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The topology of dissipative systems

Héctor Barge and José M. R. Sanjurjo

Abstract. This expository article is dedicated to the study of some topological features of
dissipative flows defined in locally compact metric spaces, especially in manifolds and in the
Euclidean space. We show that they exhibit a host of interesting topological properties in areas
as diverse as Conley’s index theory, population dynamics, and the dynamics of planar systems.

1. Introduction

In the study of flows in non-compact spaces, the dissipative ones play an important
role. Their interest lies in the fact that it is possible to reduce the fundamental part
of the flow and its asymptotic behavior to a compact set. The concept of dissipativity
was introduced by Levinson in 1944 [28] for flows in the Euclidean space in his study
of the periodically forced van der Pol equation.

This expository article is dedicated to the study of some topological features of
dissipative flows defined in locally compact metric spaces, especially in manifolds
and in the Euclidean space. We show that they exhibit a host of interesting topological
properties in areas as diverse as Conley’s index theory, population dynamics, and the
dynamics of planar systems.

Through the paper we shall consider continuous dynamical systems (or flows)
' WM �R!M , where M is a locally compact metric space. If M is not compact,
then every flow can be extended to the Alexandrov compactification M [ ¹1º of M
by leaving fixed the point1.

The main reference for the elementary concepts of dynamical systems is [10] but
we also recommend [34, 35, 37]. We use the notation .x/ for the trajectory of the
point x, i.e.,

.x/ D ¹xt j t 2 Rº:

Similarly, for the positive semi-trajectory and the negative semi-trajectory

C.x/ D ¹xt j t 2 RCº; �.x/ D ¹xt j t 2 R�º:
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By the omega-limit of a point x we understand the set

!.x/ D
\
t>0

xŒt;1/:

In an analogous way, the negative omega-limit is the set

!�.x/ D
\
t<0

x.�1; t �:

An invariant compactum K is stable if every neighborhood U of K contains a
neighborhood V of K such that V Œ0;1/ � U .

We recall that an attractor is a stable invariant compactumK satisfying that there
exists a neighborhood U of K such that ; ¤ !.x/ � K, for every x 2 U . A repeller
is just an attractor for the reverse flow given by x'.x; t/ D '.x;�t /.

If K is an attractor, its region (or basin) of attraction of K is the set

A.K/ D
®
x 2M j ; ¤ !.x/ � K

¯
:

It is well known that A.K/ is an open invariant set. If in particular A.K/ is the whole
phase space, we say that K is a global attractor.

We use some topological notions through this paper. We recommend the books of
Hatcher and Spanier [24, 44] to cover this material. We use the notation H� for the
singular cohomology. We consider cohomology taking coefficients in Z.

If a pair of spaces .X; A/ satisfies that its cohomology H k.X; A/ is finitely gen-
erated for each k and is non-zero only for a finite number of values of k (as it happens
if .X;A/ is a pair of compact manifolds), its Poincaré polynomial is defined as

Pt .X;A/ D
X
k�0

rkH k.X;A/tk :

There is a form of homotopy theory which has proved to be the most convenient
for the study of the global topological properties of the invariant spaces involved in
dynamics, namely Borsuk’s homotopy theory or shape theory, introduced and studied
by Karol Borsuk. We present here a short introduction based on the presentation given
by Kapitanski and Rodnianski in [27].

A metric space X is said to be an absolute neighborhood retract or, shortly, an
ANR if it satisfies that whenever there exists an embedding f W X ! Y of X into
a metric space Y such that f .X/ is closed in Y , there exists a neighborhood U of
f .X/ such that f .X/ is a retract of U . Some examples of ANRs are manifolds, CW
complexes, and polyhedra. Besides, an open subset of an ANR is an ANR and a
retract of ANR is also an ANR. For more information about ANRs we recommend
[26]. Notice that by Kuratowski–Wojdyslawski theorem, every metric space can be
embedded in an ANR as a closed subspace.
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Let X be a closed subset of an ANR M and Y a closed subset of an ANR N .
Denote by U.X IM/ (resp. U.Y IN/) the set of all open neighborhoods of X in M
(resp. Y in N ).

Let fD ¹f W U ! V º be a collection of continuous maps from the neighborhoods
U 2U.X IM/ to V 2U.Y IN/. We say that f is a mutation fromX to Y if it satisfies

(1) for every V 2 U.Y IN/ there exists at least a map f W U ! V in f;
(2) if f W U ! V is in f, then the restriction f jU1 W U1! V1 is also in f for every

neighborhood U1 � U and every neighborhood V1 � V ;

(3) if two maps f;f 0 W U ! V are in f, there exists a neighborhood U1 � U such
that the restrictions f jU1 and f 0jU1 are homotopic.

An example of mutation is the identity mutation idU.X IM/ consisting of the iden-
tity maps id W U ! U .

Composition of mutations f D ¹f W U ! V º, g D ¹g W V ! W º from X to Y
and from Y to Z, respectively, is defined in the straightforward way. Two mutations
f D ¹f W U ! V º and f0 D ¹f 0 W U 0! V 0º (both from X to Y ) are said to be homo-
topic if for every pair of maps f W U ! V and f 0 W U 0 ! V belonging to f and f0,
respectively, there exists a neighborhood U0 2 U.X IM/, U0 � U \ U 0 such that
f jU0 is homotopic to f 0jU0 . It is easy to see that homotopy of mutations is an equiv-
alence relation.

Two metric spaces X and Y have the same Borsuk homotopy type or shape,
denoted by Sh.X/ D Sh.Y /, if they can be embedded as closed sets in ANRs M and
N in such a way that there exist mutations f D ¹f W U ! V º and g D ¹g W V ! U º

such that the compositions gf and fg are homotopic to the identity mutations idU.X IM/

and idU.Y IN/, respectively. In this case, the mutation f (resp. g) is said to be a shape
equivalence.

We stress the following basic features whose proofs can be found in [11].

(1) The notion of shape of sets depends neither on the ANRs they are embedded
in nor on the particular embeddings.

(2) Spaces belonging to the same homotopy type have the same shape.

(3) ANRs have the same shape if and only if they have the same homtopy type.

In the case of plane continua, the relation of having the same Borsuk homotopy
type has an easy visualization as it establishes the following result.

Theorem 1.1 (Borsuk [11]). Two continua K and L contained in R2 have the same
Borsuk homotopy type if and only if they disconnect R2 in the same number of con-
nected components. In particular, a continuum has the Borsuk homotopy type of a
point if and only if it does not disconnect R2. A continuum has the Borsuk homo-
topy type of a circle if and only if it disconnects R2 into two connected components.
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Every continuum has the Borsuk homotopy type of a wedge of circles, finite or infinite
(Hawaiian earring).

For more information about Borsuk homotopy theory we recommend the books
[11, 17, 32]. The papers [3, 9, 19–21, 23, 27, 39, 40, 42] illustrate some applications of
this theory to the study of dynamical systems.

An important class of invariant compacta is the so-called isolated invariant sets
(see [15, 16, 18] for details). These are compact invariant sets K which possess an
isolating neighborhood, i.e., a compact neighborhood N such that K is the maximal
invariant set in N .

To introduce the Conley index, that plays an essential role in this paper, we use
a special kind of isolating neighborhoods, the so-called isolating blocks. More pre-
cisely, an isolating block N is an isolating neighborhood such that there are compact
sets N i ; N o � @N , called the entrance and the exit sets, satisfying

(1) @N D N i [N o;

(2) for each x 2 N i there exists " > 0 such that xŒ�"; 0/ �M nN and for each
x 2 N o there exists ı > 0 such that x.0; ı� �M nN ;

(3) for each x 2 @N nN i there exists " > 0 such that xŒ�"; 0/� VN and for every
x 2 @N nN o there exists ı > 0 such that x.0; ı� � VN .

These blocks form a neighborhood basis of K in M .
LetK be an isolated invariant set. Its Conley index h.K/ is defined as the pointed

homotopy type of the topological space .N=N o; ŒN o�/, whereN is an isolating block
of K. A weak version of the Conley index which will be useful for us is the cohomo-
logical index defined as CH�.K/ D H�.h.K//. It can be proved that CH�.K/ Š
H�.N;N o/. Our main references for the Conley index theory are [15,38]. An exhaus-
tive study of the Conley index in the case of two-dimensional flows can be found in
[2, 4] and some applications of this theory to the evolution of the Lorenz strange set
are contained in [8]. In addition, the Conley index has recently been used to find
counterexamples to the triangulation conjecture (see [30, 31]).

The Conley index allows us to establish some conections between local and global
dynamics via Morse decompositions. We recall that if K is a compact invariant set, a
finite collection ¹M1; : : : ;Mnº of pairwise disjoint invariant subcompacta of K is a
Morse decomposition if it satisfies that

for each x 2

 
K n

n[
iD1

Mi

!
; !.x/ �Mj and !�.x/ �Mk with j < k:

Each set Mi is said to be a Morse set.
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Given a Morse decomposition ¹M1;M2; : : : ;Mkº of an isolated invariant set K,
there exists a polynomialQ.t/ whose coefficients are non-negative integers such that

nX
iD1

Pt
�
h.Mi /

�
D Pt

�
h.K/

�
C .1C t /Q.t/:

This formula, which relates the Conley indices of the Morse sets with the Conley
index of the isolated invariant set, is known as the Morse equation of the Morse
decomposition and it generalizes the classical Morse inequalities.

Another central concept of the Conley index theory that plays a crucial role in
this paper is that of continuation of isolated invariant sets. Let M be a locally com-
pact metric space, and let '� W M � R ! M be a parametrized family of flows
(parametrized by � 2 Œ0; 1�, the unit interval). The family .K�/�2J , where J � Œ0; 1�
is a closed (non-degenerate) subinterval and, for each � 2 J ,K� is an isolated invari-
ant set for '�, is said to be a continuation if for each �0 2 J and each N�0 isolating
neighborhood for K�0 , there exists ı > 0 such that N�0 is an isolating neighborhood
for K� for every � 2 .�0 � ı; �0 C ı/ \ J . We say that the family .K�/�2J is a
continuation of K�0 for each �0 2 J .

Notice that [38, Lemma 6.1] ensures that if K�0 is an isolated invariant set for
'�0 , there always exists a continuation .K�/�2J�0 of K�0 for some closed (non-
degenerate) subinterval �0 2 J�0 � Œ0; 1�.

There is a simpler definition of continuation based on [38, Lemma 6.2]. There,
it is proved that if '� W M � R! M is a parametrized family of flows and if N1
and N2 are isolating neighborhoods of the same isolated invariant set for '�0 , then
there exists ı > 0 such that N1 and N2 are isolating neighborhoods for '�, for every
� 2 .�0 � ı;�0C ı/\ Œ0; 1�, with the property that, for every �, the isolated invariant
subsets in N1 and N2 which have N1 and N2 as isolating neighborhoods coincide.

Therefore, the family .K�/�2J , with K� an isolated invariant set for '�, is a
continuation if for every �0 2 J there are an isolating neighborhood N�0 for K�0
and a ı > 0 such that N�0 is an isolating neighborhood for K�, for every � 2 .�0 �
ı; �0 C ı/ \ J .

Notice that, since this should not lead to any confusion, sometimes we will only
say that K� is a continuation of K�0 without specifying the subinterval J � Œ0; 1� to
which the parameters belong.

In the particular case that K�0 is an attractor for �0 2 J , there exists ı > 0 such
that K� is attractor with Sh.K�/ D Sh.K�0/ for � 2 .�0 � ı; �0 C ı/ \ J (see [41,
Theorem 4]).

The paper is structured as follows. In Section 2 the concept of dissipative flow is
introduced and some of the basic properties of this class of flows are presented. In par-
ticular, we see that dissipative flows coincide with those that have a global attractor.
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We also present some characterizations of the global attractor of a dissipative flow in
the Euclidean space. Section 3 is devoted to study parametrized families of dissipative
flows. We see that the property of being a global attractor is not robust and introduce a
characterization of continuations that consist entirely of global attractors. We also sur-
vey some results regarding the bifurcation global to non-global. In Section 4 we study
connections between dissipative flows and populations dynamics and present some
results about uniform persistence, a central concept in population dynamics. Finally,
in Section 5, we present some results that ensure that the global attractor of a dissipa-
tive flow defined on the non-negative orthant of the plane is contained in the boundary.

2. Dissipative flows

We start by recalling the definition of dissipative flow and some of its basic properties.
We assume that M is a locally compact, non-compact metric space.

Definition 2.1 (Levinson 1944). A flow ' W M � R! M is said to be dissipative
provided that, for each x 2M , the omega limit !.x/ ¤ ; and the closure of the set

�.'/ D
[
x2M

!.x/

is compact.

The following characterization of dissipative flows, which gives a very clear inter-
pretation of their dynamics, was provided by Pliss.

Proposition 2.2 (Pliss 1966 [36]). A flow ' WM �R!M is dissipative if and only
it has a global attractor.

It should be noted that, in general, the global attractor does not necessarily coin-
cide with the closure of �.'/. On the other hand, it can be seen that the flow ' is
dissipative if and only if ¹1º is a repeller.

The following result gives a characterization of the global attractor of a dissipative
flow. It relies heavily on the non-existence of bounded orbits outside the attractor.

Proposition 2.3. Let ' be a dissipative flow in Rn and K a compact invariant set.
ThenK is the global attractor if and only if Rn nK does not contain bounded orbits.

In the case of flows on the two-dimensional Euclidean space it is possible to
obtain a simpler characterization of global attractors of dissipative flows.

Theorem 2.4 (Barge–Sanjurjo [5]). Let K be an isolated invariant continuum of a
dissipative flow ' in R2. The following conditions are equivalent:

(i) K is a global attractor;
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(ii) there are no fixed points in R2 nK and there exists an orbit  connecting
1 and K (i.e., such that k.t/k ! 1 when t ! �1 and !./ � K).

This result is inspired by the following result that gives a relation between global
asymptotic stability of a fixed point and the non-existence of additional fixed points
in the case of dissipative discrete dynamical systems.

Theorem 2.5 (Alarcón–Guíñez–Gutiérrez [1], Ortega–Ruiz del Portal [33]). Assume
that h 2 HC (orientation preserving homeomorphisms of R2) is dissipative and p is
an asymptotically stable fixed point of h. The following conditions are equivalent:

(i) p is globally asymptotically stable;

(ii) fix.h/D p and there exists an arc  � S2 with end points at p and1 such
that h./ D  .

The proof in [1] is based on Brouwer’s theory of fixed point free homeomor-
phisms of the plane. Ortega and Ruiz del Portal give in [33] an alternative proof
based on the theory of prime ends.

The previous results suggest that if K is an attractor of a dissipative flow, then
A.K/ being bounded is in the sharpest contrast to K being global.

3. Robustness of global attractors
This section is dedicated to the presentation of some results related to properties of
dissipative systems that concern Conley’s index theory.

We give a simple example which shows that the property of being global is not
a robust property for an attractor since small perturbations of the flow can create
bounded orbits in its region of attraction.

Example 3.1. Consider the family of ordinary differential equations defined on the
plane in polar coordinates:´

r 0 D �r3
�
1
r
� �

�2
;

� 0 D 1;
� 2 Œ0; 1�:

The phase portraits of this family of differential equations are depicted in Figure 1.
The picture on the left describes the phase portrait for the parameter � D 0. We see
that in this case the origin is a globally attracting fixed point and the orbit of any other
point spirals towards it. The picture on the right describes the phase portrait when
� > 0. In this case we see that the origin is still an asymptotically stable fixed point
but it is not a global attractor anymore since, for each � > 0, the circle centered at the
origin and radius 1=� is a periodic trajectory which attracts uniformly all the points of
the unbounded component of its complement and repels all the points of the bounded
one except the origin.
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@Bλ

Figure 1. Phase portraits of the family of ordinary differential equations from Example 3.1 for
� D 0 (left) and � > 0 (right).

Example 3.1 motivates the following definition.

Definition 3.2. A parametrized family of dissipative flows '� WM �R!M is said
to be coercive if for any continuation K� of the global attractor K0 of '0 there exists
a �0 such that A�.K�/ is bounded for every � with 0 < � < �0.

However, note that in this situation, since all the flows are dissipative, then each
'� still has a global attractor yK� but the family of global attractors is not a continua-
tion of K0.

The following definition introduces a notion which is, in some sense, the opposite
of the previous one.

Definition 3.3. A parametrized family of dissipative flows '� WM �R!M is said
to be uniformly dissipative provided that for each x 2M and � 2 Œ0; 1� we have that
!�.x/ ¤ ; and the closure of the set

� D
[

�2Œ0;1�

�.'�/

is compact.

The importance of the above definition is that it can be used to provide a charac-
terization of continuations that consist entirely of global attractors.

Theorem 3.4 (Barge–Sanjurjo [7]). Let '� WM �R!M be a parametrized family
of dissipative flows with � 2 Œ0; 1�. Let K� denote the global attractor of '�. Then
the family .K�/�2Œ0;1� is a continuation of K0 if and only if the family .'�/�2Œ0;1� is
uniformly dissipative.

We see a nice application of the previous result.
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Example 3.5. An important example of global attractor is provided by the Lorenz
equations 8̂̂<̂

:̂
x0 D �.y � x/;

y0 D rx � y � xz;

z0 D xy � bz;

where � , r , and b are three real positive parameters. If we fix � and b, we obtain a
family of flows

'r W R
3
�R! R3

corresponding to the Lorenz equations for the different values of r .
E. N. Lorenz proved that for every value of r there exists a global attractor of

zero volume for the flow associated to these equations. This attractor should not be
confused with the famous Lorenz attractor, which is a proper subset of the global
attractor.

The family 'r is uniformly dissipative and, as a consequence, it defines a contin-
uation of global attractors Kr . The proof of this fact uses the function

V D rx2 C �y2 C �.z � 2r/2:

C. Sparrow studied in [45] this function and showed that it is a Lyapunov function
for the flow 'r . By using this function he was able to prove that Kr lies in a ball Br
centered at 0 and with radiusO.r/, such thatO.r/ depends continuously on r . Hence,
if we consider an arbitrary r0 and an interval Œc; d � containing r0, we have that the set
C D

S
c�r�d Br is compact and that ; ¤ !r.x/ � C for every x 2 R3 and every

r 2 Œc; d �. Therefore, the family of Lorenz flows 'r is uniformly dissipative and the
corresponding family Kr of global attractors is a continuation.

The coercive families of flows are in sharp contrast with the uniformly dissipative
families. For coercive families, the continuations of global attractors are never global.
The study of coercive families of flows has some topological interest. The following
result provides a graphic characterization of this kind of families.

Theorem 3.6 (Barge–Sanjurjo [7]). Let '�, with � 2 Œ0; 1�, be a coercive family of
flows in Rn. We denote by K0 the global attractor of '0 and by K�, with � 2 Œ0; 1�, a
continuation of K0. Then there exists �0 > 0 such that for every � with 0 < � < �0
there is an isolated invariant compactum C� in Rn nK� such that

(i) C� separates Rn into two components and K� lies in the bounded compo-
nent;

(ii) C� has the Borsuk homotopy type (shape) of Sn�1;

(iii) C� attracts uniformly all the points of the unbounded component and repels
all the points of the bounded one which are not in K�;
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(iv) diamC� !1 when �! 0, where diamC� denotes the diameter of C�.

Moreover, the existence of such a C� for 0 < � < �0 is sufficient for the family to be
coercive.

In view of the previous results, it is interesting to study in all its generality the
mechanism which produces the global to non-global bifurcation in families of dissi-
pative flows. With this objective we introduce the following definition.

Definition 3.7. Let '� W Rn �R! Rn, with � 2 Œ0; 1�, be a parametrized family of
dissipative flows. The family is said to be polar if it has arbitrarily large bounded
trajectories. More precisely, for every L > 0 (arbitrarily large) there is a �0 > 0 such
that for every � with 0 < � < �0 there is a bounded trajectory � of '� and a t� < 0
such that k�.t/k > L for every t with �1 < t < t�.

Obviously, if K� is a continuation of the global attractor K0 of '0, then for L
sufficiently large, � lies in Rn nK�.

The following proposition makes it clear that polarity is a key notion regarding
the transition from global to non-global.

Proposition 3.8 (Barge–Sanjurjo [7]). Let '� W Rn � R! Rn, with � 2 Œ0; 1�, be a
parametrized family of dissipative flows. Then the family is polar if and only if for
every continuationK� of the global attractorK0 of '0 there exists a �0 > 0 such that
K� is a non-global attractor for every � with 0 < � < �0.

The following result describes the general picture of the polar families of dissipa-
tive flows.

Theorem 3.9 (Barge–Sanjurjo [7]). If '� W Rn �R! Rn, with � 2 Œ0; 1�, is a polar
family of dissipative flows, then there exists a �0 > 0 such that for every � with
0 < � < �0 the maximal invariant compactum lying in Rn n K� for the flow '�,
which we denote by C�, is non-empty and isolated, and its cohomological Conley
index is trivial in every dimension. Moreover, the family is coercive if and only if C�
has the Borsuk homotopy type of Sn�1.

The isolated invariant compactum C� can be seen as the obstruction for the
existence of a continuation of global attractors. An interesting feature of the above
proposition is that it provides an equivalence between a topological property (having
the Borsuk homotopy type of Sn�1) and a dynamical property (coercivity).

4. Dissipative flows and populations dynamics
Another area in which dissipative systems play a fundamental role is population
dynamics. We shall suppose here thatM is a closed subset of a larger locally compact
metric space X and denote by @M the boundary of M in X .
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Fig. 1. A uniformly persistent flow ϕ and a small perturbation of ϕ .

which ∂ E is invariant. We say that the family is regular at λ0 provided that there exists a compact
set K ⊂ E̊ , K "= ∅, and ε > 0 such that for every x ∈ E̊ and for every λ ∈ (λ0 − ε,λ0 + ε), the trajectory
ϕλ(x, ·) visits K .

We express our continuation results first in a general form and then we consider the particular
case of flows defined in the nonnegative orthant.

Theorem 5 (Weak continuation of uniform persistence). Let X be a locally compact metric space and let
E be a closed subset of X . Suppose we are given a (continuous) parametrized family of dissipative dy-
namical systems ϕλ , λ ∈ I , on E, for which ∂ E is invariant. Further, assume that ϕ0 is uniformly per-
sistent. Then there exists β > 0 such that for every compact set K ⊂ E̊ there exists λ0 > 0 such that
lim inf{d(ϕλ(x, t), ∂ E) | t → ∞}> β for every λ6 λ0 and for every x ∈ K .

Proof. We discuss the case when E is not compact, the compact case being easier. Since E is locally
compact we may consider its Alexandrov compactification E ∪ {∞} and extend all flows ϕλ to it in
such a way that ϕλ(∞) = ∞ (we still use the same notation, ϕλ , to denote such extension). It can be
easily proved that we obtain in this way a continuous parametrized family of flows

ϕλ :
(

E ∪ {∞}
)
× R → E ∪ {∞},

with λ ∈ I .
Since ϕ0 is uniformly persistent then R = ∂ E ∪ {∞} is a repeller and we denote by A its dual

attractor. Now, a basic fact in Conley’s index theory is that the pair (A, R) continues to a family of
attractor-repeller pairs (Aλ, Rλ) for the flows ϕλ for λ sufficiently small. This means, in particular, that
if U is a neighborhood of A and V is a neighborhood of R (which can be assumed to be isolating)
with U ∩ V = ∅ then Aλ ⊂ U and Rλ ⊂ V and Aλ and Rλ are the maximal invariant sets for ϕλ in U
and V respectively for λ sufficiently small. Moreover, since R = ∂ E ∪ {∞} is also invariant for ϕλ , we
necessarily have that R ⊂ Rλ .

Since (Aλ, Rλ) is an attractor-repeller pair for ϕλ there exists a Tλ > 0 such that ϕλ(x, t) ∈ U for
every x ∈ E − V and every t > Tλ (since E − V is a compact set contained in the basin of attrac-
tion of Aλ). Now, given a compactum K ⊂ E̊ and in order to establish the theorem, we choose the
previously mentioned pair (U , V ) satisfying the additional condition that V is a neighborhood of R
contained in the complement in E ∪ {∞} of Ū ∪ K . Hence, if we define β as the distance from the
compact set Ū to ∂ E we immediately deduce that

lim inf
{

d
(
ϕλ(x, t), ∂ E

) ∣∣ t → ∞
}
> β

Figure 2. A small perturbation of a uniformly persistent flow that is not uniformly persistent.

Definition 4.1. We will say that the dissipative flow ' W M � R! M is uniformly
persistent if there exists ˇ > 0 such that for every x 2 VM

lim inf
®
d
�
'.x; t/; @M

�
j t !1

¯
� ˇ:

If M is compact, then ' is persistent if and only if @M is a repeller of '. If M
is not compact, then ' is persistent if and only if @M [ ¹1º is a repeller for the
flow extended to M [ ¹1º. As a consequence, there exists a compactum K which
attracts all points x … @M . This compactum is called the global attractor of the system
and represents a state of coexistence of all the species that make up the population.
The most significant case is when X D Rn, M D RnC (the non-negative orthant).
The boundary @RnC represents populations some of whose components have become
extinct.

It is easy to see that, in a general context, uniform persistence is not a robust
property. For instance, the illustration in Figure 2 shows that small perturbations of a
uniformly persistent flow can destroy this property.

Despite this fact, we see in our next result that all uniformly persistent flows have
weak continuation properties, meaning by this that small perturbations of the flow
never drive to extinction populations within a certain range (which can be arbitrarily
chosen).

Theorem 4.2 (Weak continuation of uniform persistence, Sanjurjo [43]). Let X be a
locally compact metric space and letM be a closed subset ofX . Suppose we are given
a (continuous) parametrized family of dissipative dynamical systems '�, with � 2 I ,
on M , for which @M is invariant. Further, assume that '0 is uniformly persistent.
Then there exists ˇ > 0 such that for every compact set K � VM there exists �0 > 0
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such that
lim inf

®
d
�
'�.x; t/; @M

�
j t !1

¯
� ˇ

for every � � �0 and for every x 2 K.

When M is the non-negative orthant, some nice topological conclusions can be
reached about special regions of the flow. In particular, there is a contractible region
where populations are guaranteed their survival and another region of spherical shape
where populations have their survival compromised.

Corollary 4.3 (Sanjurjo [43]). Let '�, with � 2 I , be a (continuous) parametrized
family of dissipative flows on the non-negative orthant RnC. Further, assume that '0
is uniformly persistent. Then there exists ˛ > 0 such that for every " and every L with
0 < " < L there exists �0 > 0 such that

(i) lim inf¹d.'�.x; t/; @RnC/jt !1º > ˛ for every x with d.x; @RnC/ � " and
kxk � L and for every � � �0,

(ii) the set

W� D
®
x 2 RnC j lim inf

®
d
�
'�.x; t/; @R

n
C

�
j t !1

¯
> ˛

¯
is contractible and the set

R� D
®
x 2 RnC j lim inf

®
d
�
'�.x; t/; @R

n
C

�
j t !1

¯
� ˛

¯
[ ¹1º

has the Borsuk homotopy type (shape) of Sn�1 for every � � �0.

It would be of interest to study the implications of these results in some particular
situations. Theorem 4.2 suggests that permanence does not vanish completely in an
abrupt way. Even if it does not continue, permanence still remains when we limit our-
selves to populations within a certain range. As an interesting case, S. Cano-Casanova
and J. López-Gómez prove in [14] (see also [29]) that permanence of two species is
possible under strong mutual aggression. In other words, they prove that if the birth
rates are high enough, then the species are permanent irrespective of the competition
strength in the regions where competition occurs. They actually measure how large
the birth rate must be.

An interesting problem would be to study to what extent permanence remains
for populations within a certain range despite their reproduction rate being below the
limit threshold.

As we said before, uniformly persistent flows have a global attractor towards
which all the states of the interior evolve. The following results concern the fine
structure of this global attractor of the flow and some of its topological properties.
We recall that a continuum K is point-like in Rn provided Rn nK is homeomorphic
to Rn n ¹pº, where p is a point.
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Theorem 4.4 (Sanjurjo [43]). Let ' W RnC � R! RnC be a dissipative flow. If ' is
uniformly persistent then:

(i) Suppose L is a point-like repeller (in particular a repelling point) in the
interior of RnC, then there exists an attractor K0 with the Borsuk homotopy
type (shape) of Sn�1 contained in the global attractor K and whose basin
of attraction is int RnC n L.

(ii) Suppose L is a repeller with the Borsuk homotopy type (shape) of Sn�1

in the interior of RnC. Then L decomposes VRnC into two connected compo-
nents. Moreover, if the bounded component is simply connected, then there
exists an attractor with the Borsuk homotopy type (shape) of a point con-
tained (together with its basin of attraction) in the interior of the global
attractor K.

In our next result we see that the Morse theory of uniformly persistent flows with
an attracting cycle can be described in a simple way, irrespective of the complexity of
the flow in the boundary. Suppose ' W RnC �R! RnC is a uniformly persistent flow.
We say that M D ¹M1;M2; : : : ;Mkº is a natural Morse decomposition of the flow if

(a) ¹M1;M2º is an attractor-repeller decomposition of the global attractor K,

(b) Mi � @RnC for i � 3, and

(c) ¹M1;M2; : : : ;Mk;1º is a Morse decomposition of RnC [ ¹1º.

By the Morse equation of M we mean the Morse equation of ¹M1;M2; : : : ;Mk;1º.
The next theorem shows that ifM1 is an attracting cycle or, more generally, an attrac-
tor with the Borsuk homotopy type (shape) of S1, then the Morse equation of M

takes a simple form. On the opposite direction we see that using this equation we can
recognize the existence of attractors with the Borsuk homotopy type (shape) of S1

in the plane or attractors whose suspension has the Borsuk homotopy type (shape) of
S2 for higher dimensions.

Theorem 4.5 (Sanjurjo [43]). Let ' WRnC �R!RnC be a dissipative flow. Suppose '
is uniformly persistent and MD¹M1;M2; : : : ;Mkº is a natural Morse decomposition
of RnC for '. Then:

(i) If M1 has the Borsuk homotopy type of S1, then the Morse equation of the
decomposition M with coefficients in Z or a field is

1C t C t2 D 1C .1C t /t: (4.1)

(ii) Conversely, if the Morse equation of M is (4.1), then Sh.M1/D Sh.S1/ for
n D 2 and Sh.†M1/ D Sh.S2/ for n � 2, where †M1 is the suspension
of M1.
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( aλ , 0) ( aλ , 0)

Figure 3. Phase portrait of the Lotka–Volterra system for a=� � c=d .

5. Planar dissipative flows

In this section, we present some results regarding dissipative flows defined on the
non-negative orthant of the plane.

Example 5.1. Consider the Lotka–Volterra equation in R2C (see [25] for more infor-
mation): ´

Px D x.a � by � �x/;

Py D y.�c C dx � �y/;
a; b; c; d; � > 0 and � � 0:

This equation, which plays a central role in population dynamics, induces a family of
dissipative flows depending on the parameters. The point .a=�; 0/ 2 @R2C is a fixed
point (regardless of the parameter value) which is a sink for a=� � c=d (Figure 3).
In this case, there are no fixed points in VR2C and the global attractor of the flow is the
closed interval Œ0; a=�� � ¹0º contained in @R2C. As a consequence, the extinction of
one of the populations takes place. This situation is, in a certain sense, the opposite
of that described for uniformly persistent flows.

Motivated by the situation just described, we present some results that ensure that
the global attractor of a dissipative flow defined on R2C is contained in @R2C.

Theorem 5.2 (Barge–Sanjurjo [6]). Suppose that ' W R2C�R!R2C is a flow without
equilibria in VR2C. Then, the !-limit (resp. the !�-limit) of any point, when non-empty,
is entirely composed of fixed points and, hence, it is contained in @R2C. If, in addition,
the fixed point set is bounded and totally disconnected, then the !-limit (resp. the
!�-limit) of each trajectory, when non-empty, is a singleton. Moreover, if the flow is
dissipative, the following hold.
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x y

Figure 4. Dissipative flow in R2
C

with only two fixed points x and y, both contained in @R2
C

and such that I.x/ D 4 and I.y/ D C1.

(i) Given x 2R2C, if �.x/ is bounded so is .x/. Hence, both !.x/ and !�.x/
are non-empty and entirely composed of fixed points.

(ii) Let K be the global attractor of 'j@R2
C

. Then, K is the global attractor of
' if and only ifK is isolated for ' or, equivalently, �.x/ is unbounded for
each x 2 VR2C.

Remark. The fact that !.x/ is composed of fixed points for discrete systems of the
disc having all the fixed points in the boundary was proved by Campos, Ortega, and
Tineo in [13] by using some ideas of Brown [12] and a classical result of Brouwer
(see [22]) on homeomorphisms of the plane. The proof of the previous result, that can
be seen in [6], makes use of the Poincaré–Bendixson theorem.

Let �B.'/ be the set of bounded trajectories of ' and let x be an equilibrium
point. We define

�.x/ WD
®
 2 �B j x 2 !./ [ !

�./
¯
:

Definition 5.3. Let x be an equilibrium point. We define the index I.x/2N [ ¹C1º
to be k 2 N if the cardinal of �.x/ is k and I.x/ D C1 if the cardinal of �.x/ is
not finite.

Remark. For each k 2 N [ ¹C1º there exists a flow on R2C with all its equilibria
contained in @R2C and having a fixed point x such that I.x/ D k. In Figure 4, a flow
having a fixed point of index 4 is depicted.
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Theorem 5.4 (Barge–Sanjurjo [6]). Suppose that ' W R2C �R! R2C is a dissipative
flow having a countable amount of fixed points, all of them contained in @R2C. Then,
the global attractor of the flow is in the boundary if and only if all the fixed points
have finite index. In such a case, for each fixed point x, I.x/ is either 1, 2 or 3.
Moreover, if the index of an isolated fixed point x takes the value 1, then ¹xº is the
global attractor.
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