaces.

By a well-known classical computation going back to Lagrange, if a piece of
an area-minimizing surface is smooth, then its mean curvature (sum of the principal
curvatures) must be identically zero.

A difficulty of Plateau’s problem is that area-minimizing “surfaces” may not be
surfaces in the classical sense of differential geometry. For instance, physical soap
films can take the shapes sketched in Figure 1, and while the center and right ones are
smooth surfaces, the soap film on the left is not smooth (or not even locally homeo-
morphic to a planar disc!) near some of its points.

Between the 1930s and the 1970s, several well-known analysts and geometers,
including Almgren, De Giorgi, Douglas, Federer, Fleming, Radd, Reifenberg, and
Taylor, among others, yielded outstanding contributions to Plateau’s problem, which
shaped its modern theory; see for instance [1, 3,4, 14, 15, 18, 20, 21, 28, 40-42, 53].
They addressed the following fundamental questions:

(i)  Which mathematical objects, that are “surfaces” in some sense, allow for a
rigorous solution of the area minimization problem?

(i)  Are such minimizers smooth, possibly outside of a certain singular set?

(iii) What can be said about the singular set? (e.g., is it lower dimensional?)
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Figure 2. Stefan’s problem: ice melting in water.

Thanks to intensive efforts during the XXth century, the answers to these questions are
today well understood. In Section 3, we will review some key aspects of the regularity
theory of Plateau’s problem, i.e., the answers to questions (ii) and (iii). Some of them
will have clear parallelisms in the other problems we will discuss.

2.2. Stefan’s problem: Ice melting in water

Dating back to the XIXth century, Stefan’s problem aims to describe the temperature
distribution in a homogeneous medium undergoing a phase change, typically a body
of ice at zero degrees centigrade submerged in water. The problem is named after
Josef Stefan, a Slovenian physicist who introduced it around 1890; see [52].

The most classical formulation of Stefan’s problem (see e.g. [19, 24]) is as fol-
lows: let Q C R3 be some bounded domain. For concreteness, let us think that 2 is a
“cylindric water tank” as drawn in Figure 2. We denote by 6 = 6(x, t) the tempera-
ture of the water at the point x € Q attime f € R™ := [0, +00). We assume that § > 0
in Q x R*. The (nonnegative) temperature at the boundary of the tank is given, and
we assume that § = 0 at¢t = 0.

The set {(x,7) € @ x R : 8(x,t) > 0}, denoted for brevity by {§ > 0}, repre-
sents the water while its complement, denoted by {# = 0}, represents the ice. The
temperature 6 satisfies the heat equation

0,0 — A9 =0 in the region {6 > 0},

while in the complement 6 is simply zero.

Determining the time-evolving domain {# > 0} in which the heat equation holds
is part of the problem. Equivalently, one must determine where the ice-water interface
d{6 > 0}, also called the free boundary, is. For it, an additional equation—so-called
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Stefan’s condition' —is needed:
3,0 = |V,60]> ond{h > 0. (2.1

It is not difficult to see that, in the previous setting, the ice {# = 0} must shrink
over time. More precisely, if at some point of the tank there is liquid water at some
given time, then the same point remains occupied by liquid at all future times.

The relevant regularity questions for Stefan’s problem are as follows:

(i)  Is the problem well posed?”
(i)  Is the free boundary smooth, or may it have singularities?
(iii) If there are singularities, how often may they occur in space and time?

We will discuss the answers to these questions (which remained completely open
until the 1970s!) later on in this note.

2.3. Signorini’s problem (1950s)

Raised in 1959, Signorini’s problem [50] consists in finding the (elastic) equilibrium
configuration of an elastic body, resting on a rigid frictionless horizontal plane and
subject only to its mass forces.

The difficulty of the problem lies on the fact that one needs to determine which
points on the bottom surface of the body will be in contact with the plane (and what
is the deformation at the points which are not in contact).’

In a very linearized situation, Signorini’s problem is reduced to following a min-
imization problem in the half space U := R3 N {x3 > 0},

min {/ |Vu|? dx among u : U — R satisfying u(x1, x2,0) > g(x1, X2),
U

lim u(x) = o}, 2.2)

I'This extra relation comes from two considerations. First, the normal velocity of the inter-
phase, V, is proportional to the amount of heat absorbed by it (and used to melt the ice). In turn,
this flow of heat “entering” the interphase is, by Fourier’s law, proportional to the gradient of
temperature. Hence, we have | V| = C|V#)|. Second, since # = 0 on the moving interphase, we
obtain that, on it, V and V8 are parallel and (d; + V - V)8 = 0. Combining the two previous
equations and choosing the physical units to make C = 1, we obtain Stefan’s condition.

2In the sense of Hadamard, i.e., given initial and boundary conditions, is there a unique
solution which depends continuously on the given data?

3If one knew, for instance, that all points are in contact, then the initial and final position of
all the boundary points of the body would be obviously determined, and resolving the body’s
deformation would be much simpler!
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Figure 3. Signorini’s problem: an elastic body lying on a surface.

where g : R? — R is a smooth prescribed function satisfying limsup,_, ., g < 0.
This problem is often called the thin obstacle problem and has other applications as
well, such as in the modeling of semipermeable membranes. See [5, 13,22, 38] and
references therein for more information on this problem.

The model (2.2) can be used when the bottom surface of the (undeformed) elastic
solid is a small perturbation of a horizontal plane. In order to derive it more easily,
let us consider the following variant of the problem: Assume that the bottom surface
of the (undeformed) elastic solid is (exactly) a horizontal plane and that, instead, the
rigid surface on which the body will rest is a small perturbation of a horizontal plane.
The horizontal surface is then described as {x3 = eg(x1, x»)}, where g : R? — R is
some bounded function—which we assume to be smooth—and where ¢ > 0 is small.
This situation is depicted in Figure 3. Let us suppose for simplicity that g = —1 + g,
where g : R — [0, 1] is smooth and compactly supported.

The undeformed body “suspended in air” corresponds to U := R3 N {x3 > 0}.
As we let it rest on the rigid surface, it experiences a deformation. For & small, hor-
izontal deformations may be neglected, and we can think that the displacements are
only vertical. More precisely, there is a function u : U — R and a constant ¢ € (0, 1)
such that the point of the solid before occupying the position (x1, x2, x3) € U in the
suspended configuration, now occupies the position (x1, X2, x3 + eu) in the resting
configuration. We are considering for simplicity the “boundary condition at infinity”
limy—oo u = —c € (—1,0), but it would not be difficult to consider other (more real-
istic) boundary conditions by modifying (2.2) accordingly.

The elastic energy of the deformed body is proportional (at leading order in ¢) to
Jr2 |Vu|?. Hence, up to replacing u and g by u — ¢ and g — ¢, we obtain (2.2).

Now, although the minimization problem (2.2) leads to a nonlinear Euler—La-
grange equation, the fact that the (convex) Dirichlet energy is minimized inside the
convex set {u € Hy(U) : u(-, -,0) > g} confers it a very nice mathematical struc-
ture. The study of Singorini’s problem was the starting point for the study of other
similar convex constrained minimization problems with free boundaries, initiating in
the 1960s the field of variational inequalities.
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2.4. The obstacle problem (1960s)

Conceived as a paradigmatic variational inequality, the obstacle problem originates in
the papers [8,30,32,35]. The initial motivation of the problem (which gives its name)
concerned Plateau’s problem with an obstacle. Namely, given a concave function v :
Q — R, where Q C R? is a convex smooth domain, and some boundary values / :
dQ2 — R satisfying & > |y, find a surface with minimal area among all graphs
lying above the obstacle ¥ and spanning the curve {(x, i(x)) : x € 02}. In other
words,

min {/ V14 |Vv|2dx among v > v satisfying v|yq = h}. (2.3)
Q

Determining where the surface will be in contact with the obstacle is part of the
problem.

The obstacle problem is actually the “small perturbation version” of (2.3), namely,
the same minimization problem where /1 + |Vv|? is replaced by %|Vv|2. Com-
puting its first variation with respect to nonnegative perturbations, one finds that a
minimizer ¥ must satisfy the variational inequality

/ Vv-Védx >0in @2, forall¢é € C°(R2) such that £ > 0. (2.4)
Q

Using this one can show that v is lower-semicontinuous, and hence the set {x € Q :
v(x) > v}, denoted by {v > i} for brevity, is open. Since inside the set {v > ¥} the
solution v can be slightly perturbed in both the upwards and downwards directions,
its minimality yields

/ Vu-Vndx =0inQ, forallne CX({v > y}). (2.5)
Q

Considering the new function u := v — v and integrating by parts in (2.4)-(2.5),
we obtain the PDE

(2.6)
u>0,

{ Au = max(0, —Ay),

which is also called the obstacle problem.

Although the original motivation of the obstacle problem does not seem very
deep, much more interesting applications have been found in the last decades. A
beautiful one concerns the configuration of a cloud of Coulomb charges (all with the
same sign), which are kept together by a confining electric potential. In the asymp-
totic regime corresponding to a very large number of charges, the potential generated
by them solves a problem of the form (2.6) (see for instance [43] or the introduction
of [49]). Other well-known applications are the dam problem (fluid filtration) and
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optimal stopping problems (for Finance and Probability). As we will see, the obsta-
cle problem in the particular case —Ay = 1 is also closely connected with Stefan’s
problem.

2.5. Almgren’s problem (1970s)

After their existence theory was established in the 1960s (see [20,21]), the question
of (partial) regularity for oriented area-minimizing m-dimensional surfaces in R”t%
(more precisely integer rectifiable area-minimizing m-currents), in codimension k >
2 was a very natural one. For the sake of brevity, throughout this note we will use the
keyword Almgren’s problem to refer to this problem. It is a convenient and probably
fair name for the problem, since Almgren anticipated its mathematical significance
and studied it in depth during the last two decades of his life. His complete resolution
was published in a famous 950-page posthumous paper [4].

The details of Almgren’s proof are so intricate that its correctness was rather a
myth until De Lellis and Spadaro deciphered its key ideas and bridged them with
shorter (and clearer) arguments in a series of recent papers (see [17] and references
therein). In Section 5, we will describe (very roughly) some ideas from this mon-
umental proof, since they have clear parallels in our recent results for the Stefan
problem and the obstacle problem.

One aspect that makes codimension k > 2 area-minimizing surfaces particularly
delicate is the phenomenon of branching. As it was already known before the 1970s
(by a classical result of Wirtinger and Federer; see [16, Section 1.2] for details),
holomorphic “curves” are area-minimizing 2-surfaces in R*. For example, we can
consider S := {(x3 +ix4)? = (x; +ix3)3} C C? = R*. Note that S is not smooth
at 0: it has a delicate type of singularity called branching singularity. While—as we
will see in Section 3—singularities in soap-film-like area-minimizing surfaces in R3
(or in integer rectifiable codimension 1 currents in R” for all n) are always of conical
type, zooming in infinitely at a branching singularity, we always obtain a plane, just
as in smoothness points. However, near branching singularities, the surface is really a
multiple-valued graph over the tangent plane. As we will see, this feature makes the
analysis of the problem in codimension k > 2 much harder than in the case k = 1.

3. Classical regularity theory for Plateau’s problem (1960s)

In Section 2.1, we stated the three main questions (i)-(ii)-(iii) associated to Plateau’s
problem. Similar questions apply to all the problems considered here. Now, in the case
of Plateau’s problem, existence question (i) is very challenging, and the multiple (all
valid) answers to it obtained during the XXth century were celebrated breakthroughs
(see references in Section 2.1). However, the discussion of (i) does not reveal any
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parallelism between Plateau’s problem and the obstacle problem or Stefan’s problem.
For this reason (and also because it would take too much space), we will not discuss
(1) here and will focus on the regularity part: questions (ii) and (iii).

Although we do not discuss (i), it is perfectly possible to intuitively understand
most of the main ideas in the regularity theory for Plateau’s problem without giving
a completely rigorous definition of “area-minimizing surface”. For our purposes, it is
enough to think of physical soap films.

In the rest of the section, I" will denote some prescribed (reasonably regular) con-
tour. We postulate the existence of an “area-minimizing surface” (a physical soap
film) spanning I', which we denote by S. We review next some of the main ingredi-
ents of the regularity theory for such S.

3.1. Minimal surface equation (1760s)

As found by Lagrange in the 1760s, smooth pieces of an area-minimizing surface
must have zero mean curvature. As a consequence, if a piece of the surface can be
represented by a C! graph, then it solves a uniformly elliptic equation with contin-
uous coefficients. Then, linear methods in elliptic PDE (Schauder estimates) can be
used to show that the piece of surface must be analytic.

3.2. De Giorgi’s “flatness implies smoothness” principle (1961)

One of the most fundamental results for area-minimizing surfaces is the following
theorem of De Giorgi [14] (see also [31]). We give a slightly modified version of
statement (not involving the excess) due to Savin [46].

Theorem 1 ([14]). There exists ¢, > 0 dimensional such that the following holds.
Assume that S has minimal perimeter inside By (i.e., the curve I" which the soap
Jfilm S spans does not intersect By) such that S N By C {|x,| < &o}. Then, 3S is an
analytic graph in By /,.

It will become clear in the next subsections that this theorem is a fundamental
pillar of the theory. Let us now recall the heuristic behind its proof: let B; C R? be
the unit ball and suppose that S = {x3 = eg(x1,x2)} withe > Otinyand g : B - R
bounded. Then the area of S is given by

\V/ 2
/ V1+e2|Vg|2dxidx, =7 + 82/ Vel dxydx; + O(e*).
B; B 2
Hence, for ¢ | 0, the fact that x3 = £g(x1, x2) has minimal area should imply that

g (which is nothing but the x3 coordinate on S, as a fzunction of x1, x», and divided
by &) must be, approximately, a minimizer of | B| Vel dxy dx,. In other words, g is

2
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approximately harmonic.* As a consequence (of this happening at every scale and
near every point of .5), the smoothness of the limiting harmonic functions as ¢ | 0 is
inherited by S, which can be shown to be a C **-graph. The minimal surface equation
then implies its analyticity.

3.3. Fleming’s monotonicity formula and tangent cones (1962)

A very useful consequence of the minimality of S is the so-called “monotonicity
formula”. Fix x € S. For r > 0, let B, (x) C R? denote the Euclidean ball of radius r
centered at x. Given r > 0 such that B,(x) N ' = @ (recall that I" is the contour
spanned by §), let us consider the dimensionless quantity

ax(r;S) = rizArea (S N Br(x)). (3.1)

Then, a,(r; S) is monotone nondecreasing in r (this was first shown in [21]).

To prove the monotonicity formula (at x = 0), one compares the area of S in
B, (0) with the area of “competitors” S; obtained glueing the rescaled surface ¢S for
some ¢ € (0, 1) inside B;,(0) with a “conical interpolation” {x € R" : % € S} inthe
annulus B, \ B;, (note that in this way S; coincides with S on dB;).

One can show that a,(r; S) is constant between r = 0 and r = R if and only if
S is conical inside Bg, thatis, if t(S N Bg) = S N B;g forall ¢t € (0, 1).

The previous observation gives essential information on area-minimizing sur-
faces: they must have conical structure around each point “when looked at the micro-
scope”. More precisely, let us consider the “zoomed-in” (around x) surfaces S*" :=
%(S — x) for r > 0. For any fixed R > 0, ag(R; S*") = ax(Rr; S) is monotone
increasing (in r) and converges to the constant a, (0", S) as r | 0. Hence we have
0 < ap(R;S*") —ag(0F;S*7) | 0asr | 0. As a consequence, one can prove that
the surface S*" must be closer and closer to some cone inside any fixed ball Bg, as
r | 0. This crucial property was first noticed in [28].

3.4. The classification of minimal cones: Taylor, Almgren, and Simons

By the discussion in the previous subsection, for any given x € §, the “zoomed-in”
surface S*" N Bj is arbitrarily close to some area-minimizing cone €, provided that
we take r small enough (possibly depending on x). This leads us to the question:
what are the possible area-minimizing cones €? The answer depends on the type of
objects which we want to admit as “surfaces”. As proven in [53], in the case of “soap-
film-like minimal surfaces” (Reifenberg [41] or Almgren [3]), there are exactly three

4The actual proof of this kind of statement is, of course, more complicated than that: to start
with S does not need to be a graph, so first, one must suitably approximate it by graphs, and
then one needs to understand how to transfer the regularity of harmonic functions to S. But this
gives a good enough idea on how the proof works.



Figure 4. Possible singularities in soap-film-like minimal surfaces: Y type (left) and tetrahedron
type (right).

possibilities: a plane, three half-planes meeting in Y shape with angles of 120°, or the
cone generated by the edges of a regular tetrahedron centered at O (see Figure 4).
An easy computation shows that

{1~ 3.1 if € is a plane,
aop(r;€) =1 4y :=3n/2~ 4.7 if € is of Y type, (3.2)
€3 := 3arccos(—1/3) ~ 5.7 if € is of tetrahedron type.

Hence, thanks to Fleming’s monotonicity formula, for every point x in a soap film
S (in R3), zoomed-in surface S*”” (r tiny) must be close to one of the previous three
possible cones. Moreover, the type of cone is determined by the value of a,(07; S),
which necessarily belongs to {{1, {5, {3}, as (3.2).

Based on our experience when observing physical soap films, we would expect
that the zoomed-in surfaces should look like a plane around “most points”, but still
one important idea is still needed to show this (see next subsection). Still, we can
already start to devise the power of De Giorgi’s theorem and Fleming’s monotonicity
formula combined. They imply that for any given x € S, if there exists r > 0 such
that a,(r; S) < {5, then S will be analytic in some neighborhood of x.”> Such points
x are called regular points. All other points are called singular points.

Let us close the subsection with an important remark: if instead of soap-film-like
minimal surfaces we had considered boundaries of sets of minimal perimeter (resp.
integer rectifiable area-minimizing 2-currents) in R3, then the only possible minimal
cones would have been the planes. In particular, De Giorgi’s theorem implies that
such notions of area-minimizing surfaces in R3 are analytic unconditionally.

>Indeed, since a is monotone and a (0+, S) must take one of the three values in (3.2),
the assumption ax(r, S) < £ implies that the value at 01 can only be 7. Hence for small
enough scales, S*-” will be arbitrarily close to a plane, and then De Giorgi’s theorem implies
its analyticity.
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On the other hand, the same strategy—described here for surfaces in R3>—works
for hypersurfaces in R”. In that case, Almgren [2] for n = 4 and Simons [51] for
5 < n < 7 proved that if € is an area-minimizing (hyper-)cone in R” and € N S"~!
is smooth, then € must be a hyperplane. This classification result is important because
one can deduce from it that boundaries of sets of minimal perimeter (resp. inte-
ger rectifiable area-minimizing (n — 1)-currents) are analytic in dimensions n < 7.
This dimension 7 is sharp since Simons’s cone {x? + x3 + x3 + x2 = xZ + xZ +
x% + xé} is an example of area-minimizing surface (with respect to the two previous
notions) in R®, as shown in [7].

3.5. Federer’s dimension reduction principle and partial regularity theorems

In order to complete our heuristic overview of the classical regularity theory for
area-minimizing surfaces in R3, a last key idea is missing: the dimension reduction
principle. The first observation we need to make is that the map m : S — {1, 45, {3}
defined as

m(x) 1= a, (0", S) = inf {a (r;S) : r > 0}

will be upper-semicontinuous, since it is an infimum of continuous functions. As a
consequence, the set of tetrahedron type singular points X3 := {m = {3} is closed.

In order to glimpse how Federer’s dimension reduction argument works, let us
show that X3 is discrete. Indeed, assume by contradiction that x; € X3 converges to
Xoo € R™ \ (Ugf{xx} UT). Since X3 is closed, xo belongs to X3.

Now given ¢ > 0 arbitrarily small, we can choose r, > 0 (depending on x,) such
that 0 < a,_ (rs, §) —£3 < g/2. On the other hand, since a(r¢, S) is continuous in
x, there exist g, € (0,7¢) such that 0 < ax(rs; §) — €3 < eforall x € X3 N By, (x0).
Since xx — Xoo, for k sufficiently large, we will have rg 1= |xx — Xoo| < Qe-

Let us now zoom in: consider S := §¥"* and define x; := (X — Xo0)/Tk-
Note that, by definition, x,’c‘ belongs to S2. By scaling, we have ao(1; S;) =dax . (re;S)
and Ay (1; S,:‘,) = ay, (rr: S). Hence, by definition of g,

Uy = a0(0+;S1:) =< aO(S;:, ) =ax (re;S) < ax(06:5) <4z —¢
and
3 = a,:(07587) < apr (1:87) = ax, (13 ) < ax (05 5) < €3 —e.

Hence choosing ¢ sufficiently small (and k sufficiently large), we find that
o S will be arbitrarily close to a cone of tetrahedron type (centered at 0),
» S7 will be arbitrarily close to a cone about the point x; € S2.

This gives an obvious contradiction since the cone of tetrahedron type is clearly not
a cone about any of its points in S2.
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A refined version of the same type of argument allows one to show that singu-
lar points of Y type have Hausdorff dimension® at most one.” This type of argument
is often called Federer’s dimension reduction and works in several contexts where
“zoomed-in objects” have some conical structure. The basic principle can be summa-
rized as follows: if X C R” is at the same time a cone about 0 and about another point
x* # 0, then X must be translation invariant in the direction x* (since tX = X and
(X —x*)=X —x*forallt > 0imply that X — ( — )x™ = X).

4. Stefan’s problem and the obstacle problem during 1970s-2000s

4.1. Duvaut’s transformation

From the XIX century formulation of the Stefan problem explained in Section 2.2, it
was not even clear if the problem was well posed. A key development was obtained in
1973 by Duvaut [19], who revealed a hidden convex structure in the problem: recall
that 6 denotes the temperature and consider the transformation

t
u(x,t) ::[ O(x,7)dr.
0
Duvaut showed that the new function
u: QxR - RT
satisfies
0t — Au = — x>0}
u >0, 4.1)
8,u > O,

where y4 denotes the characteristic function of the set A.
By the strong maximum principle, if u is Duvaut’s transformation of a tempera-
ture solving the Stefan problem, then it also satisfies the strict monotonicity property

d;u >0 in{u > 0}. 4.2)

This seemingly qualitative property was never used in the regularity theory developed
in the 1970s. Still, we state it here because it plays an important role in the recent
results.

%We recall that a subset X C R” is said to have Hausdorff dimension 8 € [0, n] if for
all p” > B and for all § > O there exist countably many balls B,,z; covering X such that
i (ri)® < 8. One can easily check from this definition that the Hausdorff dimension of an
m-plane in R” is m.

7Actually, Y points form analytic curves by the deep results in [34, 53].
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Since we can easily recover 6 from u by computing its time derivative, we see
that (4.1) is an equivalent formulation of the Stefan problem. The new formulation
is useful because (4.1) enjoys a convex structure: it is the L2-gradient flow® of the
convex functional

J(u) = / (1|Vu|2 + max(0, u)) dx. (4.3)
o \2

As a consequence, questions such as the well-posedness of solutions become much
simpler in the new formulation.
4.2. Stefan’s problem as a parabolic obstacle problem

Let us notice that stationary (constant-in-time) solutions of (4.1) satisfy exactly the
obstacle problem (2.6) in particular case —Ayr = 1, that is

Au = X{u=>0},

u > 0.

4.4)

In this respect, (4.1) is a parabolic version of the obstacle problem (4.4). Solutions
to (4.4) are critical points (and hence minimizers, since the functional is convex)
of J(u). Note that such constant-in-time solutions of (4.1) are never solutions of
the Stefan problem (never arise as Duvaut transforms of some temperature) since,
for instance, they do not satisfy (4.2). Still, understanding the regularity of the free
boundaries for the obstacle problem (4.4) is a logic first step before dealing with
time-dependent solutions.

4.3. Obstructions to regularity of the free boundary:
Schaeffer’s examples (1977)

To study (4.4), a first thing one might try is to construct some explicit solutions. In
most simple cases, the obtained free boundaries are smooth.

However, it is possible to find singular free boundaries even in two dimensions, as
done by Schaeffer in [48]. He used complex variables to construct solutions of (4.4)
in R? in which the free boundary has a cusp represented by the curve (Figure 5, left)

2k+%
xp==%x; *, 0=<x; =<1,

8The solution u satisfies, for infinitesimal T > 0,
. 1
u(-,t + ) = argmin (J(v) + EHU — ”("[)”i%m) +o(1),

where the minimum is among functions v : 2 — R” satisfying the prescribed boundary condi-
tion for u at time ¢ + t,i.e., v = u(-,¢ + t) on 9L2.
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Figure 5. Schaeffer’s examples of singular free boundaries.

where k € N. In this family of examples, the set {u > 0} is actually the image of
{|z| <1, Imz > 0} under the conformal mapping f(z) = z2 + i z***1, and u satisfies

near the origin
2

x
u(z) ~ 72 + ¢k Im(22k+%) +ee,

where z = x1 + ixs.

Another family type of singularities (two-sided cusps) was also constructed by
Schaeffer (Figure 5, center). In this case, the free boundary is represented by the
curves

Xo=Faf*, 1<y <L

In the case of general smooth concave obstacles ¥, Schaeffer noticed that solu-
tions to (2.6) may even have infinitely many cusps (Figure 5, right).

4.4. Caffarelli’s breakthrough (1977)

It was not until 1977, with the groundbreaking paper of Caffarelli [9] (and with the
paper [33]), that the “modern” regularity theory for (4.1) and (4.4) was initiated.
Since, as explained before, (4.4) is a particular case of (4.1)—that of constant-in-
time solutions—Caffarelli’s results described next apply at the same time to both the
obstacle problem and Stefan’s problem.

The approach of Caffarelli to the regularity of free boundaries of (4.1)—or of
(4.4)—has some rough similarities with the regularity theory of area-minimizing
hypersurfaces described in Section 3. In Caffarelli’s regularity theory (as in area-mini-
mizing surfaces), blow-ups (limiting zoomed-in objects) are central actors. Informally
speaking, Caffarelli looks at points on the free boundary through the microscope, and
infers “macroscopic properties” of the free boundary from the “microscopic” ones.

For (4.1) the natural scaling of the equation suggests considering, for given (xo, o)
€ d{u > 0}andr > 0,

1
ureror (x, 1) 1= —u(xo + rx, to + r2t).
r
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=9,

*,

Flgure 6. MMustration of the dichotomy in Caffarelli’s theorem.

It is easy to see that w*°-*" is apgain a solution of (4.1). Blow-ups are defined as
accumulation points as r | 0 of g%,

The main result from Caffarelli [9], combined with the fundamental analyticity
result for C! free boundaries of Kinderlehrer and Nirenberg [33], is stated next. (See
Figure 6 for an illustration of the result.)

Theorem 2. Let @ < R" and let 1 : 2 x (0, T) — R be a solution of (4.1). For every
(x..t.) belonging to the free boundary d0{u = 0}, one of the following two alternatives
holds:

(a) uFeted %{max[(he .x)) % asr | 0, for some e € S"'; and the free bound-
ary is a (moving) smooth embedded (n — 1)-surface near (x..t.);

(b) wFostelx s %x - Ax for some r;. | 0 and some nonnegative definite marrix
A with trace(A) = 1; and the free boundary has a cusp-like singularity at
(X, o).

Besides the idea of considering blow-ups, the methods used by Caffarelli to prove
this result were rather different than those employed in area-minimizing surfaces.
For instance, in Caffarelli’s approach, a convexity property of blow-ups is crucially
used in its classification, and his methods “based on the maximum principle™ can
be applied to more gpeneral non-variational problems, such as fully nonlinear obsta-
cle problems. For a self-contained overview of Caffarelli's 1977 proof, we refer the
reader to [23].
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4.5. Weiss’ epiperimetric inequality approach (1999)

In the paper [54], Weiss introduced a new monotonicity formula for the obstacle
problem, which is in many respects analogous to the Federer—Fleming monotonicity
formula for area-minimizing surfaces. Given a solution u of the obstacle problem
(4.4), and x, € 0{u > 0}, he introduced the adjusted energy (recall that the functional
J was defined in (4.3))

1 1
on(r,u) = rn+2J(U;Br(xo)) - Fn+3 »/(;B u.

He proved that W, (r, u) is monotone nondecreasing in r, and constant if and only if
u is 2-homogeneous (i.e., u(tx) = t?u(x) for all t > 0).

Similarly to what happens with area-minimizing surfaces, this monotonicity for-
mula follows from comparing the energy of the solution J of u in B, with the energy
of its natural competitor (defined for given ¢ € (0, 1))

|x[2
A = Eru(fy) x € Br\ By,

t2u(tx)  x € Byy.

Using Weiss’ monotonicity formula, one can show that blow-ups in the obstacle
problem must be 2-homogeneous. Similarly, as we explained with ay (r, S) in the
case of Plateau’s problem, Wy_ (0™, 1) can only take two different values: % and
%. The lowest possible value defines regular points, while the higher value is
attained at singular points.

The paper [54] was the first to introduce methods for the obstacle problem which
had a very strong parallelism with those for area-minimizing surfaces (e.g., an

“epiperimetric inequality”), reinforcing the connection between the two theories.

4.6. First regularity results on the singular set and open questions

After the results of Caffarelli [9], a natural question was as follows: what else can be
said about the singular set?

Besides some first results in two dimensions [ 1], there was no real progress on
this question until 1991, when Sakai [44, 45] obtained a very precise description of
singularities for the obstacle problem (4.4) in R?. He essentially proved that the cusps
of Schaeffer (and small analytic perturbations of them) are the only ones which may
appear for (4.4) in R2.

In dimensions n > 3, where complex analysis is of no use, the first results on
the singular set were established again by Caffarelli in 1998 [10] (using the Alt-
Caffarelli-Friedmann monotonicity formula) and by Monneau in 2003 [37] (using a
new monotonicity formula based on the Weiss one). They established that a solution
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u of (4.4) in R” (n > 3) must satisfy at any singular point xo,
1
U(xo +x) = 3% Ax + o(|x[?). 4.5)

As a consequence of (4.5) and Whitney’s extension theorem, one obtains that the
singular set enjoys spatial C!-regularity, in the sense that they can be covered by
(n — 1)-manifolds of class C!. Still, this result seems rather weak in the sense that
it does not prevent the singular set from being as large as the regular part of the free
boundary. In this direction, the following conjecture holds.

Conjecture 3 (Schaeffer [47]). Generically, solutions of the obstacle problem have
smooth free boundaries.

In other words, the conjecture states that, generically, the free boundary has no
singular points. Here the word “generically” must be interpreted as “for most bound-
ary values”. Until very recently (see Section 6), Conjecture 3 was only known to hold
in the plane R?, a result of Monneau [37].

In the evolutionary case, the “parabolic analog” of Monneau’s monotonicity for-
mula [37] for solutions to (4.1) and its consequences were investigated in [0, 36].

5. Almgren’s problem and the thin obstacle problem during
1970s-2000s

5.1. Branching singularities of holomorphic curves

As explained in Section 2.5, holomorphic curves such as Sy :={w? =z3} c C2 =R*,
where w = x3 + ix4 and z = x; + i x;, are examples of area-minimizing 2-surfaces
in R*. In the case of S;, we can write x3 and x4 as “two valued functions” of x; and
Xp: since { = V23 involves a complex square root, there are two possible values of
(x3, x4) for each pair (x1, x2).

Let us consider two further examples: S, := {(w — z%)? = z°} and S3 :=
{(w — z2 + z3)3 = z!1}. Both have branching singularities at 0, but they look even
more complicated than the case of S;. In order to understand the singularity of S, we
need to proceed as follows: we first consider the change of variables ¢ (z, w) = w — z2
and notice that the coordinates (z, {) are diffeomorphic to (z, w) near the origin. In
the new coordinates, we have S, := {{2 = z°}, so we see that the singularity has
again two branches (from the complex square root involved in { = Vz ). Only after
we rectify the coordinates, we can clearly see the structure of the branching singular-
ity of S». Something similar happens for 3. In that case, the new coordinates would
be {(w,z) = w — z2 + z3 and the model singularity {¢3 = 2!}, with three branches

from 3/-.
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5.2. Almgren’s regularity theorem
In [4], Almgren established the following theorem.

Theorem 4. Let S be an oriented area-minimizing surface’ of dimension n > 2 in
R™K \where k > 2.

Then, S is an analytic submanifold in R™ 1% \ T, where T" denotes the boundary"’
of S, with the exception of a closed set Sing(S) of dimension at most m — 2 (discrete
ifm=2).

The dimensional estimate for the singular set is optimal, as shown by holomorphic
curves with branching points.

5.3. Q-valued harmonic functions, frequency formula

In Section 5.1, we saw examples of branching singularities in explicit holomorphic
curves. Let us explain next in what sense general oriented area-minimizing surfaces
resemble holomorphic curves.

Suppose that S C R* is any area-minimizing oriented 2-surface'' and that 0 is
a non-smoothness point on it (e.g., an integer rectifiable area-minimizing current).
Similarly, as in Section 3.3, a¢(r; S) is monotone nondecreasing and the zoomed-in
surfaces S" converge towards a cone €, now a 2-surface in R#. It is not difficult to
show that planes are the only possible area-minimizing oriented 2-cones in R*. The
difficulty now is that € could be a plane with “multiplicity two or higher”; in other
words, we could have a¢(0"; S) = Qm, for some Q > 2 (as it happens in branching
singularities of holomorphic curves). Note that this cannot happen for codimension 1
surfaces, thanks to De Giorgi’s theorem.

What can one do at those “multiplicity points”? Assume first that, up to a rotation,
SO is close to the plane {x3 = x4 = 0}. If S happened to be (locally near 0) a
very flat multiplicity one graph x; = &f; (x3, x4), i = 1,2, then its surface area would
be given by an integral of the type

[+ VAR + 219 ) =49 £V )2 d

82
~rt S / (VA% + IV /o) dx: dixca.

Hence, both f; and f> would need to be approximate minimizers of the Dirich-
let energy! Something similar happens when f = (fi1, f2) is not a single-valued

Rigorously, assume that S is an integer rectifiable area-minimizing current.
0More precisely, T is the support of the boundary of the current S.
Unteger rectifiable current.
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map from R? — R?, but a multiple-valued one. More precisely, the pair of func-
tions f (x1, x2) do not “return” a point in R2, but a Q-tuple of them: all the pairs
(x3/€,x4/¢) for which (x1, x2, X3, x4) belongs to S. Still in this case, the area would
be given by an analogous expression as above. And, as before, the fact that the § is
area-minimizing should imply that, as ¢ |, 0, the multiple-valued functions are approx-
imate minimizers of the Dirichlet energy—appropriately generalized to the context of
multiple-valued functions.

The Q-valued Dirichlet minimizers f : R” — (R¥)2/~, where ~ identifies
Q-tuples of points in R¥ which are equal up to reordering, are a main object in
Almgren’s theory. Interesting minimizers such as x3 + ixq = +/(x1 + ix2)3 have
branched structure, where the multiple graphs are “knotted” to one another. In Alm-
gren’s theory, the singularities of minimal surfaces are shown to correspond to the sin-
gularities of multiple-valued minimizers of the Dirichlet energy, also called multiple-
valued harmonic functions.

A crucial ingredient in Almgren’s theory is the frequency formula: if f : R™ —
(R¥)2 /~ f (xo) = 0 is Dirichlet-minimizer, then the dimensionless quantity

" I, VS P
Jom, ) £

is monotone nondecreasing in r. Moreover, ¢y, (r; f) = A for some A > 0 (¢y,
is constant in r) if and only if f(xo + -) is A-homogeneous. As a consequence
of the frequency formula, whenever f is a multiple-valued harmonic function and
f (xo) = 0, “blow-up” sequences

Gxo(r; f) i= (5.1)

S (xo+ k)
(r1=m Jos, fz)l/2

converge (up to subsequences) towards some homogeneous multiple-valued harmonic
function f*.

[k = e 0,

5.4. Dimension reduction and center manifold

With the frequency formula at hand, we can explain (roughly and naively) some other
key ideas in the proof of Theorem 4, which will later have parallels in the obsta-
cle problem and Stefan’s problem. Assume that S is a minimal surface (current) of
dimension m inside R™%¥ that has a singular (or non-smoothness) point at 0. As
discussed before, near 0, S will be well approximated by a multiple-valued Dirichlet
minimizer f : R”™ — (R¥)C/~, where Q € N is given by Q = ao(0%; S)/|BY|
(here | B{"| denotes the m-dimensional volume of the unit ball of R™).

Let us only discuss for simplicity the case m = k = 2. In that case, we want to
show that singular points are isolated. So, assume by contradiction that there was a
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sequence of singular points x; — 0 and let 7, := |xg| be their norms. Consider the
blow-up sequence f %%, which will converge (up to a subsequence) towards some
A-homogenous (possibly multiple-valued) function f*, where A = ¢o(07; f). Now
f* :R? - (R¥)2/~ must be of the form f (r cos 6, r sin0) = r*g(6), where g
is some Q-valued curve. The fact that f is harmonic (Dirichlet minimizer) imposes
very strong restrictions on g (e.g., locally each branch g : R — R¥ must satisfy the
ODE g” = A2g). This strong rigidity helps in classifying all possibilities for f*, and
one can show that it must be exactly given by a holomorphic curve, e.g.,

x3+ixs = (x1 +ix2)® or (x3+ ix4)Q = (x1 + ixz)QH.

Now, if f* has a (multiplicity Q) branching singularity at 0, then—since we
now know that f* is a homogeneous holomorphic curve—it must be isolated. Hence
f* must be smooth away from 0. This fact—thanks to Allard’s version of Theorem 1,
which only applies to multiplicity one points x € S (i.e., ax(07;S)/m = 1)—implies
that S will not have any other singularity in a (sufficiently small) neighborhood of 0.

Still, there is the possibility that—as it happens in the examples S, and S3 given
from Section 5.1—, f* may be a harmonic polynomial. In such cases, the branching
singularity will only show itself after we “rectify” f, subtracting from it the (single-
valued) harmonic polynomial P, which “best fits” f near 0. This idea leads to the
notion of center manifold: in order to see the branching structure, we must consider
the deviation of S, not from the tangent plane, but from the “best fitting” smooth
single-valued minimal graph near 0. The frequency function on f — P—more pre-
cisely ¢o(r; f — P)—is also monotone, and ( f — P)(ry -) divided by its L? norm
on dB; converges to some new homogeneous blow-up f*. Now, by construction f*
cannot be single-valued, so it must have a branching singularity.

In order to prove the result in higher dimensions, we need an appropriate variant
of Federer’s dimension reduction principle (previously discussed in the context of
area-minimizing surfaces in R?). The dimension reduction is based on the following
simple property: if a function f : R” — RF is at the same time A-homogeneous with
respect to 0 and pu-homogeneous with respect to x, # 0, then necessarily A = p and
f is translation invariant in the direction x,. A similar property holds for multiple-
valued functions f.

5.5. Almgren’s methods applied to Signorini’s problem

In [5], the authors devised how to apply the methods introduced by Almgren in
the context of area-minimizing currents to Signorini’s problem. This leads to a very
important progress, as described next.

In order to get rid of superfluous technical details, instead of (2.2), the authors
consider the “cleaner” zero obstacle problem: Let n > 2, and consider u : By — R
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Figure 7. From Signorini’s problem to “2-valued harmonic functions”.

(B1 C R”" is the unit ball) satisfying

[ Vo2
B;

> [ |Vu|?forallve H'(B;) withv>0o0n{x, =0}and v =wu on dB;. (5.2)
By

A key contribution of [5] was to show that functions satisfying (5.2) behave essen-
tially identically to Dirichlet-minimizing 2-valued functions. As a matter of fact, for
n = 2, explicit examples of minimizers to (5.2) can be obtained, and they are con-
spicuously related to the examples of branching singularities of holomorphic curves
discussed before. For example, a very important explicit solution of (5.2) forn = 2 is
u(xq1,x2) = Re y/(x1 + ix2)3, where now /- selects only the principal branch. This
is clearly related to the branching singularity (x3 + ix4)? = (x1 + ix)3.

Heuristically, if v is a minimizer of (5.2), then the 2-valued function (1 (x), —u(x))
can be thought of as “2-valued harmonic function” (see Figure 7).

Among the multiple analogies, the frequency formula ¢, (r, u)—defined exactly
as in (5.1) replacing f with u—is also monotone nondecreasing for every point
such x, € {x, = 0} N {u = 0}. The main contribution [5] was to show that if A :=
Ox, (r, u) < 2 at some free boundary point x, € d{u > 0} N {x, = 0}, then either
A < 3/2or A > 2. Moreover, they proved that the set of points where the first alter-
native holds is open and is an (n — 2)-manifold of class C! inside {x, = 0}.

6. The singular set in the obstacle problem (2017-2021)

In 2015, more than 30 years after Caffarelli’s breakthrough [9] for the obstacle prob-
lem, the following important questions remained essentially open in dimensions n >
3:

e Can we obtain some precise description of singularities in the obstacle problem?

e Is the singular set “small” in some sense? How small?
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As we discussed before, satisfactory answers to these questions had been only
obtained (through complex variable methods) in dimension n = 2 by Sakai [44,45].
Sakai’s methods did not work in higher dimensions, and improving Caffarelli’s result
required new ideas.

6.1. A finer analysis of the singular set

The first new result in this direction for n > 3 was established by Colombo, Spolaor,
and Velichkov in [12]. By refining the methods of Weiss [54], they proved that at
every singular point x., the expansion

u(xo +x) = %x-Ax—ka)(x). 6.1)

holds with a quantitative logarithmic estimate for the error |w(x)| < C|x|*(log|x|) 77,
where y > 0. Caffarelli in [10] had obtained a qualitative control |w(x)| < o(]x|?)
using the Alt—Caffarelli-Friedmann monotonicity formula—a different proof of the
same qualitative estimate was given later in [37]. Sakai had found in [44,45] the (opti-
mal) rate |@(x)| < C|x|? in dimensions n = 2. In the proofs of [12], one can glimpse
some delicate obstructions to obtaining such a strong result in dimensions n > 3,
although it was not clear if they were only of technical nature (no counterexample
was known).

Independently and with different methods, Figalli and the author proved in [27]
the following:

Theorem 5 ([27]). Let u be a solution of the obstacle problem (4.4) in a ball of R".
For all singular points outside some “anomalous” (relatively open) set of Hausdor{f
dimension < n — 3, (6.1) holds with |o(x)| < C|x|>.

Moreover; there exist examples in R of isolated singular points for which

}a)(x)| > x> as|x| — 0 foralle > 0.

The previous theorem suggests that one might be able to give a much more precise
description of the solutions than Caffarelli’s near “most” singular points. However,
not for all of them: the existence, already in R3, anomalous singular points for which
lw(x)| > |x|?>*¢ for all ¢ > 0 is to be kept in mind as a warning of the arduousness
of the problem.

The methods introduced in [27] are strongly connected with Almgren’s ones for
minimal currents. The link between the two (a priori unrelated) problems, found in
[27], is as follows. Let u be a solution of the obstacle problem (4.4) in B; C R”
with a singular point at 0. In other words, assume that (6.1) holds at x, = 0 with
w(x) = o(]x|?). We then consider w(x) = u(x) — %x - Ax. In [27], it was found
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that (surprisingly!) ¢o(r; w) is monotone increasing in r, where ¢q is, as before,
Almgren’s frequency formula. This property allows one to study the so-called second
blow-ups, namely accumulation of points of the type
w(rx)

q(x) = lim .
Tk—0 ||w(rk')||L2(8Bl)

Thanks to the monotonicity of ¢ on w, such second blow-ups ¢ are A-homogeneous—
that is ¢ (tx) = t*q(x) for all t > 0—where A = ¢(0; w). Moreover, in [27], it is
found that, outside of an n — 3 dimensional set of singular points, the second blow-
ups have homogeneity A > 3 and are either harmonic or solutions of the thin obstacle
problem (5.2). This allows for a full classification of possible second blow-ups in
two dimensions, and in higher dimensions, allows us to perform dimension reduction
arguments a la Federer based on the frequency, similarly to Almgren’s work for area-
minimizing currents in codimensions > 2.

Another insightful result from [27] is that, for all singular points outside some
(n — 2)-dimensional set we have, after rotation, the improved expansion

1
u(xo +x) = Exi + x,0(x) + 0(|x|3), (6.2)

where Q is some quadratic polynomial satisfying A(x, Q) = 0. By analogy with
Almgren’s center manifold, this invites to subtract the polynomial x, Q in order to
investigate higher order expansions (this turned out to be a quite delicate task, and the
missing tools in order to perform it were only developed later in [25,29]).

6.2. Generic regularity: Schaeffer’s conjecture in low dimensions

Building on the methods of [27], we could recently obtain a positive answer to (Scha-
effer’s) Conjecture 3 in low dimensions:

Theorem 6 ([25]). Conjecture 3 holds true in R3 and R*.

More precisely, we can consider 1-parameter monotone (and continuous) families
of boundary data g : 92 x (0, 1) — R4, where Q C R” is a bounded smooth domain,
satisfying g(x;7") —g(x:t) > c(r' — 1) forall 0 < 7 < v/ < 1. We let u® be the
solution of (4.4) with boundary data u® = g(-; t) on dB;. The“generic regularity”
question we want to understand can be phrased as follows: if we choose t € (0, 1)
randomly (with a uniform distribution), will the free boundary of 4* be analytic with
probability one? We can answer positively this question in dimensions 3 and 4 (the
positive answer in two dimensions had already been obtained by Monneau in [37] for
g(x;7) = g(x) + ).

Our strategy towards this theorem is reminiscent of Sard’s theorem in analysis.
We aim to prove that the set of “singular values” t € (0, 1) has measure zero by
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improving, at most singular points, the order of approximation of certain polynomial
expansions for u#*. This is a delicate and long proof because the singular set needs to
be split into several different subsets and, in each of them, the corresponding set of
singular values has measure zero for a different reason.

In order to prove the conjecture in four dimensions, we need to consider the set
of all points x, € €2, which are singular for some of the solutions u* in the family.
We then show that, after to removing (n — 2)-dimensional set, for all the other x,, we
have an expansion of the type

ut(xo +x) = P(x) + O(|x|5),

where T = t(x,) is the value of the parameter for which x, is singular. Here P is a
polynomial of the form (in some orthonormal coordinates depending of x.)

n—1 2
(x)::%(xn-l-za?axé (Z fe) X+ Z( aa(zaa))(lz xi%)) ,
a=1

for some a, > 0 (ax = 1,...,n —1). We call &, the “Ansatz”, and whose structure
is found imposing AP = 1 4+ O(|x|?). In many respects, & plays an analogous role
to Almgren’s center manifold: also here the idea is that, only after subtracting a very
smooth “tangent object”, one is able to see branching-type patterns which can only
occur on lower dimensional sets.

We then manage to obtain an approximate monotonicity of (a truncated version
of) the frequency function ¢ for the remainder

9

wi=u"(xo+)—P

and perform dimension reduction type of arguments a la Federer—Almgren. However,
an interesting feature of the dimension reduction arguments in [25] (which is com-
pletely new with respect to Almgren’s) is that we need to work not with one single
solution but with an increasing family of them (which do not have any other link
between them than the monotonicity). And the dimension bounds that we obtain for
the union in t of all “bad points” for the family {u*}, are as precise as the estimate
one single u®.

The existence of solutions with an (n — 3)-dimensional set of “anomalous points”
where the expansion is quadratic, and not better, prevents us from using the same kind
of methods for Schaeffer’s conjecture in dimensions 5 or higher.

6.3. C*° partial regularity

Building on the methods of [25] (and [26]), F. Franceschini and W. Zaton obtained in
[29] the following extremely detailed (and essentially optimal) result:
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Theorem 7 ([29]). Let u be a solution of the obstacle problem (4.4) in the unit ball
of R" and let X denote its singular set. There exists a closed set ¥°° C X such that

(1)  dimg(Z\ %) <n — 2 (countable, if n = 2);

(ii) locally, X*° is contained in one (n — 1)-dimensional C*° manifold, and at
every point x € X°° the solution u has a polynomial expansion of arbitrar-
ily large order. Moreover, these are consistent from one point to another in
the sense of Whitney’s extension theorem.

A key contribution from [29] was to show almost-optimal Lipchitz estimates (in
terms of their L2 norms in a small ball) for the differences u(x, + -) — &, where x, is
a singular point, and J is an Ansatz of arbitrarily large order (nonnegative polynomial
satisfying A ~ 1). Such Lipchitz estimates are needed to prove that Almgren’s
frequency formula on w = u — J is monotone. With the previous approach from
[25], such estimates had necessarily errors of size O(]x|*), which was blocking the
expansion at order 5. The smarter (and more natural, a posteriori) approach from [29]
allows the authors to obtain similar Lipchitz estimates with an error of arbitrarily high
order. As a consequence, they obtain a beautiful C°° partial regularity result for the
singular set: something that seemed inconceivable only a few years ago.

7. The singular set in the Stefan problem (2019-2021)

After Caffarelli’s 1977 breakthrough, a main question on the structure of the free
boundaries in Stefan’s problem remained open: how large may the singular set be?
Very simple examples—such as a one-dimensional solution u#(x3, t) for which the
ice region is {|x3| < f(¢)} for some f decreasing—show that the singular set in
Stefan’s problem (in R3) may be as large as 2-dimensional; at least for some times.
The regular part of the free boundary is a moving 2-surface in R3, so at such “bad”
times, the singular set is as large as the regular part! However, in the examples, this
may happen only for a very exceptional set of times. This suggests that the singular
set should be “smaller” than the set of smooth points as a subset of spacetime R? x R.

In order to measure the dimension of subsets of spacetime in Stefan’s problem,
it is natural to introduce a Hausdorff dimension associated to the “parabolic scal-
ing” (which leaves the equation invariant). Namely, for a set £ C R” x R, we write
dimp,(E) < B, when for all B’ > B, E can be covered by countably many parabolic
cylinders By, (x;) x (t; — rl.z, ti), making > rl.ﬂ ' arbitrarily small. Notice that, if we
denote by dimg (E) the standard Hausdorff dimension of a set

E Cc R"™ = R"” x R,

then dimg (E) < dim,(E). On the other hand, the time axis has parabolic Hausdorff
dimension 2, while it has standard Hausdorff dimension 1.
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The only known dimensional bound on the singular set ¥ C R” x R for solu-
tions to (4.1)-(4.2) in dimensions n > 2 was the following rather rough estimate: as
a consequence of the results in [6, 9], at every singular point (x, ¢,), the qualitative
expansion

1
U(Xo + X, to + 1) = 5x-Ax+o(|x|2+ l2]) (7.1)

holds, where A = Ay, ;. is a nonnegative definite matrix, satisfying tr(4) = 1, which
depends on (xo, t,). As a consequence of (7.1), the set of singular points can be
decomposed as ¥ = | J_\) ,,, where

Y= {(xo,to) ex: dim(ker(Axo,to)) = m} m=0,...,n—1.

Moreover, for each m, the set £,, N {t = .} can be covered by a C! manifold of
dimension m. Unfortunately, the previous expansion implies only C'/2 regularity in
time for the covering manifolds. As shown in [36], (7.1) also implies a (very rough)
bound on the parabolic Hausdorff dimension of X:

. 1
dimpy (X)) <n + 5 (7.2)

Since the parabolic dimension of the regular part of the free boundary has dimension
(n — 1) + 2 =n + 1, the previous bound shows that, in some weak sense, the singular
set is smaller than the regular one. However, the bound (7.2) does not even rule out
the existence of pathological solutions with singular points at every time (not even in
two dimensions)!

7.1. Almgren meets Stefan

After the works [25,27], it was very natural to apply the same kind of arguments to
the Stefan’s problem (4.1)-(4.2). Given a singular point (x,, ), let us consider

1
wx) == u(xo + x,t6 + x) — Ex - Ax.
In order to extend our methods from [27] to the parabolic setting, Poon’s [39]
parabolic version of Almgren’s frequency formula plays an important role. Namely,
x|2
denoting G(x,t) = (4mt)™"/ 2055 the time-reversed heat kernel, the functional
r? Ji=—r2y IVw|?G dx

¢(r, w) = j‘{t=_r2} sz dx )

can be shown to be monotone in r.'2

12 Actually, we need to employ a (new) suitable truncated version of ¢ (which we call ¢7),
and its monotonicity can be proved only up to exponentially small errors. But these are technical
details.
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Thanks to this fact, we can prove that

w(rx, rt)
Jwl

along subsequences and in compact subset of { < 0}, where ¢ is a parabolically
homogeneous function: namely g(rx, r?t) = r*q(x, 1) for all r > 0, where A =
¢(0F, w). In (7.3), we denote by [|wl|, the quantity ( fe, w?)!/2, which measures the
“size” of w in the parabolic cylinder €, := B, x (—r?,0).

We then show the following:

—q(x,t) asr —0, (7.3)

1) If (xo,%) € Xy, with m < n — 2, then the function ¢ is always a quadratic
caloric polynomial. This means that the expansion (7.1) cannot be improved
at any of these points! To obtain an improved dimensional bound on %,,,
we employ a barrier argument in the spirit of [25] to show that ¥ > 0 in
B, (xo) X (to + r?*7¢, 00). In other words, a ball of radius r around one of
these singular points will be completely occupied by water after increment
of time of size 727, This gives

dimpe (X)) <m, 0<m=<n-2.

(i) If (xo,%) € Xp—1, then g is a homogeneous solution of the parabolic thin
obstacle problem. We denote by X ,ff | the subset at which the homogeneity
is less than 3.

(a) If (0,0) € £3,, we show that 9,q # 0 and that ¢ is convex in all
directions that are tangential to {p, = 0}. This allows us to perform a
dimension reduction that, combined with a barrier argument similar to
that in (i), yields

dimpe(2,2,) <n —2.

(b) If (0,0) € £,-1 \ =:3,, we show that ¢ is always 3-homogeneous,

hence

1
U(Xo o ) = Sx - Ax + O(IxP +1e17?). (74
This (and a barrier argument similar to the one before) implies that
dimpar(zn—l \ Erle) <n-1

Combining these estimates in [26], we obtain the following theorem.

Theorem 8. The singular set of solutions to (4.1)-(4.2) has a parabolic dimension
n—1.

Therefore, it is natural to ask ourselves if a similar result holds in the physical
space R? and, more in general, how often singular points may appear.



Figure 8. Inside of the shrinking ball B, (;)(xo), the free boundary consists of two fronts, which
evolve independently until they meet at time 7.

7.2. Cubic expansions and their heuristic interpretation

With a bit of extra work, we can obtain a complete parabolic analog of the main result
in [27]: for all singular points (x., f,) outside of a set of parabolic dimension n — 2,
the following expansion holds'?

6
+o((Ix] + 11'72)%), (7.5)

1, 1, 3-homogeneous caloric
U(Xo + X, 1o +1) = =x;, +alxu|| t + =x;; | + .
2 polynomials

for some a > 0. The fact that this coefficient is positive, which turns out to be conse-
quence of (4.2), is crucial.

Indeed, (7.5) implies that, if we look at the free boundary at time ¢ < ¢, inside a
ball of radius /7o — ¢ centered at x,, we will see two almost-parallel “independent”
fronts which move one towards the other. More precisely, for ¢ < t,, we have

Xn = E2a (to —t) +0(to —1) ond{u >0} N B jz=7(xo) x {t}.

In this direction, let us (informally) define r(¢) as “the largest” radius for which
the ice inside B, (x,) has two connected components for times before t—see Figure
8 (left). The expansion (7.5) actually implies r(t) > /fo — 1, ast 1 to.

Now, it is interesting to observe the following: suppose that r(¢) happened to
stay bounded away from zero as ¢ 1 t.. Then, inside of some (small) parabolic cylin-
der By(xo) X (fo — 02, 1,), the “positivity set” {u > 0} would consist of exactly two

13 After choosing an appropriate orthonormal frame depending on (xo, fo).
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connected components 1 and 2. We could then define u® i =1,2asu multiplied
by the characteristic function of the component i. Doing so, the two new functions
u® would both solve (4.1)! Moreover, both functions would have a thick contact
set {u® = 0}, so the point (x., #o) would be regular for the two of them—see Fig-
ure 8§ (right). Hence the free boundaries of u® i =12 (which correspond to the two
fronts of u) would be smooth inside B,(x,) up to the final time ¢ = #,. At this final
time, ¢ = to, the two fronts {x, = g® (x")} would be ordered, smooth, and tangent at
least at xo. Then, their tangency points in B,(x,) would necessarily be of one of the
following two types.

o Infinite order tangency points of the two functions g@: near such points the ice
would be extremely thin, and hence they should become immediately surrounded
by water after 7.

 Lower dimensional tangency points: the subset of g(1) = g where the two func-
tions disagree at some finite order k£ would be automatically contained in a smooth

(n — 2)-dimensional manifold (being contained in the transversal intersection of

the graphs of certain (k — 1)-derivatives of g’ (x’)).

Of course, the difficulty is that we cannot expect r(¢) to be bounded away from
zero at typical free boundary points. But it turns out that (with much extra effort) we
can improve the bound r () > /to —1 to r(t) > (to — t)ﬁ, for some tiny 8 > 0
(as t 1 to), at “most” singular points. This amounts to proving an expansion like
(7.5) but with an error of size O((|x| + |¢]'/2)3*#). As we will see, such apparently
small improvement is “breaking the parabolic scaling”, and will allow us to obtain the
same type of conclusions as if 7(¢) stayed bounded away from zero! But such strong
conclusions are not cheap to obtain: in order to improve (7.5) by a tiny positive 8, we
need to introduce completely new techniques. We need to go beyond Almgren.

7.3. Improving cubic expansions: Life beyond Almgren

Arguably, the most delicate point in [26] is to show that, for all singular points (X, fo)
outside of a set of parabolic dimension n — 2, the following expansion holds:

1 1
U(Xo + x,t6+1) = Ex,% + alxn|(t + gx,f) + [3-hom. cal. pol.]

+ O((Ix] + [e]V2)*+P), (7.6)

for some B > 0 (which may depend on the point).
Given a singular point (x., £,) where (7.5) holds, it is natural to consider

1 1
w(x,t) ;= u(xo + x,t6 +1) — Exﬁ —a|xn|(t + gxﬁ) — [3-hom. cal. pol.].



J. Serra 636

Now, one could naively try to show that Almgren frequency is again monotone on
such w (this is the first we tried and, as a matter of fact, we thought for a long time
that this was the way to go). Unfortunately, since a > 0, the cubic term is never a
caloric polynomial and the frequency function ¢ (r, w) is never (almost) monotone.

In order to improve (7.5), we need a completely new strategy based on barriers,
compactness, and certain ad-hoc monotonicity properties, which are much weaker
than Almgren’s (but which still give some nonempty information).

Our new approach consists in showing, essentially,'* that

oo (B, x(=r2,00) < @(r),

where w satisfies the following alternative with ¢ > 0 arbitrarily small. For all » > 0
sufficiently small, we have either

Y is (er)-close to an (n — 2)-plane inside B (xo)

fort € (to — r2, t,) and w(g) < 6203(2; 7.7)
or else, we have
w(f) < ‘”(r?. (7.8)
2 23+§

In view of the previous alternative, it seems to look at dyadic scales » = 2% and
consider the “upper density” of scales at which (7.7) holds:

#{i < {£:(7.7) holds at the scale r = 27"}

¥ ;= limsup e [0,1].

{—00 {

Now, if ¢ = 1, then as we zoom in around (x., f,), we see “enough scales” at

which the singular set is close to an (n — 2)-plane to conclude that “X is (n — 2)

dimensional at (x., #,)” (this requires new delicate GMT-type covering arguments).

On the other hand, if ¥ < 1, then for a positive (1 — @)-proportion of scales, we

have (7.8), while for the other scales, we have a)(g) < 273%¢_ Taking e small, we can
choose 8 > 0 such that (1 — 19)% + ¥ (—e) = 3 + B. We then see that

w(z—ﬁ) < 2(—3—%)(1—9)@2(—34-8)95&)(1) — 2—(34—/3)[60(1).

This gives (7.6) at such points.

“The (over)simplified statement given here is not strictly correct, but it gives a very good
approximated idea on how the argument goes. The actual statement is much more involved (see
[26, Proposition 11.3]). Although some of the subtleties in the actual statement are important
and not mere technicalities, we cannot discuss them here.
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7.4. C° partial regularity and optimal dimensional bounds on the singular set

Once we have proven (7.6), we are ready to push the expansion to higher order. For
this, we show with a barrier argument that the set {u > 0} splits into two separate
connected components inside the set Q# := {|x|*T# < —t}—here (x,, %) = (0, 0).

Note that, under the parabolic scaling (x, 1) — (rx, r2t), the set Q# converges
to R” x (—o00,0) as r — 0. In other words, we have “broken the parabolic scaling”.
We then show a C*° regularity result (at (0, 0)) for the free boundary of solutions of
(4.4) in # which have a “regular point” at (0, 0). Here the difference with respect
to the Caffarelli and Kinderlehrer—Nirenberg result is that in our case the domain Q7
is not a parabolic cylinder: for every time slice space, the equation holds in ball, but
its radius goes to zero as ¢ 1 0. Nevertheless, we manage to prove a C* regularity
which is robust enough to work in our setting. More precisely, to show that if u is
a solution of the Stefan problem such that {# = 0} is sufficiently close to {x, < 0}
inside ©2#, then we have a C* expansion for i at (0, 0). We then apply this result to
our solution u multiplied by the characteristic functions of each of the two connected
components of {u > 0} inside 24 . In this way, we obtain a C ®-type regularity for u.

As a corollary of this C *° expansion, we are able to prove that, outside an (n — 2)-
dimensional set, if (xo,%,) and (x1, #1) are singular points, then

lte —t1] = 0(|xo — x1|¥) for every k > 1.
This allows to finally establish the following theorem.

Theorem 9 ([26]). Let Q CR”, and letu € L*°(Q2 x (0, T)) solve the Stefan problem
(4.1)-(4.2). Then there exists X°° C X (recall that ¥ C R" x R denotes the singular
set) such that

dimp, (2 \ %) <n—2, dimg ({t € (0,T): I(x,1) € Z®}) =0,

and X° C Q x (0, T) can be covered by countably many (n — 1)-dimensional sub-
manifolds in R"*1 of class C*."

In a sense, this result says that the singular set can be split into two separate
pieces: one is very smooth and extremely rare in time (the set 3°°), and one lower
dimensional (of parabolic dimension at most n — 2).

This is a very precise result. Indeed, it is easy to construct radial examples of
solutions to (4.1)-(4.2) for which the singular set contains some (n — 1)-sphere for
countably many times. Such spheres would be covered by the set X°° in Theorem 9.

5Here, the (7 — 1)-submanifolds that cover £°° are of class C > as subset of R” +1 with
the usual Euclidean distance, not with respect to the parabolic distance. So, our statement is
much stronger than the previously known results (for instance, [36] proved C ! regularity of
with respect to the parabolic distance, which implies only C /2 regularity in time).
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Now, for general solutions, we cannot prove that ,(X°°) is countable as in such
examples, but we do prove that it must be a 0-dimensional set (and Hausdorff dimen-
sion cannot distinguish between countable and 0-dimensional sets, so the result is
sharp in this sense). On the other hand, the complement of ¥°° inside X instead, is a
set of “bad” singular points. These “bad” points do not enjoy a priori any extra spatial
regularity, but in exchange, their parabolic dimension is bounded by n — 2. The fact
that points where Caffarelli’s quadratic expansion cannot be improved exist (and may
be n — 2 dimensional) can be easily shown by considering any radial solutions in R?
with a singular point at (0, 0).

An important consequence of Theorem 9 is the following very precise bound for
the physical case (three spatial dimensions):

Corollary 10 ([26]). The set of singular times for Stefan’s problem in R has Haus-
dorff dimension at most 1/2. In particular, it has measure zero.

Also, Theorem 9 implies that in R2, the set of singular times for Stefan’s problem
has zero Hausdorff dimension (prior to our results, it was not even known that in R2,
the set of singular times had measure zero).

In summary, these new results provide a very good picture about how the singular
set of the Stefan problem behaves.

Funding. Research supported by Swiss NSF Ambizione Grant PZ00P2 180042 and
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