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Elliptic curves and modularity

Jack A. Thorne

Abstract. We survey results and conjectures concerning the modularity of elliptic curves over
number fields.

1. Introduction

The modularity conjecture for elliptic curves over Q was stated with increasing de-
grees of precision by Taniyama, Shimura, and Weil in the 1950s and 60s. It admits
several equivalent formulations, which are discussed in the textbook [17]. The most
common asserts that given any elliptic curve E over Q, we can find a newform f €
S>2(To(N)) with the property that for all but finitely many prime numbers p, the pth
Fourier coefficient a, ( f) in the g-expansion f(q) =g + > _,-, an(f)q" equals the
number -

ap(E) = p+1—|E(Fp)

which measures the error in the Hasse estimate for the number of points on £ modulo
p- The newform f is then uniquely determined by E, by the strong multiplicity one
theorem for modular forms. Any curve E for which such a newform f exists is said
to be modular.

A famous example of a modular elliptic curve is the curve of conductor 11 given
by the equation

)

E:y2+y:x3—x2.
This elliptic curve is modular, with associated newform
o0
f@)=q[[(=¢"*1—¢"")?* e S(To(11)).
n=1

The modularity conjecture is, on the face of it, a very surprising statement. It is easy
to write down elliptic curves over Q; indeed, for any cubic polynomial

f(x)=x>+ax+b e Z[x]
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of non-zero discriminant, the equation y? = f(x) gives an elliptic curve. On the
other hand, modular forms begin life as complex analytic objects. Even once admits
their algebro-geometric description (as sections of a line bundle on a modular curve,
thought of as an algebraic curve over Q), together with the theory of Hecke operators,
there is no a priori reason to expect that every elliptic curve over Q should be associ-
ated to a newform. Nevertheless, the modularity conjecture was proved for semistable
elliptic curves over Q in 1995 by Wiles and Taylor [40,45], on the way to proving
Fermat’s Last Theorem, and finally for all elliptic curves over Q in 2001 by Breuil,
Conrad, Diamond, and Taylor [8].

The modularity conjecture for elliptic curves over Q can be thought of as a spe-
cial case of the Langlands program, in a form made precise by Clozel [13]. Newforms
give rise to automorphic representations of the adele group GL,(Aq). Under Clozel’s
conjectures, there would be a correspondence between motives of rank n over a num-
ber field K (or more concretely, compatible systems of semisimple, 7-dimensional
representations of the absolute Galois group of K) and automorphic representations
of the group GL, (Ag) satisfying a condition that he calls “algebraic.” Specialising to
elliptic curves, we obtain a precise analogue of the modularity conjecture valid over
an arbitrary number field. (We note that such an analogue had already been anticip-
ated, especially in the case of imaginary quadratic fields; cf. [14,24].)

Our first goal in this article is to state a version of this modularity conjecture
for elliptic curves over a general number field K in as down to earth a manner as
possible. In particular, our formulation does not use the language of automorphic
representations. (This is not original; for example, Taylor’s 1994 ICM article [38]
contains essentially the same statement that we give here.) Note however that it is
not possible to avoid the automorphic theory if one wants to give the most precise
statements, or to get to the most important consequences of modularity, such as the
analytic continuation of the L-function of an elliptic curve.

We will then continue to discuss some of the many applications of modularity in
number theory, beyond the most famous application to Fermat’s Last Theorem. It is
interesting to note that these range from statements of great theoretical importance
(such as the analytic properties of the L-function) to very concrete statements that
have no obvious connection to automorphic representations or the Langlands program
(such as bounds on the height of solutions to Mordell’s equation).

Finally, we will discuss what is known towards the modularity conjecture for
elliptic curves over a number field K, beyond the case K = Q. It is natural to break
up the discussion depending on whether or not K is totally real (in the sense that each
field embedding K — C in fact takes values in R). Many of the methods developed
to study modularity over Q translate well to the totally real setting. It is more challen-
ging to study modularity over number fields which are not totally real, but there has
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been much progress in this direction recently, inspired particularly by applications of
Scholze’s theory of perfectoid spaces.

2. The modularity conjecture

Let K be a number field, with ring of integers Ok and absolute Galois group Gx =
Gal(K/ K) with respect to a fixed choice of algebraic closure K /K. (More generally,
if k is a perfect field, then we will write Gy for the absolute Galois group of k with
respect to some fixed choice of algebraic closure.)

Definition 2.1. An elliptic curve over K is a pair (E, oo), where E is a smooth,
projective, connected curve over K and oo € E(K) is a marked rational point.

We often take the marked point as given and just say that E is an elliptic curve.
Any elliptic curve may be given by a Weierstrass equation

y2=x>4ax+b, (2.1)
where a, b € Ok and x, y are plane co-ordinates. The closure (in the projective plane
P?) of the affine curve defined by such an equation picks up exactly one extra point at
infinity, which is the marked point co. The discriminant A = A(a, b) = —16(4a> +
27b?) is non-zero. Conversely, for any pair (a,b) € O such that A(a,b) # 0, equa-
tion (2.1) defines an elliptic curve.

Elliptic curves have a number of important associated structures. The first is the
group law: there is a unique way to make any elliptic curve into a commutative algeb-
raic group with identity element co € E(K). The addition law then has a simple
characterization: three points P, O, R sum to oo if and only if they are collinear in
the Weierstrass embedding (2.1).

The second is the system of reductions modulo v, for v a finite (i.e., non-
archimedean) place of the number field K. If the discriminant A of a given Wei-
erstrass equation is a v-adic unit, then v is a place of good reduction for the curve
E: the reduction modulo v of the Weierstrass equation (2.1) defines an elliptic curve
over the residue field k(v) of the completion K, of K at the place v. This leads to the
definition of the quantity

ay(E) = gy + 1 — |E(k(v))

El

where ¢, = |k(v)| and |E (k(v))| is the number of points of this reduced curve over
the residue field k(v). One can also define a, at the places where A is not a v-adic
unit, but this requires the use of a long Weierstrass equation in order to be able to find
a model of minimal discriminant at the place v (see [36, Chapter VII]).
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The third structure we want to introduce is the compatible system of £-adic Galois
representations of E. For each prime number £, the étale cohomology group
H}(Eg, Q) is a 2-dimensional Qy-vector space which receives a continuous action
of the absolute Galois group Gg. Fixing a choice of basis, we obtain a continuous
representation

pE - Gk — GL2(Qy).

(This representation is the same, up to passing to the dual and taking a twist by the
cyclotomic character, of the representation afforded by the £-adic Tate module of E.)
If v is a finite place of K not dividing £ and at which E has good reduction, then
the representation pg ¢ is unramified at v. By definition, this means that the inertia
subgroup Ik, of the decomposition group Gk, C Gk acts trivially through pg 4.
Moreover, if Frob, € Gk, /Ik, = Gk) denotes the Frobenius element,' then we
have the equality
tr pg ¢ (Froby) = ay(E),

a consequence of the Grothendieck—Lefschetz trace formula for the reduction mod-
ulo v of the elliptic curve E. We call the collection (pg ¢)¢ of £-adic representa-
tions a “compatible system” because these Frobenius traces are independent of ¢
(even though the representations themselves are incomparable, because the topolo-
gical fields Q, are pairwise non-isomorphic).

So much for elliptic curves. We next want to introduce the structures “on the
automorphic side” that should be matched up with elliptic curves under the modu-
larity conjecture. By analogy with class field theory, which gives a description of the
1-dimensional representations of Gg, these structures should be defined using the
“internal arithmetic” of the field K. To write these down, we first need to recall the
existence of the adele ring of K.

Definition 2.2. The finite adele ring of K is the restricted direct product

AZ = ] k.

v finite

with respect to the valuation rings Ok, C K,. The adele ring of K is the product
Ag = AR x Koo, where Koo =[] K

v infinite 2V

In other words, Ak is the set of elements x = (xy), € [ [, Ky such that for all but
finitely many finite places v of K, x, € Ok, . The fundamental facts concerning Ax
are that it is a locally compact topological ring, the diagonal embedding K — Ak
induces the discrete topology on K, and the quotient Ax /K is compact.

"More precisely, the geometric Frobenius element (inverse of the arithmetic Frobenius auto-
morphism x + x9v on k(v)).
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Having defined Ak, we can take the A x-points of any algebraic group over K. In
particular, the group GL;(Ak) is then defined. This group can also be realised as the
restricted direct product ]_[:] GL,(Ky), with respect to the family of open subgroups
GL2(0Ok,) C GL,(Ky) for finite places v.

Definition 2.3. Let 1 C Ok be a non-zero ideal. We define the open compact sub-
group of 1_[1) finite GL»(0Ok,):

Ui(n) = { (iv ZU) € l_[ GL,(Ok,) : Yv,cy,dy — 1 = 0 mod n(QKv}.

v v finite

If v is an infinite place of K, we let U, = SO,(R) (if K, = R) or U, = U,(R)
(if Ky = C). Let Uso = Roo - [] U, C GL,(Ks). We then define the quotient
topological space

v|oo

Y1 (n) = GL2(K)\ GL2(Ag)/ U (1) X Uso.

In order to formulate the modularity conjecture, we will look at the singular
cohomology groups H*(Y7(n), Q). These are finite dimensional Q-vector spaces.
Indeed, Y;(un) can be represented quite concretely, as we now explain. The double
quotient GL;(K)\ GL2(A%)/U;(n) (where we omit the infinite places) is finite; if
g1....,8n € GL2(AY) are coset representatives, then Y7 () can itself be identified
with the disjoint union of the quotients I'; \ GL,(Kso)/ Uso, Where we define

Iy = GLy(K) N g Uy (m)g;

(intersection in GL2(A%)). The groups I'; are congruence subgroups of GL(K),
which are torsion-free if the ideal u is small enough, so these quotients are gener-
alisations of the modular curves arising in the theory of classical modular forms. In
fact, if K = Q and n = (N) for a natural number N, then the space Y7 () defined
above may be identified with the usual modular curve of level I'; (N).

The reason for defining Y7 (1) using the adele ring is that it makes transparent
the definition of Hecke operators, which are necessary to be able to give a pre-
cise formulation of the modularity conjecture. The existence of Hecke operators is
a consequence of the following observation: if U C GL2(A%) is any open compact
subgroup, let Yy be the space defined in the same way as Y7 (1), except with Uy (1)
replaced by U. If V' C U, then there is a natural projection Yy — Yy . We can thus
form the direct limit

A = li_fng*(YU,Q),
U
arepresentation of GL, (A%) which is smooth, in the sense that each vector is fixed by
some open compact subgroup of GL,(A%’). Moreover, we can recover H*(Y1(n), Q)
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as the space of Uj(u)-invariant vectors of +. General considerations (see e.g. [32,
§2.2]) then imply that H*(Y7;(n), Q) has the structure of module for the ring
H (GL2(AR), Ui (1)) of compactly supported Uy (n)-biinvariant functions

f :GL2(A¥Y) — Q.

Elements of this ring are what we call Hecke operators.
The most fundamental ones are as follows.

Definition 2.4. Let v be a finite place of K which is prime to i, and let @, € O,
be a uniformizer of the valuation ring at v. Then the Hecke operator

T, : H*(Y1(n).Q) —» H*(Y1(n),Q)

is the endomorphism induced by the characteristic function f, € # (GL2(A¥),U; (1))
of the double coset Uy (n)xU; (1), where x = (xy )y € GL2(A%) is the element with
Xy = lifw # v and x,, = diag(@y, 1) if w = v.

This definition is independent of the choice of uniformizer x,. The Hecke oper-
ator T}, can also be described more concretely as the endomorphism of H*(Y7 (1), Q)
induced by a correspondence

YU, )nxU; (w)x—1

Y] (1’[) Yl(n)

However, its definition is explained most clearly by the local Langlands correspond-
ence for unramified representations of GL,(K,), as we will recall below.
We now have everything we need to state a version of the modularity conjecture.

Conjecture 2.5. Let E be an elliptic curve over K such that Endg (E) = Z. Then
there exists an ideal 1 C Ok and a non-zero class cg € H*(Y1(n), Q) such that for
all but finitely many finite places v of K, one has the equality

Ty(cg) = av(E)cE.

Various remarks are in order. The restriction to curves with Endg(E) = Z is
made because curves with Endg (E) # Z (in other words, elliptic curves with com-
plex multiplication defined over K) behave differently: their Galois representations
Pk ¢ are abelian and are described by class field theory. We note that the condition
Endg (E) = Z always holds if K is totally real, for example if K = Q.

Next we ask how this conjecture is related to the more classical conjecture in the
case K = Q referenced in the introduction, which phrases modularity in terms of the
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modular forms, rather than cohomology classes. The bridge between modular forms
and cohomology is in this case given by the Eichler—Shimura isomorphism. This is
an isomorphism

M(T1(N)) & S2(T1(N)) = H'(Y1(N).C)

respecting the action of Hecke operators on each side. If p is a prime number not
dividing N and f is a newform, then the pth Fourier coefficient of f coincides with
the eigenvalue of the Hecke operator 7, on f, which explains how newforms give rise
to cohomology classes in H!(Y{(N), C) which are eigenvectors for Hecke operators.
When the eigenvalues are rational numbers, we can even choose eigenvectors which
liein H'(Y{(N), Q).

How is this conjecture related to the formulation of Clozel [13], also referenced
in the introduction, which would lead one to associate to each elliptic curve E over
K with Endg (E) = Z a cuspidal automorphic representation 7 of GL,(Ag)? Such
a representation 7 admits a restricted tensor product decomposition 7 = &/ 1y,
indexed by the set of places v of the number field K. One can predict the isomorph-
ism class of m,, as a representation of the group GL,(K), using the local Langlands
correspondence for the group GL,(K5). Let us recall that when v is a finite place, the
local Langlands correspondence reck,, is a bijection between the following two sets
of objects:

+ the set of isomorphism classes of irreducible smooth representations of GL;(K3)
over C,

e the set of isomorphism classes of 2-dimensional Frobenius-semisimple Weil—
Deligne representations of the Weil group Wk, C Gk, over C.

We can use the local Langlands correspondence to build an irreducible representation
7w (E) of GL2(A¥) from an elliptic curve E over K, by specifying a Weil-Deligne
representation (r,, Ny) of the group Wk, for each finite place v of K using the local
representations pg | Wk, - (For an explanation of how to do this, see e.g. [37].) Thus
7 (E) is the restricted tensor product of the local factors recl_{i (rv® |- Il/ 2 Ny). In
particular, this leads to the following more precise conjecture, which implies Conjec-
ture 2.5.

Conjecture 2.6. Let E be an elliptic curve over K such that Endg (E) = Z, and let
7 (E) be the irreducible smooth representation of GL,(A¥) associated to E using

the local Langlands correspondence. Then there is a GL; (AF)-equivariant injection
7(E) — A®qC.

From this point of view we can explain the importance of the Hecke operators 7,
in formulating the modularity conjecture, which is otherwise slightly obscure: if v is
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a finite place of K, then the local Langlands correspondence restricts to a bijection
between the following two sets of objects:

o the set of isomorphism classes of smooth representations of GL,(K,) over C
which are unramified, in the sense that the space of GL, (g, )-invariant vectors
is non-zero,

o the set of isomorphism classes of 2-dimensional semisimple representations of
Wk, which are unramified, in the sense that the inertia group Ix, C Wk, acts
trivially.

If m, is an unramified irreducible smooth representation of GL,(K,) and r ®

|-|V/2 = recg, (), then the Hecke operator 7;, acts by a scalar on the space of

GL,(0Ok, )-invariant vectors of s, which is equal to tr r(Frob,). We have already

observed that if v is a place of good reduction for the elliptic curve E, then the

Grothendieck—Lefschetz trace formula implies the equality pg ¢(Froby) = a,(E),

provided v is prime to £. This explains the essential equality

eigenvalue of T, = a,(E)

which appears in the statement of Conjecture 2.5.

One can (and should) go further than we do here. For example, is it possible to
describe all of the systems of Hecke eigenvalues which appear in H*(Y;(n), C) in
terms of abelian varieties? They cannot all be described in terms of elliptic curves
since, for example, there are systems of Hecke eigenvalues which are not all rational
numbers and so cannot come from elliptic curves. See [38] for a precise conjectural
description in terms of “false generalised elliptic curves.”

3. Applications of modularity

We briefly discuss some applications of the modularity conjecture for elliptic curves.
Our intent here is not to be exhaustive but rather to give a flavour of some of the many
different applications of modularity that exist.

We mention first applications to Fermat’s Last Theorem and other Fermat-style
problems. Let us recall the strategy to prove Fermat’s Last Theorem used in [45]. Let
p > 5 be a prime number, and suppose given a non-trivial solution

a? +b? =c*

to the Fermat equation in exponent p; thus a, b, ¢ € Z are coprime non-zero integers.
One associates to such a non-trivial solution the Frey—Hellegoarch elliptic curve

Eope:y? =x(x—aP)(x +bP).
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After possibly permuting a, b, ¢ (in order to optimise the local behaviour at the
prime 2), the minimal discriminant of this elliptic curve over Q is 278 (abc)?? (see for
example the calculation in [35, §4.1]). This implies that the reduction of the p-adic
Galois representation pg,, , ., p (to be discussed further below) can be ramified only at
the prime 2 (and is finite flat at p). The modularity of the curve E, ., together with
Ribet’s level-lowering theorem, then implies the existence of a newform of weight 2
and level I'y(2), a contradiction.

Variants of this strategy may be employed to study the generalised Fermat equa-
tions

a? + b1 =",

where p, g, r > 2 are integers satisfying 1/p + 1/g + 1/r < 1. Bennett et al. [4]
describe a broad range of exponents for which it can be proved using variants of the
above modularity-based method that no non-trivial solutions exist. One can also study
solutions to these equations in number fields other than Q. Assuming a strengthened
version of the modularity conjecture (Conjecture 2.5) for an imaginary quadratic field
K = Q(~/—d), where d > 0 is an even squarefree integer, Sengiin and Siksek [34]
prove that for all sufficiently large prime numbers p, there are no non-trivial solu-
tions to the Fermat equation in exponent p over Q. See also [20] for similar (and
unconditional) results over real quadratic fields.

These kinds of modular techniques can also be used to get positive (as opposed
to non-existence) information about solutions to Diophantine equations. An example
is given by the following theorem, taken from the work of von Kinel and Matschke
[44].

Theorem 3.1. Let a be a non-zero integer. Then any solution (x,y) € Z? to the
equation y*> = x3 + a satisfies the estimate

max (log |x], glog|y|) < 1728|al(log |a| + 4).

Modularity is also of great importance for studying individual elliptic curves. For
example, essentially all known results towards the Birch—Swinnerton-Dyer (BSD)
conjecture are restricted to the class of modular elliptic curves. The BSD conjecture
concerns the L-function of an elliptic curve over a number field.

Definition 3.2. Let E be an elliptic curve over a number field K. The L-function
L(E,s) of E is the function of a complex variable s defined by the Euler product,
indexed by finite places v of K:

LEE.s) =[] (1—auBE)g;*) " T] (1 -av(E)g;* +4172) 7"

v bad v good
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The Hasse estimate implies that this Euler product converges absolutely in the
right half-plane Re(s) > 3/2, and defines a complex analytic function there. We then
have the following fundamental conjectures.

Conjecture 3.3. Let E be an elliptic curve over a number field K.

(1) (Analytic continuation) The function L(E, s) admits an analytic continuation
to the whole complex plane. Defining A(E,s) = Qu ST (s))IKQAL(E, ),
there is a natural number N and a sign ¢ € {x1} such that the functional
equation

A(E,s) =eN'"A(E,2—5)

holds.

(2) (Weak BSD) Assuming (1), the order of vanishing of L(E, s) at the point s = 1
is equal to the rank rg of the finitely generated abelian group E(K).

(3) (Strong BSD) Assuming (2), one has

. L(E.s)
lim —— =
s>1 (s —1)'E

P(E)R(E)|Sha(E)|,

where P(E) is a product of local terms, R(E) is the regulator of E(K), and
Sha(E) is the Tate—Shafarevich group of E. In particular, Sha(E) is finite.

Here we follow the formulation of the strong BSD conjecture given by Gross
[22], to which we refer for the definition of the terms P(E), R(E).

Theorem 3.4. Let E be an elliptic curve over a number field K. Then
(1) if E satisfies Conjecture 2.6, then L(E, s) has an analytic continuation,

(2) if E satisfies Conjecture 2.6 and K is totally real, and either [K : Q] is odd
or there exists a finite place v such that the Weil-Deligne representation of
Wk, associated to E is indecomposable, then the weak BSD conjecture holds
for E provided that the order of vanishing of L(E, s) at the point s = 1 is at
most 1.

If E satisfies Conjecture 2.6, then there is a cuspidal automorphic representation
7w of GL,(Ak) such that L(E, s) = L(x,s). In other words, we may identify L(E, s)
with an automorphic L-function. The analytic continuation of L(E, s) is then a con-
sequence of the known continuation for such automorphic L-functions [25]. When
K = Q and L(E, s) vanishes to order at most 1, the validity of the weak BSD con-
jecture follows from the Gross—Zagier formula and work of Kolyvagin [23,29].

These results were generalised to a general totally real field K by Zhang [46]. Tt
is interesting to note that the Gross—Zagier formula and its generalisations depend
on the existence of a modular parameterisation, i.e., a non-constant map from a
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Shimura curve defined over K to the elliptic curve E. The existence of such a para-
meterisation for a curve E satisfying the hypothesis of Theorem 3.4 (2) is a non-trivial
consequence of its modularity, in the sense of Conjecture 2.5.

4. Known results

We now discuss what is known towards the modularity conjecture (Conjecture 2.5).
First, it is known for elliptic curves over Q [8,40,45].

Theorem 4.1. Every elliptic curve over Q is modular.

We review the structure of the proof, which underlies all known generalisations
of this theorem. First, we change our point of view slightly by considering the mod-
ularity of the Galois representations pg ¢ : Gx — GL2(Qy) associated to an elliptic
curve over a number field K. For example, we can make the following definition.

Definition 4.2. Let K be a number field, let £ be a prime number, and let p : Gx —
GL,(Qg¢) be a continuous representation. We say that p is modular if there exists
a non-zero ideal n C O and a non-zero class ¢, € H*(Y1(n), Q) satisfying the
following condition: for all but finitely many finite places v of K, p|G, is unramified,
¢, is an eigenvector of the Hecke operator 75, and we have the equality

Ty(cp) = (tr p(Froby))c,.

In view of the equality a, (E) = tr pg_¢(Frob,) for prime-to-£ places at which E
has good reduction, we see that Conjecture 2.5 holds for an elliptic curve E over K
if and only if one (or equivalently, all) of its £-adic Galois representations is modular
in the above sense.

It is important to note that this notion of modularity is very restrictive. It is
believed (and known, in many cases) that any Galois representation which is modular
in the above sense must be of weight 2, in the sense defined in [38]. To encompass
all (say irreducible 2-dimensional) Galois representations which arise from the étale
cohomology of algebraic varieties over K we would need to consider a broader defin-
ition of modularity, encompassing all of the algebraic automorphic representations of
GL;(Ak) singled out in [13].

We can also define a notion of modularity for representations with coefficients in
F,, the field with £ elements.

Definition 4.3. Let p : Gg — GL,(F/) be a continuous representation. We say that
p is modular if there exists a non-zero ideal n C Ok and a non-zero class c, €
H*(Y1(n), Fy) satisfying the following condition: for all but finitely many finite
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places v of K, p|Gy, is unramified, ¢, is an eigenvector of the Hecke operator T,
and we have the equality

Ty(cp) = (tr p(Froby))c,.

Any continuous representation p : Gxg — GL,(Q) may be conjugated to take val-
ues in GL,(Zy); reduction modulo £ then gives a representation valued in GL, (Fy).
We write p : Gg — GL,(Fy) for the semisimplification of this representation, which
is (up to isomorphism) independent of any choices. It is easy to prove that if p is mod-
ular in the sense of Definition 4.2, then p is modular in the sense of Definition 4.3.

A fundamental idea behind the proof of Theorem 4.1 and its generalisations, first
introduced in [45], is that of the modularity lifting theorem, which gives conditions
under which one can go in the other direction and “lift” the modularity of the residual
representation p to the characteristic 0 representation p. Many such results now exist
in the literature, all approximations to the following ideal:

Theorem Schema 4.4. Let p : Gk — GL,(Qy) be a continuous representation sat-
isfying
(1) some global conditions on p, such as the irreducibility of p,

(2) some necessary local conditions on p, such as that p be of weight 2, in the
sense of [38],

(3) pis modular.

Then p is modular.

The first such theorem, proved in [40, 45], was sufficient to establish the mod-
ularity of semistable elliptic curves over Q (i.e., those elliptic curves with good or
multiplicative reduction everywhere). In order to apply such a theorem, say to prove
the modularity of an elliptic curve E, one needs a way to verify the modularity of the
residual representation pg ¢ for some prime £. Wiles was able to do this when £ = 3
and K = Q by exploiting a few very happy coincidences:

e The homomorphism GL;(Z3) — GL,(F3) given by reduction modulo 3 splits.
Consequently, for any elliptic curve E over Q we can find a representation p :
G — GL»(Z3) with finite image and lifting pf 3.

e The group GL,(F3) is soluble. The Langlands—Tunnell theorem [43], which gives
the automorphy (in the sense of [13]) of 2-dimensional representations of Gq
(or more generally Gk, where K is any number field) with finite soluble image,
implies that p may be associated to a weight 1 holomorphic newform.

e There exist plentiful congruences between weight 1 newforms and weight 2 new-
forms (for example, given by multiplying by a well-chosen weight 1 Eisenstein
series). The existence of such congruences is needed to pass from the automorphy
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of p to the modularity of p in our sense (which is also the sense required for
application of the modularity lifting theorem in [45]).

Verifying the modularity of pg 3 in this way, Wiles was able to prove the modularity
of those semistable elliptic curves over Q for which pg 3 is irreducible. To take care
of those curves for which pg 3 is reducible (or in other words, for which E admits
a rational 3-isogeny), he introduced a beautiful trick, the “3-5 switch,” exploiting the
geometry of modular curves of low level to prove the modularity of pg s instead.
This suffices since there are no semistable elliptic curves over Q with a rational 15-
isogeny!

4.1. Elliptic curves over totally real fields

The strongest known modularity lifting theorem suitable for applications to the mod-
ularity of elliptic curves over totally real number fields K is the following result, taken
from [19, Theorem 2].

Theorem 4.5. Let K be a totally real number field and let E be an elliptic curve over
K. Suppose that there exists an odd prime £ such that the following conditions are
satisfied:
(1) pE ¢ is modular,
(2) peslG Ko is absolutely irreducible (here ; denotes a primitive Lth root of
unity in the fixed algebraic closure of K).

Then pg ¢ is modular (and hence E itself is modular).

This is very close to optimal! The possibility of proving a theorem like this is
based on numerous technical improvements to the methods introduced in [40, 45],
which are due to many people. First, one has to understand why it may be reas-
onable to generalise modularity lifting theorems from the case K = Q to the case
where K is totally real. For a totally real field, the analogues of holomorphic modu-
lar forms are Hilbert modular forms. Most of the Galois representations attached to
Hilbert modular forms may be constructed and analyzed using Shimura curves and
the Jacquet-Langlands correspondence [12], giving a theory quite analogous to the
theory of classical modular curves.

Diamond and Fujiwara [16, 21] explained how to generalise the fundamental
Taylor—Wiles patching technique introduced in [40] to this context, making it pos-
sible to prove the first modularity lifting theorems over totally real fields, and also
introducing soluble base change, using [30], as a fundamental tool. At this point the
main question was how to impose conditions from £-adic Hodge theory” (such as

*More normally called p-adic Hodge theory, but we consider £-adic representations in this
article.
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the above-mentioned weight 2 condition) while still being able to control the Galois
deformation theory (in [45] only smooth conditions were considered, in which case
computing the tangent space to the deformation functor in terms of Galois cohomo-
logy is enough — not so in general). This problem was solved by Kisin [28], who
introduced a variant of the Taylor—Wiles method and defined and analysed weight 2
lifting functors using sophisticated results in integral £-adic Hodge theory. Finally,
Khare and Wintenberger, on their way to proving Serre’s conjecture, introduced an
important new technique for constructing liftings of modulo £ Galois representations
with prescribed properties [27], using modularity lifting theorems and Taylor’s poten-
tial automorphy technique [39] as an input. This was exploited in a very clever way
by Barnet-Lamb, Gee, and Geraghty [3] in order to optimise Kisin’s results.

With Theorem 4.5 in hand, we see that for an elliptic curve over a totally real field
K to fail to be modular, each of its residual representations must either be degenerate
(in the sense that pg ¢|G Ky is reducible) or must fail to be modular. The coincid-
ences underlying Wiles’s proof of the representations pg 3, together with the 3-5
switch, generalise well to the totally real context. Using the geometry of the modu-
lar curve X(7), Manoharmayum [31] gave a 3-7 switch argument, making it possible
now to prove the following theorem.

Theorem 4.6. Let E be an elliptic curve over a totally real field K. IfﬁE,HGK(Q) is
absolutely irreducible for any of £ = 3, 5 or 7, then E is modular.

Using this, Freitas, Le Hung, and Siksek were able to prove the following striking
result.

Theorem 4.7. Let K be a totally real field. Then,

(1) there is a finite set S C K such that if E is an elliptic curve over K and
J(E) &S, then E is modular,

(2) if [K : Q] = 2, then every elliptic curve over K is modular.

(Here j(E) is the j-invariant, which classifies the K-isomorphism class of E.)
The proof of this theorem is based on the following idea: if £ is a non-modular elliptic
curve, then, by Theorem 4.6, it must determine a rational point on one of a finite set of
modular curves parameterising elliptic curves with some of kind degeneracy of their
modulo 3, 5, and 7 Galois representations. (For example, this set would include the
curve Xo(105), which parameterises elliptic curves for which each of the modulo 3, 5,
and 7 Galois representations is reducible already on Gg.) The first part of Theorem
4.7 is thus a consequence of the observation that each of these modular curves has
genus greater than 2, together with Faltings’s theorem (i.e., Mordell’s conjecture)
[18]. The second part, much the harder, is to analyse the points of these modular
curves which are defined over real quadratic fields. Similar ideas have been used by
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Derickx, Najman, and Siksek to establish also the modularity of elliptic curves over
totally real cubic fields [15], and by Box to establish the modularity of elliptic curves
over most totally real quartic fields [6].

Here is a “vertical” analogue of Theorem 4.7 (2), proved in [42].

Theorem 4.8. Let p be a prime, and let K/Q be a totally real abelian extension,
unramified away from the prime p, such that Gal(K/Q) has order a power of p.
Then every elliptic curve over K is modular.

This theorem is again proved by combining modularity lifting theorems and an
analysis of rational points on modular curves, although in a different way. The first
main ingredient is a new modularity lifting theorem, proved in [41], which removes
the assumption that pg (|G K&y is irreducible. This so-called Taylor—Wiles assump-
tion is used to control certain Galois cohomology groups. The effect of this new
theorem is that in proving Theorem 4.8, one needs consider only rational points on
the single modular curve X¢(15). This curve has genus 1, so could have infinitely
many rational points over a fixed number field (as it does, for example, over Q(\/g)).
However, it turns out that for any field K as in the statement of Theorem 4.8, we
in fact have X((15)(K) = Xo(15)(Q)! Any such field K is contained in the cyclo-
tomic Z,-extension Qo /Q, so the natural tool to prove this is Iwasawa theory, and
in particular the results of Kato [26].

Looking at Theorems 4.7 and 4.8, it seems reasonable, in principle, to try to prove
the modularity of all elliptic curves over any family ¥ of totally real number fields for
which the points of modular curves rational over members of ¥ can be “organised”
in some way. Establishing the modularity of elliptic curves over all totally real fields
will require new ideas.

4.2. Elliptic curves over more general number fields

We now consider the modularity of elliptic curves over number fields which are not
totally real. Until a few years ago, it was very mysterious how one might hope to
prove modularity lifting theorems in this context. First, it is not known in general
how to associate Galois representations to Hecke eigenclasses in H*(Y1(n), Q).
Indeed, the spaces Y7 (1) (and their analogues, associated to quaternion algebras over
number fields) have no obvious relation to algebraic geometry (for example, when K
has a complex place they have no complex structure). Second, even if one could solve
this problem, the spaces Y7 (1) can have non-trivial torsion classes in their cohomo-
logy (say with Z, coefficients) which cannot be described in terms of automorphic
representations (see e.g. [5]). Third, the Taylor—Wiles method breaks down because
the cohomology groups of Y;(u) (again, say, with Z; coefficients, and now some
auxiliary Taylor—Wiles level structure) are not free modules over the group rings of
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diamond operators that appear in the version of the Taylor—Wiles method developed
by Diamond and Fujiwara.

The way forward was explained by Calegari and Geraghty [10]. Assuming a num-
ber of conjectures, they explain how to generalise the Taylor—Wiles method and prove
modularity lifting theorems over general number fields which can be applied, for
example, to prove the modularity of elliptic curves. We will not attempt to formulate
these conjectures precisely here but note that their conjectures include the import-
ant prescription that there should exist Galois representations associated not just to
(algebraic) automorphic representations with complex coefficients, but also to torsion
classes in the cohomology of spaces like Y7 (1t). This is a striking enlargement of the
Langlands program as outlined in [13]!

To get unconditional results, one still has to establish the conjectures which are
taken as a starting point in [10]. Progress towards these conjectures was made first
by Scholze, who used his theory of perfectoid spaces to prove the existence of Galois
representations attached to Hecke eigenclasses in the groups H*(Y;(n), Zg) when
K is a CM field, i.e., a totally imaginary quadratic extension of a totally real field
[33]. Using the further results of Caraiani and Scholze on the cohomology of non-
compact Shimura varieties [11], the 10-author collaboration [1] established enough
of the Calegari—Geraghty conjectures to be able to establish unconditional modularity
lifting theorems over CM fields. These sufficed to be able to prove, for example, the
potential modularity of all elliptic curves E over CM fields K (i.e., the modularity of
the base change Ej , for some finite extension L /K depending on E — a result which
implies in particular the meromorphic continuation to C of L(E, s)).

Separately, Boxer, Calegari, Gee, and Pilloni studied the application of the
Calegari—Geraghty method in the context of the coherent cohomology of Siegel type
Shimura varieties [7]. The problems faced here are analogous, but different, to those
arising out of the singular cohomology of the locally symmetric spaces Y7 (1). Nev-
ertheless these authors were able to prove unconditional modularity lifting theorems
that can be applied to the Galois representations arising from abelian surfaces over
totally real fields. As a particular consequence, they are able to prove the potential
modularity of elliptic curves over any quadratic extension of a totally real field (not
necessarily CM) — the first general results of this kind that can be applied to elliptic
curves over non-CM fields. An excellent guide to the path to the results of the last
few paragraphs can be found in the survey article [9].

What about modularity (as opposed to potential modularity) of elliptic curves? To
prove modularity using modularity lifting theorems, one needs a source of modular
residual representations. Unfortunately, one can no longer use Wiles’s idea to prove
the modularity of representations pg 3 for elliptic curves £ when the base field K is
not totally real. The reason is that, although the Langlands—Tunnell theorem applies
over arbitrary base number fields, there is no known way to construct congruences
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between the automorphic representations it gives and those automorphic representa-
tions which contribute to the cohomology of locally symmetric spaces. A solution to
this problem would also allow the construction of the Galois representations associ-
ated to algebraic Maass forms, a famously difficult open problem!

Nevertheless, we were able to establish the following theorem in [2].

Theorem 4.9. Let K be a CM field, and let E be an elliptic curve over K with
multiplicative reduction at each place v|5 of K. Then pg 3 is modular.

Corollary 4.10. Let K be a CM field such that {5 € K. Then a positive proportion of
elliptic curves over K are modular.

The proof of Theorem 4.9 is based on the idea of a kind of 2-3 switch: we want
to find an auxiliary elliptic curve A such that p4,3 = pg 3 and pg» extends to a
representation of G g+, where K™ is the maximal totally real subfield of K. A tricky
2-adic modularity lifting theorem would then imply the modularity of A, hence of
04,3 = pE 3. In fact, the existence of such an auxiliary curve 4 is a delicate matter
(partly explained by the fact that the modular curve X(6) has genus 1) and we need
to take a more circuitous route, for which we refer to [2].

The local conditions at the 5-adic places in Theorem 4.9 are always satisfied after
possibly replacing K by a soluble CM extension. Since we are free to make a soluble
base change when establishing the modularity of a given elliptic curve E (by cyclic
base change [30]), a sufficiently powerful modularity lifting theorem would, when
combined with Theorem 4.9, prove the modularity of most elliptic curves over a given
CM field.

The modularity lifting theorems established in [1] apply only to elliptic curves
which have either good reduction at each place of K above the fixed prime £, with £
unramified in K, or which have good ordinary/multiplicative reduction at each place
of K above £. Thus we do not have yet access to theorems such as those proved by
Kisin over totally real fields [28], in which an arbitrary amount of ramification is
permitted. If such theorems can be established in the future, then it seems reasonable
to hope that it will be possible to prove e.g. the modularity of all elliptic curves over
imaginary quadratic fields.
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