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Minimal surfaces in Euclidean spaces by way of complex
analysis

Franc Forstnerič

Abstract. This is an expanded version of my plenary lecture at the 8th European Congress of
Mathematics in Portorož on 23 June 2021. The main part of the paper is a survey of recent
applications of complex-analytic techniques to the theory of conformal minimal surfaces in
Euclidean spaces. New results concern approximation, interpolation, and general position prop-
erties of minimal surfaces, existence of minimal surfaces with a given Gauss map, and the
Calabi–Yau problem for minimal surfaces. To be accessible to a wide audience, the article
includes a self-contained elementary introduction to the theory of minimal surfaces in Euclidean
spaces.

1. Minimal surfaces: A link between mathematics, science,
engineering, and art

Minimal surfaces are among the most beautiful and aesthetically pleasing geometric
objects. These are surfaces in space which locally minimize area, in the sense that
any small enough piece of the surface has the smallest area among surfaces with the
same boundary. From the physical viewpoint, these are surfaces minimizing tension,
hence in equilibrium position. They appear in a variety of applications to engineering,
biology, architecture, and others.

The subject has a luminous history, going back to 1744 when Leonhard Euler
[32] showed that pieces of the surface now called catenoid (see Example 2.7) have
smallest area among all surfaces of rotation in the 3-dimensional Euclidean space R3.
The catenoid derives it name from catenary, the curve that an idealized hanging chain
assumes under its own weight when supported only at its ends. The model catenary is
the graph of the hyperbolic cosine function y D coshx, and a catenoid is obtained by
rotating this curve around the x-axis in the .x; y; z/-space. Topologically, a catenoid
is a cylinder, and as a conformal surface it is the puncture plane C� D C n ¹0º. From
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the mathematical viewpoint, the catenoid is one of the most paradigmatic examples
of minimal surfaces, and it appears in several important classification results and in
proofs of major theorems.

The subject of minimal surfaces was put on solid footing by Joseph–Louis La-
grange who developed the calculus of variations during 1760–61, thereby reducing
the problem of finding stationary points of functionals to a second-order partial dif-
ferential equation, now called Lagrange’s equation. His work was published in 1762
by Accademia delle scienze di Torino [51, 52] and is available in his collected works
[53]. In [51], Lagrange applied his new method to a variety of problems in physics,
dynamics, and geometry. In particular, he derived the equation of minimal graphs.
The term minimal surface has since been used for a surface which is a stationary
point of the area functional. The question whether a domain in a minimal surface
truly minimizes the area among nearby surfaces with the same boundary can be ana-
lyzed by considering the second variation of area. It was later shown that a minimal
graph in R3 over a compact convex domain in R2 is an absolute area minimizer, and
hence small enough pieces of any minimal surface are area minimizers.

In 1776, Jean Baptiste Meusnier [66] discovered that domains in a surface in R3

are minimal in the sense of Lagrange if and only if the surface has vanishing mean
curvature at every point. He also described the second known minimal surface, the
helicoid; see Example 2.8. It is obtained by a line in 3-space rotating at a constant rate
as it moves at a constant speed along the axis of rotation, which is perpendicular to the
rotating line. Helicoid is the geometric shape of a device known as Archimedes’ screw
(or the water screw, screw pump, or Egyptian screw), named after Greek philosopher
and mathematician Archimedes who described it around 234 BC on the occasion of
his visit to Egypt. There is evidence that this device had been used in ancient Egypt
much earlier. The helicoid is sometimes called “double spiral staircase”—each of the
two half-lines sweeps out a spiral staircase, and these two staircases only meet along
the axis of rotation. Therefore, its physical model is a convenient device for letting
people ascend and descend a staircase without the two crowds meeting in-between.
From a different field, DNA molecules assume the shape of a helicoid.

Topologically and conformally the helicoid is the plane. Its name derives from
helix—for every point on the helicoid, there is a helix (a spiral curve) contained in
the helicoid which passes through that point. The helicoid plays a major role in the
classification of properly embedded minimal surfaces in R3; see the survey paper [28]
by Tobias H. Colding and William P. Minicozzi.

Minimal surfaces appear naturally in the physical world. Laws of physics imply
that a soap film spanned by a given frame (i.e., a closed Jordan curve) is a minimal
surface. The reason is that this shape minimizes the surface tension and puts it in equi-
librium position. Soap films, bubbles, and surface tension were studied by the Belgian
physicist Joseph Plateau in the 19th century. Based on his experiments, Karl Weier-
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strass formulated in 1873 the Plateau problem, conjecturing that any closed Jordan
curve in R3 spans a minimal surface (in fact, a minimal disc). This was confirmed
by Tibor Radó [71, 72] (1930) and Jesse Douglas [31] (1931). For his work on the
Plateau problem, Douglas received one of the first two Fields Medals at the Interna-
tional Congress of Mathematicians in Oslo in 1936. Half a century later, it was shown
that the disc of smallest area with given boundary curve (the Douglas–Morrey solu-
tion of the Plateau problem) has no branch points; see the monograph by Anthony
Tromba [77]. Furthermore, if the curve lies in the boundary of a convex domain in
R3, then the solution is embedded according to William H. Meeks and Shing Tung
Yau [63, 64].

Minimal surfaces are also studied in more general Riemannian manifolds of di-
mension at least three. Holomorphic curves in complex Euclidean spaces Cn for
n > 1, or in any complex Kähler manifold of complex dimension at least two, are
special but important examples of minimal surfaces. As pointed out by Colding and
Minicozzi [28], there are several fields where minimal surfaces are actively used
in understanding physical phenomena. In particular, they come up in the study of
compound polymers, protein folding, etc. They also play a prominent role in art,
especially in architecture.

The connection between minimal surfaces in Euclidean spaces and complex anal-
ysis has been known since mid-19th century. The basic fact is that a conformal
immersionX WM ! Rn from a Riemann surfaceM parameterizes a minimal surface
if and only if the map X is harmonic (see Theorem 2.1); equivalently, the complex
derivative @X=@z in any local holomorphic coordinate z on M is holomorphic. Fur-
thermore, the immersion X is conformal if and only if @X=@z assumes values in the
null quadric A � Cn, given by the equation z21 C z22 C � � � C z2n D 0 (see (2.23)), and
@X=@z ¤ 0 if X is an immersion. This leads to the Enneper–Weierstrass representa-
tion of any conformally immersed minimal surface M ! Rn as the real part of the
integral of a holomorphic map f WM ! A� D A n ¹0º � Cn (see Theorem 2.6). The
period vanishing conditions on f along closed curves in M ensure that the integral
is well defined. The formula is most concrete in dimension n D 3 (see (2.25)) due to
an explicit 2-sheeted parameterization of the null quadric A � C3 by C2.

This connection between minimal surfaces and holomorphic maps was used by
Bernhard Riemann around 1860 in his construction of properly embedded minimal
surfaces in R3, now called Riemann’s minimal examples [73] (see the paper [60]
by William H. Meeks and Joaquín Pérez), and in numerous further works by other
authors. It was popularized again in modern times by Robert Osserman [69].

Despite the long and illustrious history of the subject, the author in collaboration
with Antonio Alarcón, Francisco J. López, and others obtained in the last decade a
string of new results by exploiting the Enneper–Weierstrass representation. The main
point in our approach is that the punctured null quadric A� is a complex homoge-
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neous manifold, hence an Oka manifold, a notion introduced in [34] and treated in
[35, Chapter 5]. This implies that holomorphic maps from any open Riemann surface
(and, more generally, from any Stein manifold, that is, a closed complex submanifold
of a complex Euclidean space CN ) to A� satisfy the Runge–Mergelyan approxima-
tion theorem and the Weierstrass interpolation theorem in the absence of topological
obstructions. Together with methods of convexity theory, this gave rise to many new
constructions of conformal minimal surfaces with interesting properties; see Theo-
rem 3.1. By using parametric versions of these results, it was possible to determine
the rough topological shape (i.e., the weak or strong homotopy type) of the space of
nonflat conformal minimal immersions from any given open Riemann surface into
Rn (see Theorem 3.2). It was also shown that every natural candidate is the Gauss
map of a conformal minimal surface in Rn (see Theorem 3.3).

Another complex analytic technique, which has recently had a major impact on
the field, is an adaptation of the classical Riemann–Hilbert boundary value problem
to conformal minimal surfaces and holomorphic null curves in Euclidean spaces. This
led to an essentially optimal solution of the Calabi–Yau problem for minimal surfaces,
originating in conjectures of Eugenio Calabi from 1965; see Theorems 3.5 and 3.6.
This technique was also used in the construction of complete proper minimal surfaces
in minimally convex domains of Rn (see [16, Chapter 8]).

The recent results presented in Section 3 are carefully explained in the monograph
[16] published in March 2021. The corresponding developments on non-orientable
minimal surfaces are described in the AMS Memoir [15] from 2020. It is needless to
say that both of these publications contain many other results not mentioned here.

In 2021, the author and David Kalaj [38] obtained an optimal Schwarz–Pick
lemma for conformal minimal discs in the ball of Rn and introduced the notion of
hyperbolicity of domains in Rn, in analogy with Kobayashi hyperbolicity of complex
manifolds. This new topic is currently being developed, and it is too early to include
it here.

2. An elementary introduction to minimal surfaces

To make the article accessible to a wide audience including advanced undergraduate
students of Mathematics, we present in this section a self-contained introduction to
the theory of minimal surfaces in Euclidean spaces. We assume familiarity with ele-
mentary calculus, topology, and rudiments of complex analysis; however, no a priori
knowledge of differential geometry is expected. We shall use the fact that metric-
related quantities such as length, area, and curvature of curves and surfaces in a
Euclidean space Rn are invariant under translations and orthogonal maps of Rn; these
are the isometries of the Euclidean metric, also called rigid motions. For simplic-
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ity of presentation, we focus on minimal surfaces parameterized by plane domains,
although the same methods apply on an arbitrary open Riemann surface. More com-
plete treatment is available in a number of texts; see [16,20, 26,30, 55, 58,59,68,69],
among others. For the theory of non-orientable minimal surfaces, see [15].

2.1. Conformal maps and conformal structures on surfaces

From the physical viewpoint, the most natural parameterization of a minimal surface
is by a conformal map (from a plane domain, or a conformal surface). A confor-
mal parameterization minimizes the total energy of the map and makes the tension
uniformly spread over the surfaces. We give a brief introduction to the subject of
conformal maps, referring to [16, Sections 1.8–1.9] for more details and further ref-
erences.

LetD be a domain in R2 with coordinates .u; v/. A C1 mapX WD! Rn .n� 2/
is an immersion if the partial derivatives Xu D @X=@u and Xv D @X=@v are linearly
independent at every point ofD. An immersion is said to be conformal if its differen-
tial dXp at any point p 2D preserves angles. It is elementary to see (cf. [16, Lemma
1.8.4]) that an immersion X is conformal if and only if

jXuj D jXvj and Xu �Xv D 0: (2.1)

Here, x � y denotes the Euclidean inner product between vectors x; y 2 Rn and jxj D
p

x � x is the Euclidean length of x. A smooth map X W D ! Rn (of class C1, not
necessarily an immersion) is called conformal if (2.1) holds at each point. It clearly
follows that X has rank zero at non-immersion points.

Let M be a topological surface. A conformal structure on M is given by an atlas

U D ¹.Ui ; �i /ºi2I with charts �i W Ui
Š
�! Vi � R2 whose transition maps

�i;j D �i ı �
�1
j W �j .Ui \ Uj /! �i .Ui \ Uj /

are conformal diffeomorphisms of plane domains. Identifying R2 with the com-
plex plane C, each map �i;j is biholomorphic or anti-biholomorphic. A surface M
endowed with a conformal structure (more precisely, with an equivalence class of
conformal structures) is a conformal surface. If M is orientable, then by choosing
the charts �i in a conformal atlas to preserve orientation, the transition maps �i;j
are biholomorphic; hence, U is a complex atlas and .M;U/ is a Riemann surface.
A connected non-orientable conformal surface M admits a two-sheeted conformal
covering zM !M by a Riemann surface zM .

Assume now that g is a Riemannian metric on a smooth surface M , i.e., a
smoothly varying family of scalar products gp on tangent spaces TpM , p 2 M . In
any local coordinate .u; v/ on M , the metric g has an expression

g D E du2 C 2F dudv CG dv2;
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where the coefficient functions E;F;G satisfy EG � F 2 > 0. A local chart .u; v/ is
said to be isothermal for g if the above expression simplifies to

g D �.u; v/.du2 C dv2/ D �jdzj2; z D uC iv

for some positive function �. An important result, first observed by Carl Friedrich
Gauss, is that in a neighborhood of any point of M there exist smooth isothermal
coordinates. One way to obtain such coordinates is from solutions of the classical
Beltrami equation. We refer to [16, Sections 1.8–1.9] for a more precise statement
and references. Since the transition map between any pair of isothermal charts is
a conformal diffeomorphism, we thus obtain a conformal atlas on M consisting of
isothermal charts. The upshot is that every Riemannian metric on a smooth surface
determines a conformal structure. Furthermore, a pair of Riemannian metrics g, Qg

on M determine the same conformal structure if and only if Qg D �g for a smooth
positive function � on M .

Denote by x D .x1; : : : ; xn/ the Euclidean coordinates on Rn and by

ds2 D dx21 C � � � C dx2n

the Euclidean metric. If X D .X1; : : : ; Xn/ WM ! Rn is a smooth immersion, then

g D X�.ds2/ D .dX1/
2
C � � � C .dXn/

2

is a Riemannian metric on M , called the first fundamental form. By the definition of
g, the map X W .M; g/ ! .Rn; ds2/ is an isometric immersion. By what has been
said, g determines a conformal structure on M (assuming now that M is a surface),
and in this structure the map X is a conformal immersion. More precisely, X.u; v/ is
conformal in any isothermal local coordinate .u; v/ on M .

This shows that any immersion X WM ! Rn from a smooth surface determines
a unique conformal structure on M which makes X a conformal immersion. If in
addition M is oriented, we get the structure of a Riemann surface. Results of confor-
mality theory imply that if D is a domain in R2 and X W D ! Rn is an immersion,
then there is a diffeomorphism � W D0 ! D from another domain D0 � R2 such that
the immersion X ı � W D0 ! Rn is conformal. In particular, if D is the disc, then we
may take D0 D D.

The same arguments and conclusions apply to immersions of a smooth surface
M into an arbitrary Riemannian manifold .N; Qg/ in place of .Rn; ds2/.

2.2. First variation of area and energy

Assume that D � R2
.u;v/

is a bounded domain with piecewise smooth boundary and
X W xD ! Rn is a smooth immersion. Precomposing X with a diffeomorphism from
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another such domain in R2, we may assume that X is conformal; see (2.1). We con-
sider the area functional

Area.X/ D
Z
D

jXu �Xvj dudv D

Z
D

p
jXuj2jXvj2 � jXu �Xvj2 dudv (2.2)

and the Dirichlet energy functional

D.X/ D
1

2

Z
D

jrX j
2 dudv D

1

2

Z
D

�
jXuj

2
C jXvj

2
�
dudv: (2.3)

We have elementary inequalities

jxj2jyj2 � jx � yj2 � jxj2jyj2 �
1

4

�
jxj2 C jyj2

�2
; x; y 2 Rn;

which are equalities if and only if x, y is a conformal frame, i.e., jxj D jyj and x � y D

0. Applying this to the vectors x D Xu and y D Xv gives Area.X/ � D.X/, with
equality if and only if X is conformal. Hence, these two functionals have the same
critical points on the set of conformal immersions.

It is elementary to find critical points of these functionals. The calculation is sim-
pler for the Dirichlet functional D , but the expression for the first variation is the
same for both functionals at a conformal map X . Assuming that G W xD ! Rn is a
smooth map vanishing on bD, the first variation of D at X in direction G equals

d

dt

ˇ̌̌
tD0

D.X C tG/D

Z
D

.Xu �Gu CXv �Gv/ dudvD�

Z
D

�X �Gdudv; (2.4)

where �X D Xuu C Xvv is the Laplace of X . (We integrated by parts and used
GjbD D 0.) The right-hand side of (2.4) vanishes for all G if and only if �X D 0.
This proves the following theorem.

Theorem 2.1. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X W xD! Rn .n � 3/ is a stationary point
of the area functional (2.2) if and only if X is harmonic: �X D 0.

For completeness, we also calculate the first variation of area at a conformal
immersion X . Let G W xD ! Rn be as above. Consider the expression under the inte-
gral (2.2) for the map Xt D X C tG, t 2 R. Taking into account (2.1), we obtain

jXu C tGuj
2
� jXv C tGvj

2
D jXuj

4
C 2t .Xu �Gu CXv �Gv/ jXuj

2
CO.t2/;ˇ̌

.Xu C tGu/ � .Xv C tGv/
ˇ̌2

D O.t2/:

It follows that
d

dt

ˇ̌̌
tD0

�
jXu C tGuj

2
jXv C tGvj

2
�
ˇ̌
.Xu C tGu/ � .Xv C tGv/

ˇ̌2�
D 2jXuj

2.Xu �Gu CXv �Gv/
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and therefore

d

dt

ˇ̌̌
tD0

Area.X C tG/ D

Z
D

.Xu �Gu CXv �Gv/ du dv D �

Z
D

�X �G dudv:

(We integrated by parts and used that GjbD D 0. The factor 2jXuj2 also appears in
the denominator when differentiating the expression for Area.X C tG/ at t D 0, so
this term cancels.) Comparing with (2.4), we see that

d

dt

ˇ̌̌
tD0

Area.X C tG/ D
d

dt

ˇ̌̌
tD0

D.X C tG/ D �

Z
D

�X �G dudv

if X is a conformal immersion.
The same result holds on any compact domain with piecewise smooth boundary

in a conformal surface M . A conformal diffeomorphism changes the Laplacian by a
multiplicative factor, so there is a well-defined notion of a harmonic function on M .

2.3. Characterization of minimality by vanishing mean curvature

In this section, we prove a result due to Meusnier [66] which characterizes minimal
surfaces in terms of vanishing mean curvature; see Theorem 2.3.

To explain the notion of curvature of a smooth plane curve C � R2 at a point
p 2 C , we apply a rigid change of coordinates in R2 taking p to .0; 0/ and the tangent
line TpC to the x-axis, so locally near .0; 0/ the curve is the graph y D f .x/ of a
smooth function on an interval around 0 2 R, with f .0/ D f 0.0/ D 0. Therefore,

y D f .x/ D
1

2
f 00.0/x2 C o.x2/: (2.5)

Let us find the circle which agrees with this graph to the second order at .0; 0/.
Clearly, such a circle has center on the y-axis, so it is of the form x2C .y � r/2 D r2

for some r 2 R n ¹0º, unless f 00.0/ D 0 when the x-axis (a circle of infinite radius)
does the job. Solving the equation on y near .0; 0/ gives

y D r �
p

r2 � x2 D r � r

r
1 �

x2

r2

D r � r
�
1 �

x2

2r2
C o.x2/

�
D

1

2r
x2 C o.x2/:

A comparison with (2.5) shows that for f 00.0/¤ 0 the number r D 1=f 00.0/ 2 R n ¹0º

is the unique number for which the circle agrees with the curve (2.5) to the second
order at .0; 0/. This best fitting circle is called the osculating circle. The number

� D f 00.0/ D 1=r (2.6)
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is the signed curvature of the curve (2.5) at .0;0/, its absolute value j�j D jf 00.0/j � 0

is the curvature, and jr j D 1=j�j D 1=jf 00.0/j is the curvature radius. If f 00.0/ D 0,
then the curvature is zero and the curvature radius is C1.

Consider now a smooth surface S � R3. Let .x; y; z/ be coordinates on R3. Fix a
point p 2 S . A rigid change of coordinates gives p D .0; 0; 0/ and TpS D ¹z D 0º D

R2 � ¹0º. Then, S is locally near the origin of a graph of the form

z D f .x; y/ D
1

2

�
fxx.0/x

2
C 2fxy.0; 0/xy C fyy.0/y

2
�
C o.x2 C y2/: (2.7)

The symmetric matrix

A D

�
fxx.0; 0/ fxy.0; 0/

fxy.0; 0/ fyy.0; 0/

�
(2.8)

is called the Hessian matrix of f at .0; 0/. Given a unit vector v D .v1; v2/ in the
.x; y/-plane, let †v be the 2-plane through 0 2 R3 spanned by v and the z-axis. The
intersection Cv WD S \†v is then a planar curve contained in S , given by

z D f .v1t; v2t / D
1

2
.Av � v/t2 C o.t2/ (2.9)

for t 2 R near 0. Since jvj D 1, the parameters .t; z/ on†v are Euclidean parameters,
i.e., the Euclidean metric ds2 on R3 restricted to the plane†v is given by dt2C dz2.
From our discussion of curves and the formula (2.6), we infer that the number

�v D Av � v D fxx.0/v
2
1 C 2fxy.0; 0/v1v2 C fyy.0/v

2
2

is the signed curvature of the curve Cv at the point .0; 0/.
On the unit circle jvj2 D v21 C v22 D 1 the quadratic form v 7! Av � v reaches its

maximum �1 and minimum �2; these are the principal curvatures of the surface (2.7)
at .0; 0/. Since A is symmetric, �1 and �2 are its eigenvalues. The real numbers

H D �1 C �2 D traceA; K D �1�2 D detA (2.10)

are, respectively, the mean curvature and the Gaussian curvature of S at .0; 0; 0/.
Note that the trace of A (2.8) equals the Laplacian �f .0; 0/. On the other hand,

the trace of a matrix is the sum of its eigenvalues. This implies

�f .0; 0/ D �1 C �2 D H: (2.11)

Lemma 2.2. LetD be a domain in R2. IfX WD! Rn is a smooth conformal immer-
sion, then for every p 2 D the vector �X.p/ is orthogonal to the plane dXp.R2/ �
Rn. Equivalently, the following identities hold on D:

�X �Xu D 0; �X �Xv D 0: (2.12)
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Proof. Recall from (2.1) that X is conformal if and only if Xu � Xu D Xv � Xv and
Xu �Xv D 0. Differentiating the first identity on u and the second one on v yields

Xuu �Xu D Xuv �Xv D �Xvv �Xu;

whence�X �Xu D .XuuCXvv/ �Xu D 0. Likewise, differentiating the first identity
on v and the second one on u gives �X �Xv D 0.

We can now prove the following result due to Meusnier [66].

Theorem 2.3. A smooth conformal immersionXD .x;y;z/ WD!R3 from a domain
D � R2 parameterizes a surface with vanishing mean curvature function if and only
if the map X is harmonic, �X D .�x;�y;�z/ D 0.

Proof. Fix a point p0 2D; by a translation of coordinates we may assume that p0 D
.0; 0/ 2 R2. Since the differential dX.0;0/ W R2 ! R3 is a conformal linear map, we
may assume up to a rigid motion on R3 that X.0; 0/ D .0; 0; 0/ and

dX.0;0/.�1; �2/ D �.�1; �2; 0/ for all � D .�1; �2/ 2 R2

for some � > 0. Equivalently, at .u; v/ D .0; 0/ the following hold:

xu D yv D � > 0; xv D yu D 0; zu D zv D 0: (2.13)

Note that
� D jXuj D jXvj D

1
p
2
jrX j: (2.14)

The implicit function theorem shows that there is a neighborhoodU �D of the origin
such that the surface S DX.U / is a graph zD f .x;y/with df.0;0/D 0, so f is of the
form (2.7). Since the immersion X is conformal, (2.12) shows that �X is orthogonal
to the .x; y/-plane R2 � ¹0º at the origin, which means that

�x D �y D 0 at .0; 0/: (2.15)

We now calculate �z.0; 0/. Differentiation of z.u; v/ D f .x.u; v/; y.u; v// gives

zu D fxxu C fyyu; zv D fxxv C fyyv;

zuu D .fxxu C fyyu/u

D fxxx
2
u C fxyxuyu C fxxuu C fyxxuyu C fyyy

2
u C fyyuu:

At the point .0; 0/, taking into account (2.13) and fx D fy D 0 we get zuu D �2fxx .
A similar calculation gives zvv D �2fyy at .0; 0/, so we conclude that

�z.0; 0/ D �2�f .0; 0/ D �2H; (2.16)
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where H is the mean curvature of S at the origin (see (2.11)). Denoting by N D

.0; 0; 1/ the unit normal vector to S at 0 2 R3, it follows from (2.14), (2.15), and
(2.16) that

�X D
1

2
jrX j

2HN (2.17)

holds at .0; 0/ 2 D. In particular, �X D 0 if and only if H D 0. This formula is
clearly independent of the choice of a Euclidean coordinate system.

Combining Theorems 2.1 and 2.3 gives the following corollary.

Corollary 2.4. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X W xD ! R3 is a stationary point of the
area functional if and only if the immersed surface S D X.D/ has vanishing mean
curvature at every point.

Although we used conformal parameterizations, neither curvature nor area de-
pends on the choice of parameterization. This motivates the following definition.

Definition 2.5. A smooth surface in R3 is a minimal surface if and only if its mean
curvature vanishes at every point.

Every point in a minimal surface is a saddle point, and the surface is equally
curved in both principal directions but in the opposite normal directions. Further-
more, the Gaussian curvature K D �1�2 D ��21 � 0 is nonpositive at every point.
The integral

TC.S/ D
Z
S

K � dA 2 Œ�1; 0� (2.18)

of the Gaussian curvature function with respect to the surface area on S is called the
total Gaussian curvature. This number equals zero if and only if S is a piece of a
plane.

The results presented in this section easily extend to surfaces in Rn for any n�3
which are parameterized by conformal immersions X W M ! Rn from any open
Riemann surface M . (By the maximum principle for harmonic maps, there are no
compact minimal surfaces in Rn.) There is a sphere Sn�3 of unit normal vectors to
the surface at a given point, and one must consider the mean curvature of the surface
in any given normal direction. This gives the mean curvature vector field H along the
surface, which is orthogonal to it at every point. For surfaces in R3 we have H DHN,
where H is the mean curvature function (2.10) and N is a unit normal vector field to
the surface. The formula (2.17) can then be written in the form

2

jrX j2
�X D �gX D H;

where�gX denotes the intrinsic Laplacian of the map X with respect to the induced
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metric g D X�ds2 on the surface M (cf. [16, Lemma 2.1.2]). The formula (2.4) for
the first variation of area still holds. It shows that the mean curvature vector field H
is the negative gradient of the area functional, and the surface is a minimal surface if
and only if H D 0. We refer to [16,55,69] or any other standard source for the details.

2.4. The Enneper–Weierstrass representation

In this section we explain the Enneper–Weierstrass formula, which provides a con-
nection between holomorphic maps D ! Cn with special properties from domains
D � C and conformal minimal immersionsD! Rn for n� 3. The same connection
holds more generally for maps from any open Riemann surface.

Let z D x C iy be a complex coordinate on C. Let us recall the following basic
operators of complex analysis, also called Wirtinger derivatives:

@

@z
D
1

2

�
@

@x
� i

@

@y

�
;

@

@ Nz
D
1

2

�
@

@x
C i

@

@y

�
:

The differential of a function F.z/ can be written in the form

dF D
@F

@x
dx C

@F

@y
dy D

@F

@z
dz C

@F

@ Nz
d Nz;

where dz D dx C idy and d Nz D dx � idy. Note that @F
@z
dz is the C-linear part and

@F
@ Nz
d Nz is the C-antilinear part of dF . In particular, @F=@Nz D 0 holds for holomorphic

functions, and @F=@zD 0 holds for antiholomorphic ones. In terms of these operators,
the Laplacian equals

� D
@2

@x2
C

@2

@y2
D 4

@

@ Nz

@

@z
D 4

@

@z

@

@ Nz
:

Hence, a function F W D ! R is harmonic if and only if @F=@z is holomorphic.
It follows that a smooth map X D .X1; X2; : : : ; Xn/ W D ! Rn is a harmonic

immersion if and only if the map f D .f1; f2; : : : ; fn/ W D ! Cn with components
fj D @Xj =@z is holomorphic and the component functions fj have no common zero.
Furthermore, conformality of X is equivalent to the following nullity condition:

f 21 C f 22 C � � � C f 2n D 0: (2.19)

Indeed, we have that 4f 2j D .Xj;x � iXj;y/
2 D .Xj;x/

2 � .Xj;y/
2 � 2iXj;xXj;y , and

hence

4

nX
jD1

f 2j D jXxj
2
� jXy j

2
� 2iXx �Xy :

Comparing with the conformality conditions (2.1) proves the claim.
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Since we know by Theorem 2.1 that a conformal immersion is harmonic if and
only if it parameterizes a minimal surface, this gives the following result.

Theorem 2.6 (The Enneper–Weierstrass representation). Let D be a connected do-
main in C. For every smooth conformal minimal immersion X D .X1; X2; : : : ; Xn/ W

D ! Rn, the map f D .f1; f2; : : : ; fn/ D @X=@z W D ! Cn n ¹0º is holomorphic
and satisfies the nullity conditions (2.19). Conversely, a holomorphic map f W D !

Cn n ¹0º satisfying (2.19) and the period vanishing conditions

<

I
C

f dz D 0 for every closed curve C � D (2.20)

determines a conformal minimal immersion X W D ! Rn given by

X.z/ D c C 2<

Z z

z0

f .�/ d�; z 2 D (2.21)

for any base point z0 2 D and vector c 2 Rn.

Conditions (2.20) guarantee that the integral in (2.21) is well defined, that is,
independent of the path of integration. The imaginary components

=

I
C

f dz D p.C / 2 Rn (2.22)

of the periods define the flux homomorphism p W H1.D;Z/! Rn on the first homo-
logy group ofD. Indeed, by Green’s formula the period

H
C
f dz only depends on the

homology class ŒC � 2 H1.D;Z/ of a closed path C � D.

Remark (The first homology group). If D is a domain in R2 Š C, then its first
homology group H1.D;Z/ is a free abelian group Z` .` 2 ¹0; 1; 2; : : : ;1º/ with
finitely or countably many generators. If D is bounded, connected, and its bound-
ary bD consists of l1 Jordan curves �1; : : : ; �l1 and l2 isolated points (punctures)
p1; : : : ; pl2 , then the group H1.D;Z/ has ` D l1 C l2 � 1 generators which are rep-
resented by loops inD based at any given point p0 2D, each surrounding one of the
holes ofD. (By a hole, we mean a compact connected component of the complement
C nD. A hole which is an isolated point of C nD is called a puncture.) Indeed, if �1
is the outer boundary curve of D, then every other boundary curve �2; : : : ; �l1 of D
is contained in the bounded component of C n �1, so it bounds a hole ofD. Likewise,
each of the points p1; : : : ; pl2 is a hole (a puncture). Every hole contributes one gen-
erator to H1.D;Z/. The same loops then generate the fundamental group �1.D; p0/
as a free nonabelian group, and groupH1.D;Z/ is the abelianization of �1.D;p0/. A
similar description of the homology group H1.D;Z/ holds for every surface, except
that its genus enters the picture as well; see [16, Section 1.4]. For basics on homology
and cohomology, see J. P. May [56].
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It is clear from Theorem 2.6 that the following quadric complex hypersurface in
Cn plays a special role in the theory of minimal surfaces in Rn:

A D An�1 D
®
.z1; : : : ; zn/ 2 Cn

W z21 C z22 C � � � C z2n D 0
¯
: (2.23)

This is called the null quadric in Cn, and A� D A n ¹0º is the punctured null quadric.
Note that A is a complex cone with the only singular point at 0. Theorem 2.6 says
that we get all conformal minimal surfacesD!Rn as integrals of holomorphic maps
f W D ! A� � Cn satisfying the period vanishing conditions (2.20).

The Enneper–Weierstrass representation in R3. In dimension n D 3, the null
quadric A admits a 2-sheeted quadratic parameterization � W C2 ! A given by

�.z; w/ D
�
z2 � w2; i.z2 C w2/; 2zw

�
: (2.24)

This map is branched at 0 2 C2, and � W C2 n ¹0º ! A� is a 2-sheeted holomorphic
covering map. It follows that every conformal minimal immersionX D .X1;X2;X3/ W

D ! R3 can be written in the following form (see [69] or [16, pp. 107–108]):

X.z/ D X.z0/C 2<

Z z

z0

�
1

2

�
1

g
� g

�
;

i

2

�
1

g
C g

�
; 1

�
@X3: (2.25)

Here, @X D
@X
@z
dz D .@X1; @X2; @X3/, and

g D
@X3

@X1 � i @X2
W D ! CP1 D C [ ¹1º (2.26)

is a holomorphic map to the Riemann sphere (a meromorphic function on D), called
the complex Gauss map ofX . Identifying CP1 with the unit 2-sphere S2 � R3 by the
stereographic projection from the point .0; 0; 1/ 2 S2, g corresponds to the classical
Gauss map N D Xx �Xy=jXx �Xy j W D ! S2 of X .

Many important quantities and properties of a minimal surface are determined by
its Gauss map. In particular, we have that

g D X�ds2 D 2
�
j@X1j

2
C j@X2j

2
C j@X3j

2
�
D

�
1C jgj2

�2
4jgj2

j@X3j
2

Kg D �
4jdgj2�
1C jgj2

�2 D �g�.�2
CP1/:

Here, K is the Gauss curvature function (2.10) of the metric X�ds2 and �2
CP1 is the

spherical metric on CP1. It follows that the total Gaussian curvature (see (2.18)) of
a conformal minimal surface X W D ! R3 equals the negative spherical area of the
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image of the Gauss map g WD! CP1 counted with multiplicities, where the area of
the sphere CP1 D S2 is 4� :

TC.X/ D �Area g.D/: (2.27)

It is a recent result that every holomorphic mapD! CP1 is the complex Gauss map
of a conformal minimal immersion X W D ! R3; see Theorem 3.3. Hence, the total
Gaussian curvature of a minimal surface can be any number in Œ�1; 0�.

Example 2.7 (Catenoid). A conformal parameterization of a standard catenoid (see
[16, Figure 2.1, p. 117]) is given by the map X D .X1; X2; X3/ W R2 ! R3,

X.u; v/ D .cosu � cosh v; sinu � cosh v; v/: (2.28)

It is 2�-periodic in the u variable, hence infinitely-sheeted. Introducing the variable
zD e�vCiu 2C�, we pass to the quotient C=.2�Z/ŠC� and obtain a single-sheeted
parameterization X W C� ! R3 having the Enneper–Weierstrass representation

X.z/ D .1; 0; 0/ � 2<

Z z

1

�
1

2

�
1

�
� �

�
;

i

2

�
1

�
C �

�
; 1

�
d�

�
: (2.29)

Its Gauss map is g.z/ D z and extends to the identity map CP1 ! CP1. Hence, by
(2.27) the catenoid has total Gaussian curvature equal to �4� .

The catenoid is one of the most paradigmatic examples in the theory of minimal
surfaces. A compendium of major results about it can be found in [16, Example 2.8.1].

Example 2.8 (Helicoid). A conformal parameterizationX WR2!R3 of the standard
left helicoid, shown on [16, Figure 2.2, p. 119], is

X.u; v/ D .sinu � sinh v;� cosu � sinh v; u/: (2.30)

Its Weierstrass representation in the complex coordinate z D uC iv 2 C is

X.z/ D <

Z z

0

�
1

2

�
1

ei�
� ei�

�
;

i

2

�
1

ei�
C ei�

�
; 1

�
d�:

Its complex Gauss map g.z/ D eiz is transcendental, so the helicoid has infinite total
Gaussian curvature �1. Changing the sign of the second component in (2.30) gives
a right helicoid. Like the catenoid, the helicoid is a paradigmatic example satisfying
various uniqueness theorems. E. Catalan [23] proved in 1842 that the helicoid and the
plane are the only ruled minimal surfaces in R3, i.e., unions of straight lines. Much
more recently, W. H. Meeks and H. Rosenberg proved in 2005 [62] that the helicoid
and the plane are the only properly embedded, simply connected minimal surfaces in
R3. Their proof uses curvature estimates of T. H. Colding and W. P. Minicozzi [27].
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Remark (Branch points). Our definition of a conformal map X W D ! Rn of class
C1.D/ requires that equations (2.1) hold. We have already observed that such a map
has rank zero at non-immersion points. Assuming that X is harmonic at immersion
points, it follows that f D @X=@z W D ! Cn is a continuous map with values in the
null quadric A (2.23) which is holomorphic at immersion points of X and vanishes
at non-immersion points. By a theorem of T. Radó [70] (cf. [74, Theorem 15.1.7]),
such an f is holomorphic everywhere on D, and in particular its zero set consists
of isolated points (assuming that X and hence f are nonconstant). This shows that
the minimal surface parameterized by X has only isolated singularities. See [77] for
more details.

There are interesting examples of minimal surfaces with branch points. For exam-
ple, Henneberg’s surface (see [16, Example 2.8.9]) is a complete non-orientable
minimal surface with two branch points (a branched minimal Möbius strip), named
after Ernst Lebrecht Henneberg [46] who first described it in his doctoral dissertation
in 1875. It was the only known non-orientable minimal surface until 1981 when W. H.
Meeks [57] discovered a properly immersed minimal Möbius strip in R3. A properly
embedded minimal Möbius strip in R4 was found in 2017 [15, Example 6.1].

2.5. Holomorphic null curves

There is a family of holomorphic curves in Cn which are close relatives of conformal
minimal surfaces in Rn. A holomorphic mapZ D .Z1; : : : ;Zn/ WD! Cn for n � 3
from a domain D � C satisfying the nullity condition

.Z0
1/
2
C .Z0

2/
2
C � � � C .Z0

n/
2
D 0

is a holomorphic null curve in Cn. Its complex derivative f D Z0 assumes values in
the null quadric A (2.23), and we have

H
C
fdz D

H
C
dZ D 0 for any closed curve

C � D. Conversely, a holomorphic map f W D ! A satisfying the period vanishing
conditions I

C

fdz D 0 for every closed curve C � D (2.31)

integrates to a holomorphic null curve

Z.z/ D c C

Z z

z0

f .�/d�; z 2 D; (2.32)

where z0 2D is any given base point and c 2 Cn. Indeed, conditions (2.31) guarantee
that the integral in (2.32) is independent of the choice of a path of integration. These
period conditions are trivial on a simply connected domain D.

If Z D X C iY W D ! Cn is an immersed holomorphic null curve, then its real
part X D <Z W D ! Rn and imaginary part Y D =Z W D ! Rn are conformal
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minimal surfaces which are harmonic conjugates of each other. Indeed, denoting the
complex variable in C by z D x C iy, the Cauchy–Riemann equations imply

f D Z0
D Zx D Xx C iYx D Xx � iXy D 2

@X

@z
:

Since f D Z0 W D ! An�1� satisfies the nullity condition (2.19), X is a conformal
minimal immersion. In the same way we find that f D Z0 D Yy C iYx D 2iYz , so Y
is a conformal minimal immersion. Being harmonic conjugates, X and Y are called
conjugate minimal surfaces. Conformal minimal surfaces in the 1-parameter family

X t
D <.ei tZ/ W D ! Rn; t 2 R;

are called associated minimal surfaces of the holomorphic null curve Z.
Conversely, if X W D ! Rn is a conformal minimal surface and the holomor-

phic map f D 2@X
@z

W D ! An�1 satisfies period vanishing conditions (2.31), then
f integrates to a holomorphic null curve Z W D ! Cn (2.32) with <Z D X . In
general, the imaginary parts of the periods (2.32) determine the flux homomorphism
H1.M;Z/ ! R of the minimal surface X (see (2.22)); hence, X is the real part
of a holomorphic null curve if and only if it has vanishing flux. The periods (2.31)
always vanish on a simply connected domainD, and hence every conformal minimal
immersion D ! Rn is the real part of a holomorphic null curve D ! Cn.

The relationship between conformal minimal surfaces and holomorphic null
curves extends to maps having (isolated) branch points.

Example 2.9 (Helicatenoid). Consider the holomorphic immersion Z W C ! C3,

Z.z/ D .cos z; sin z;�iz/ 2 C3; z D x C iy 2 C: (2.33)

We have that

Z0.z/ D .� sin z; cos z;�i/; sin2 z C cos2 z C .�i/2 D 0:

Hence, Z is a holomorphic null curve. Consider the 1-parameter family of its associ-
ated minimal surfaces in R3 for t 2 Œ0; 2��:

X t .z/ D <
�
eitZ.z/

�
D cos t

0@cos x � coshy
sin x � coshy

y

1AC sin t

0@ sin x � sinhy
� cos x � sinhy

x

1A : (2.34)

At t D 0 and t D � we have a catenoid (see Example 2.7), while at t D ˙�=2 we
have a helicoid (see Example 2.8). Hence, these are conjugate minimal surfaces in
R3. The holomorphic null curve (2.33) is called helicatenoid.
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3. A survey of new results

This section is a survey of recent results in the theory of minimal surfaces in Euclidean
spaces, which were discussed in my lecture at the 8ECM. A detailed presentation is
available in the monograph [16] and, for non-orientable surfaces, in the AMS Memoir
[15] by Alarcón, the author, and López.

3.1. Approximation, interpolation, and general position theorems

Holomorphic approximation is a central topic in complex analysis. Holomorphic
functions and maps with interesting properties are often constructed inductively, ex-
hausting the manifold by an increasing sequence of compact sets such that one can
approximate holomorphic functions uniformly on each one by holomorphic functions
onM . The quintessential example is Runge’s theorem from 1885 [75] on approxima-
tion of holomorphic functions on a compact set K � C with connected complement
by holomorphic polynomials. A major extension is Mergelyan’s theorem [65] from
1951.

In order to generalize Runge’s theorem, we need the following concept. Denote
by O.M/ the algebra of holomorphic functions on a complex manifold M . Given a
compact set K in M , its O.M/-convex hull (or holomorphic hull) is the set

yK D
®
z 2M W

ˇ̌
f .z/

ˇ̌
� sup

K

jf j for all f 2 O.M/
¯
:

IfK D yK, thenK is said to be holomorphically convex, or O.M/-convex, or a Runge
compact. If M is the complex plane or, more generally, an open Riemann surface,
then the hull yK is the union of K and all relatively compact connected components
of M nK (the holes of K in M ). There is no topological characterization of the hull
in higher-dimensional complex manifolds.

Holomorphically convex sets are the natural sets for holomorphic approxima-
tion. Runge’s theorem was extended to open Riemann surfaces by H. Behnke and
K. Stein [21] in 1949, who proved that any holomorphic function on a neighbor-
hood of a Runge compact K in open Riemann surface M can be approximated uni-
formly onK by holomorphic functions onM . A related result on higher-dimensional
complex manifolds is the Oka–Weil theorem which pertains to Runge compacts in
Cn and, more generally, in any Stein manifold (a closed complex submanifold of a
Euclidean space Cn). A recent survey of holomorphic approximation theory can be
found in [33].

We have seen in Section 2.4 that every conformal minimal immersion M ! Rn

from an open Riemann surface M is the integral of a holomorphic map f W M !

A� � Cn into the punctured null quadric A�; furthermore, f must satisfy the period
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vanishing conditions (2.20). Hence, a Runge-type approximation theorem for con-
formal minimal surfaces in Rn (or holomorphic null curves in Cn) reduces to the
approximation problem for holomorphic maps f WM !A� satisfying the period van-
ishing conditions (2.20) (or (2.31) when considering null curves). This is a nonlinear
approximation problem. The first part, ignoring the period conditions, fits within Oka
theory. In particular, the manifold A� is easily seen to be a homogeneous space of the
complex orthogonal groupOn.C/. Runge-type approximation theorems for holomor-
phic maps from Stein manifolds to complex homogeneous manifolds were proved by
Hans Grauert [41] (1957) and Grauert and Kerner [42] (1963). More generally, a com-
plex manifold Y is said to be an Oka manifold if and only if approximation results of
this type hold for holomorphic mapsM ! Y from any Stein manifold in the absence
of topological obstructions. Oka theory also includes interpolation theorems for holo-
morphic maps, generalizing classical theorems of K. Weierstrass [78] and H. Cartan
[22]. For the theory of Oka manifolds, see [35].

The second part of the problem, ensuring the period vanishing conditions (2.20)
or (2.31) for holomorphic maps to A�, can be treated by using sprays of holomor-
phic maps together with elements of convexity theory. More precisely, Gromov’s
1-dimensional convex integration lemma from [43] is useful in this regard. The main
techniques underlying all subsequent developments were established in [5] (2014).
Their application led to the following result, which is a summary of several individual
theorems. Parts (i), (ii), and (iv) are due to Alarcón, the author, and López [5, 12, 15]
(the special case of (i) for n D 3 was obtained beforehand in [19]), while (iii) was
proved by Alarcón and Castro–Infantes [2, 3]. Related results for conformal minimal
surfaces of finite total curvature were given by Alarcón and López [18].

Main Theorem 3.1. Let K be a compact set with piecewise smooth boundary and
without holes (a Runge compact) in an open Riemann surface M . Then:

(i) Every conformal minimal immersion X W K ! Rn .n � 3/ can be approxi-
mated uniformly onK by proper conformal minimal immersions zX WM !

Rn.

(ii) The approximating map zX can be chosen to have only simple double points
if n D 4, and to be an embedding if n � 5.

(iii) In addition, one can prescribe the values of zX on any closed discrete subset
of M (Weierstrass-type interpolation).

(iv) The analogous results hold for non-orientable minimal surfaces in Rn and
for holomorphic null curves in Cn, n � 3.

The proof of Theorem 3.1 is fairly complex, and we shall only outline the main
idea. Fix a nowhere vanishing holomorphic 1-form � on the open Riemann sur-
face M . (Such a 1-form always exists; see [44].) By Enneper–Weierstrass (Theo-
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rem 2.6), it suffices to prove the Runge approximation theorem for holomorphic maps
f WM ! A� satisfying the period vanishing conditions (2.20).

Consider an inductive step. Assume that K � L are connected Runge compacts
with piecewise smooth boundaries in M , X W K ! Rn is a conformal minimal sur-
face, and f D 2@X=� WK! A�. We wish to approximateX by a conformal minimal
immersion zX W L! Rn. We may assume that f .K/ is not contained in a complex
ray C�z of the null quadric A�, for otherwise the result is trivial. There are two main
cases to consider, the noncritical case and the critical case.

The noncritical case. There is no change of topology from K to L. It is well known
that there are closed curves C1; : : : ; C` in K forming a basis of H1.K;Z/ whose
union C D

S`
jD1 Cj is a Runge compact. Let Bn denote the unit ball of Cn. By

using flows of holomorphic vector fields on Cn tangent to A, we construct a smooth
map

F W K � Bn` ! A�; F .� ; 0/ D f D 2@X=�;

which is holomorphic on VK � Bn, such that the associated period map

Bn` 3 t 7!

�Z
Cj

F.� ; t /�

�`
jD1

2 Cn`

is biholomorphic onto its image. Such a period dominating spray can be found of the
form

F.p; t/ D �1g1.p/t1
ı �2g2.p/t2

ı � � � ı �n`gn`.p/tn`

�
f .p/

�
2 A�; p 2 K; (3.1)

where each �j is the flow of a holomorphic vector field tangent to A and gj 2 O.M/.
We first construct smooth functions gi on C which give a period dominating spray;
this can be done since the convex hull of A equals Cn. As C is Runge in M , we can
approximate the gi ’s by holomorphic functions on M , thereby obtaining a holomor-
phic period dominating spray F as above.

In the next key step, we use that A� is an Oka manifold, so we can approximate F
by a holomorphic map zF WM �Bn`! A�. (There is no topological obstruction since
A� is connected.) If the approximation is close enough, the implicit function theorem
furnishes a parameter value Qt 2 Bn` close to 0 such that the map Qf D F.� ; Qt / WM !

A� has vanishing real periods on the curves C1; : : : ;C`. Hence, fixing a point p0 2K,
the map zX W L! Rn given by

zX.p/ D X.p0/C<

Z p

p0

Qf �; p 2 L;

is a conformal minimal immersion which approximates X W K ! Rn on K.



Minimal surfaces in Euclidean spaces by way of complex analysis 29

The critical case. Assume now that E is an embedded smooth arc in L n VK attached
with its endpoints toK such thatK [E is a deformation retract ofL. (Thus,L has the
same topology as K [ E. This situation arises when passing a critical point of index
1 of a strongly subharmonic Morse exhaustion function onM .) Let a; b 2 bK denote
the endpoints of E. We extend f smoothly across E to a map f WK [E ! A� such
that

<

Z
E

f � D X.b/ �X.a/ 2 Rn:

This is possible since the convex hull of A� equals Cn. We then proceed as in the
noncritical case: embed f into a period dominating spray of smooth mapsK [E !

A� which are holomorphic on VK D K n bK, approximate it by a holomorphic spray
on L by Mergelyan’s theorem, and pick a parameter value for which the map in the
spray has vanishing real periods onK [E, and hence onL. The Enneper–Weierstrass
formula gives a conformal minimal surface eX W L! Rn approximating X on K.

The proof of the basic approximation theorem (i) (without the properness con-
dition) is then completed by induction on a suitable exhaustion of M by Runge
compacts, alternatively using the above two cases. Critical points of index 2 do not
arise.

Interpolation (part (iii)) is easily built into the same inductive construction. In-
deed, in each of the two cases considered above, we can arrange that none of the
points pj 2 M at which we wish to interpolate lies on the boundary of K or L. By
choosing the functions gi in the spray F (3.1) to vanish at those points pj which lie
in the interior of K, we ensure that the spray F is fixed at these points (independent
of the parameter t ), and hence the approximating map zX will agree with X at these
points. For each of the finitely many points pj 2 VL nK we choose a smooth embedded
arc Ej � L n VK with one endpoint pj and the other endpoint qj 2 bK such that
Ej n ¹qj º � L nK and these arcs are pairwise disjoint. The set S D K [

S
j Ej is

then a Runge compact. We extend the map f W K ! A� smoothly to S such that
for each j ,

R
Ej
f � has the correct value which ensures that the integral assumes

the prescribed value at pj . It remains to apply the same method as above with a
spray which is period dominating also on each of the arcs Ej and to use Mergelyan
approximation on the set S .

Properness of the approximating conformal minimal immersion zX W M ! Rn

(part (ii) of the theorem) requires considerable additional work. The main point is to
prove a relative version of the approximation theorem in part (i) in which all but two
components of the given map X extend to harmonic functions on all of M . One can
keep these components fixed while approximating the remaining two components
such that the resulting map zX is a conformal minimal immersion. This requires a
more precise version of the Oka principle. This result is then used in an inductive



F. Forstnerič 30

scheme which is designed so that j zX.z/j tends to infinity as the point z 2M goes to
the ideal boundary of M (i.e., it exists in any compact subset).

Finally, the general position theorem in part (ii) uses the same technique together
with the transversality theorem. The details of proof are considerably more involved
from the technical viewpoint, and we shall not deal with this subject here.

3.2. Topological structure of spaces of minimal surfaces

Assume that M is an open Riemann surface. Fix a nowhere vanishing holomorphic
1-form � on M . Let n � 3. An immersion M ! Rn is said to be nonflat if its image
is not contained in an affine 2-plane. We introduce the following notations:

� O.M;A�/ and C.M;A�/ denote spaces of holomorphic and continuous maps
M ! A�, respectively;

� CMI.M;Rn/ denotes the space of conformal minimal immersions M ! Rn;

� CMInf.M;Rn/ is the subspace of CMI.M;Rn/ consisting of nonflat immersions;

� NC.M;Cn/ is the space of holomorphic null immersions M ! Cn;

� NCnf.M;Cn/ is the subspace of NC.M;Cn/ consisting of nonflat immersions.

Consider the commutative diagram

NCnf.M;Cn/
�

//

<

��

O.M;A�/
� � � // C.M;A�/

<NCnf.M;Cn/
� � � // CMInf.M;Rn/

 

OO

where

� the maps � W NCnf.M;Cn/! O.M;A�/ and  W CMInf.M;Cn/! O.M;A�/

are given by Z 7! @Z=� and X 7! 2@X=� , respectively;

� the map NCnf.M;Cn/! <NCnf.M;Cn/ is the projection Z D X C iY 7! X ;

� the maps � W <NCnf.M;Cn/ ,! CMInf.M;Rn/ and � W O.M;A�/ ,! C.M;A�/

are the natural inclusions.

Recall that a continuous map � W X ! Y between topological spaces is said to
be a weak homotopy equivalence if it induces a bijection of path components of the

two spaces and, for each integer k 2 N, an isomorphism �k.�/ W �k.X/
Š
�! �k.Y /

of their kth homotopy groups. The map � is a homotopy equivalence if there is a
continuous map  W Y ! X such that  ı � W X ! X is homotopic to the identity
on X and � ı  W Y ! Y is homotopic to the identity on Y . These notions indicate
that the spaces X and Y have the same rough topological shape.
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Since A� is an Oka manifold, the inclusion � W O.M;A�/ ,! C.M;A�/ is a weak
homotopy equivalence by the Oka–Grauert principle (see [35, Corollary 5.5.6]), and
by Lárusson [54] it is a homotopy equivalence if M is of finite topological type; i.e.,
if the homology group H1.M;Z/ is a finitely generated abelian group.

The real-part projection map < W NCnf.M;Cn/! <NCnf.M;Cn/ is evidently a
homotopy equivalence.

It turns out that all other maps in the above diagram are also weak homotopy
equivalences. The first part of the following theorem was proved by the author and
Lárusson in [39], and the second part was proved by Alarcón, the author, and López
in [14]. Validity of statement (a) for CMI.M;Rn/ and NC.M;Cn/ remains an open
problem.

Main Theorem 3.2. Let M be an open Riemann surface.

(a) Each of the maps �, �,  in the above diagram is a weak homotopy equiva-
lence, and a homotopy equivalence if M is of finite topological type.

(b) The map � ı W CMI.M;Rn/! C.M;A�/ induces a bijection of path com-
ponents of the two spaces. Hence,

�0
�

CMI.M;Rn/
�
D

´
Z`2; n D 3; H1.M;Z/ D Z`I

0; n > 3:

It follows that each of the spaces NCnf.M;Cn/ and CMInf.M;Cn/ is weakly
homotopy equivalent to the space C.M;A�/ of continuous maps M ! A�, and is
homotopy equivalent to C.M;A�/ if the surface M has finite topological type.

The group Z2 D ¹0; 1º, which appears in part (b), is the fundamental group of
the punctured null quadric A� � C3; see (2.24) and note that C2 n ¹0º is simply
connected. If X 2 CMI.M;R3/, then @X=@z WM ! A� maps every generator of the
homology groupH1.M;Z/ either to the generator of �1.A�/ or to the trivial element.
This gives 2` choices, each one determining a connected component of CMI.M;R3/.
The null quadric A� � Cn for n > 3 is simply connected.

These results are proved by using the parametric versions of techniques discussed
in Section 3.1. Each of the maps in question satisfies the parametric h-principle, which
implies that it is a weak homotopy equivalence.

3.3. The Gauss map of a conformal minimal surface

The Gauss map is of major importance in the theory of minimal surfaces. We have
already seen that the Gauss map of a conformal minimal immersion X WM ! R3 is
a holomorphic map g W M ! CP1 (2.26), which coincides with the classical Gauss
map M ! S2 under the stereographic projection from S2 onto CP1. In general, for
any dimension n � 3 one defines the generalized Gauss map of a conformal minimal
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immersion X D .X1; X2; : : : ; Xn/ WM ! Rn as the Kodaira-type holomorphic map

G D Œ@X1 W @X2 W � � � W @Xn� WM ! Qn�2
� CPn�1; (3.2)

where

Q D Qn�2
D

²
Œz1 W � � � W zn� 2 CPn�1 W

nX
jD1

z2j D 0

³
is the projectivization of the punctured null quadric A�, a smooth quadric complex
hypersurface in CPn�1. A recent discovery is the following converse result from [14]
(see also [16, Theorem 5.4.1]), which shows that every natural candidate is the Gauss
map of a conformal minimal surface.

Main Theorem 3.3. Assume that n � 3.

(i) For every holomorphic map G WM !Qn�2 from an open Riemann surface
there exists a conformal minimal immersion X W M ! Rn with the Gauss
map G .

(ii) IfM is a compact bordered Riemann surface and G WM !Qn�2 is a map
of class Ar�1.M;Qn�2/ for some r 2N, then there is a conformal minimal
immersion X WM ! Rn of class C r.M;Rn/ with the Gauss map G .

Here, Ar�1.M; Qn�2/ denotes the space of maps M ! Qn�2 of class C r�1

which are holomorphic in the interior M n bM of M .
Furthermore, the following assertions hold true in both cases in the above theo-

rem.

(i) The conformal minimal immersionX can be chosen to have vanishing flux.
In particular, every holomorphic map G WM ! Qn�2 is the Gauss map of
a holomorphic null curve M ! Cn.

(ii) If G .M/ is not contained in any projective hyperplane of CPn�1, then X
can be chosen with arbitrary flux, to have prescribed values on a given
closed discrete subset ƒ of M , to be an immersion with simple double
points if n D 4, and to be an injective immersion if n � 5 and the prescrip-
tion of values on ƒ is injective.

When nD 3, the quadricQ1 is an embedded rational curve in CP2 parameterized
by the biholomorphic map

CP1 3 t
�

7�!

�
1

2

�
1

t
� t

�
W

i

2

�
1

t
C t

�
W 1

�
D

�
1� t2 W i.1C t2/ W 2t

�
2Q1: (3.3)

Writing .1 � t2; i.1C t2/; 2t/ D .a; b; c/, we easily find that

t D
c

a � i b
D
b � i a

i c
2 CP1:
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Suppose that X D .X1; X2; X3/ W M ! R3 is a conformal minimal immersion, and
write 2@X D 2.@X1; @X2; @X3/ D .�1; �2; �3/. In view of the above formula for
t D t .a; b; c/ it is natural to consider the holomorphic map

g D
�3

�1 � i�2
D

@X3

@X1 � i @X2
WM ! CP1:

This is the complex Gauss map (2.26) of X , which appears in the Enneper–Weier-
strass representation (2.25). The generalized Gauss map G WM ! Q1 � CP2 (3.2)
of X is then expressed by G D � ı g, where � W CP1 ! Q1 is given by (3.3).

Let us say a few words about the proof of Theorem 3.3. The first step is to lift the
given map G W M ! Q to a holomorphic map G W M ! A�. Note that the natural
projection A� ! Q sending .z1; : : : ; zn/ to Œz1 W � � � W zn� is a holomorphic fibre bun-
dle with fibre C� D C n ¹0º. The existence of a continuous lifting follows by noting
that the homotopy type of M is a wedge of circles, and every oriented C�-bundle
over a circle is trivial. Further, since C� is an Oka manifold, every continuous lifting
is homotopic to a holomorphic lifting according to the Oka principle [35, Corol-
lary 5.5.11].

In the second and main step of the proof, the holomorphic map G W M ! A� is
multiplied by a nowhere vanishing holomorphic function h WM ! C� such that the
product f D hG W M ! A� has vanishing periods along closed curves in M (see
(2.31)), and hence it integrates to a holomorphic null immersion Z W M ! Cn. Its
real part X D <Z W M ! Rn is then a conformal minimal immersion having the
Gauss map G . The construction of such a multiplier h follows the idea of proof of
Theorem 3.1, but the details are fairly nontrivial and we refer to the cited works.

There are many results in the literature relating the behavior of a minimal surface
to properties of its Gauss map. A particularly interesting question is how many hyper-
planes in a general position in CPn�1 can be omitted by the Gauss map of a complete
conformal minimal surface of finite total curvature. A discussion of this topic can be
found in [16, Chapter 5] and in several other sources.

3.4. The Calabi–Yau problem

A smooth immersion X W M ! Rn is said to be complete if X�ds2 is a complete
metric on M . Equivalently, for every divergent path  W Œ0; 1/ ! M (i.e., such that
.t/ leaves every compact set in M as t ! 1) the image path X ı  W Œ0; 1/! Rn

has infinite Euclidean length. Clearly, if X is proper, then it is complete since any
such path X ı .t/ diverges to infinity as t ! 1. The converse is not true; it is easy
to construct complete immersions (and embeddings if n � 3) with bounded image
X.M/ � Rn.

It is however not so easy to find complete bounded immersions with additional
properties, such as conformal minimal or, in case when the target is a complex
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Euclidean space Cn, holomorphic. The following conjecture was posed by Eugenio
Calabi in 1965, [50, p. 170]. Calabi’s conjecture was also promoted by Shiing-Shen
Chern [24, p. 212].

Conjecture 3.4. Every complete minimal hypersurface in Rn .n � 3/ is unbounded.
Furthermore, every complete nonflat minimal hypersurface in Rn .n � 3/ has an
unbounded projection to every .n � 2/-dimensional affine subspace.

A particular reason which may have led Calabi to propose these conjectures was
the theorem of Chern and R. Osserman [25] from that time. Their result says in par-
ticular that if X WM ! Rn .n � 3/ is a complete conformal minimal surface of finite
total Gaussian curvature TC.X/ > �1, then M is the complement of finitely many
points p1; : : : ; pm in a compact Riemann surface R, the holomorphic 1-form @X has
an effective pole at each point pj , and X is proper. (The first statement holds even
without the completeness assumption onX , due to a result of Huber [47] from 1957.)
The Chern–Osserman theorem says that such an X is complete if and only if @X has
an effective pole at each puncture pj . The asymptotic behavior of X at the punctures
was described by M. Jorge and W. Meeks [48] in 1983.

It turns out that, at least in dimension n D 3, Calabi’s conjecture is both right and
wrong, depending on whether the minimal surface is embedded or merely immersed.
(This point was not specified in the original question.) In dimension nD 3, the answer
is radically different for these two cases, as we now explain.

The first counterexample to Calabi’s conjecture in the immersed case was given
by L. P. de M. Jorge and F. Xavier in 1980 [49], who constructed a complete nonflat
conformal minimal immersion D ! R3 from the disc with the range contained in a
slab between two parallel planes.

In 1982, S.-T. Yau pointed out in [80, Problem 91] that the question whether there
are complete bounded minimal surfaces in R3 remained open despite Jorge–Xavier’s
example. This became known as the Calabi–Yau problem for minimal surfaces.

The problem was resolved for immersed surfaces by N. Nadirashvili [67] who in
1996 constructed a complete conformal minimal immersion D ! R3 with the image
contained in a ball. Many subsequent results followed, showing similar results for
topologically more general surfaces; see [16, Section 7.1] for a survey and references.
However, the conformal type of the examples could not be controlled by the methods
developed in those papers, except for the disc. The reason is that the increase of the
intrinsic radius of a surface was achieved by applying Runge’s theorem on pieces of
a suitable labyrinth in the surface, chosen such that any divergent path avoiding most
pieces has infinite length, while crossing a piece of the labyrinth increases the length
by a prescribed amount. However, Runge’s theorem does not allow to control the map
everywhere, and hence small pieces of the surface had to be cut away in order to keep
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the image bounded. This surgery changes the conformal type of the surface, and only
its topological type can be controlled by this method.

After Nadirashvili’s paper, Yau revisited the Calabi–Yau conjectures in his 2000
millennium lecture and proposed several new questions (see [81, p. 360] or [82,
p. 241]). He asked in particular: What is the geometry of complete bounded mini-
mal surfaces in R3? Can they be embedded? What can be said about the asymptotic
behavior of these surfaces near their ends?

Concerning Calabi’s conjecture for embedded surfaces, Colding and Minicozzi
showed in 2008 [29] that every complete embedded minimal surface in R3 of finite
topological type is proper in R3. Their result was extended to surfaces of finite genus
and countably many ends by W. H. Meeks, J. Pérez, and A. Ros in 2018, [61]. Hence,

Calabi’s conjecture holds true for embedded minimal surfaces of finite genus
and countably many ends in R3.

Against this background, we have the following result for immersed surfaces.

Main Theorem 3.5. Every open Riemann surface of finite genus and at most count-
ably many ends, none of which are point ends, is the conformal structure of a complete
bounded immersed minimal surface in R3.

By the uniformization theorem of Z.-X. He and O. Schramm [45, Theorem 0.2]
(1993) solving Koebe’s conjecture, every open Riemann surface of finite genus and
at most countably many ends is conformally equivalent to a domain of the form

M D R n

[
i

Di ; (3.4)

where R is a compact Riemann surface without boundary and ¹Diºi is a finite or
countable family of pairwise disjoint compact geometric discs or points inR. (A geo-
metric disc in R is a compact subset whose preimage in the universal holomorphic
covering space of R, which is one of the surfaces CP1, C, or D, is a family of
pairwise disjoint round discs or points.) Such an M is called a circled domain in R.
Hence, Theorem 3.5 is a corollary to the following more precise result, which includes
information about the boundary behavior of surfaces.

Main Theorem 3.6. Assume that M is a circled domain of the form (3.4). For any
n� 3 there exists a continuous mapX W xM !Rn such thatX WM !Rn is a complete
conformal minimal immersion and X W bM ! Rn is a topological embedding. If
n � 5, then there is a topological embedding X W xM ! Rn such that X W M ! Rn

is a complete embedded minimal surface.

This means that the image X.M/ is a complete immersed minimal surface whose
boundary X.bM/ consists of pairwise disjoint Jordan curves. The control of confor-
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mal structures on complete minimal surfaces in Theorems 3.5 and 3.6 is one of the
main new aspects of these results; the other one is that the surfaces in Theorem 3.6
have Jordan boundaries. These answer the aforementioned questions by Yau.

For surfaces M of type (3.4) with finitely many boundary components, Theorem
3.6 was proved in [4]. This covers all finite bordered Riemann surfaces in view of the
uniformization theorem [76, Theorem 8.1] due to E. L. Stout. In this case, we actu-
ally showed that any conformal minimal immersion xM ! Rn can be approximated
uniformly on xM by a map X as in the theorem. The general case for countably many
ends was obtained in [10]; an approximation theorem also holds in that case.

The situation regarding point ends remains elusive and does not have a clear-cut
answer. On the one hand, a bounded conformal minimal surface cannot be complete at
an isolated point end (a puncture) since a bounded harmonic function extends across
a puncture. On the other hand, it was shown in [10, Theorem 5.1] that an analogue of
Theorem 3.6 holds for connected domains of the form

M D R n

�
E [

[
i

Di

�
;

where E is a compact set in a compact Riemann surface R and Di � R n E are
pairwise disjoint geometric discs such that the distance to E is infinite within M . In
particular, there are complete bounded conformal minimal surfaces in R3 with point
ends which are limits of disc ends.

Our construction uses an adaptation of the Riemann–Hilbert boundary value prob-
lem to holomorphic null curves and conformal minimal surfaces, together with a
method of exposing boundary points of such surfaces. This technique is explained
in detail in [16, Chapter 6]. The modifications which we use provide a good con-
trol of the position of the whole surface in the ambient space, thereby keeping it
bounded. The main technical lemma of independent interest (see [16, Lemma 7.3.1])
enables one to make the intrinsic radius of a conformal bordered minimal surface in
Rn as large as desired by a deformation of the surface which is uniformly as small as
desired. One uses this lemma in an inductive process which converges to a bounded
complete limit surface. This lemma also allows the construction of complete minimal
surfaces with other interesting geometric properties. In particular, every bordered Rie-
mann surface admits a complete proper conformal minimal immersion into any con-
vex domain in Rn (embedding if n � 5) and, more generally, into any minimally con-
vex domain (see [16, Section 8.3]). A smoothly bounded domain in R3 is minimally
convex if and only if the boundary has nonnegative mean curvature at each point.

We give a brief description of the modifications which lead to proof of the above
results. A complete presentation of this technique is given in [16, Chapter 6], and
Theorem 3.6 is proved in [16, Chapter 7]. Illustrations can be found in my lecture [36].



Minimal surfaces in Euclidean spaces by way of complex analysis 37

Each step consists of two substeps. In the first substep, we choose a large but finite
number of roughly equidistributed points on the boundary of the surface and change
the surface so that it grows long spikes (tentacles) at these points, which however
remain uniformly close to the attachment points. (Imagine the picture of a corona
virus.) The effect of this modification is that curves in the surface which terminate
near one of the exposed boundary points get elongated by a prescribed amount. See
[16, Section 6.7].

In the second substep, we perform a Riemann–Hilbert type modification which
increases the intrinsic radius along each of the boundary arcs between a pair of
exposed points, without destroying the effect of substep 1. To each boundary arc
between a pair of exposed points we attach a 3-dimensional cylinder, consisting of a
1-parameter family of conformal minimal discs centered at points of the given arc.
The boundaries of these discs form a 2-dimensional cylinder, a product of the arc
with a circle, and their radii shrink to zero near the exposed endpoints of the arc. Is it
then possible to modify the surface by pushing each arc very near the corresponding
2-dimensional cylinder, with the modification tempering out near the exposed end-
points and away from the arcs. So, the modification in substep 2 is big very close
to the boundary (except near the exposed points), and it is arbitrarily small outside
a given neighborhood of the boundary. The new conformal minimal surface is con-
tained in an arbitrarily small neighborhood of the union of the surface from substep 1
and the 3-dimensional cylinders that have been attached to the arcs in substep 2. The
metric effect of the modification in substep 2 is that the length of any path in the sur-
face terminating at an interior point of one of the boundary arcs increases almost by
the radius of the disc that was attached at this point. (For curves terminating near the
exposed points a desired elongation was already achieved in substep 1.) For technical
reasons, we actually work with @-derivatives of these conformal minimal surfaces,
including the boundary discs, so the entire picture concerns families of holomorphic
maps with values in the punctured null quadric A�. In order to control the period con-
ditions, we work with sprays of such configurations, like in the proof of Theorem 3.1.
Special attention is paid to avoid introducing branch points to our surfaces in the pro-
cess. As said before, this provides the main modification lemma, and its inductive
application leads to the proof of Theorem 3.6.

By this method, the Calabi–Yau property has been established in several geome-
tries: for holomorphic curves in complex manifolds [6], holomorphic null curves in
Cn and conformal minimal surfaces in Rn for n � 3 [4, 7, 10], holomorphic Leg-
endrian curves in complex contact manifolds [8, 13], and superminimal surfaces in
self-dual or anti-self-dual Einstein 4-manifolds [37]. For a survey and further refer-
ences, see [16, Section 7.4]. An axiomatic approach to the Calabi–Yau problem was
proposed in [11].
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The analogue of the Calabi–Yau problem for complex submanifolds in Cn, which
is known as Paul Yang’s problem who raised it in 1977 [79], has also received a lot of
recent attention. In particular, J. Globevnik showed [40] that for any pair of integers
1 � k < n, the ball of Cn admits holomorphic foliations by complete k-dimensional
proper complex subvarieties, most of which are without singularities (submanifolds).
Another construction using a different technique was given by Alarcón et al. [17],
and it was also shown that there are nonsingular holomorphic foliations of the ball
having complete leaves (Alarcón [1]). Furthermore, there are nonsingular holomor-
phic foliations of the ball whose leaves are complete properly embedded discs [9].
The techniques in these papers do not apply to more general minimal surfaces, and
they do not provide control of complex structures of examples.

In conclusion, I propose the following conjecture. Although I am fully aware of
the lack of technical tools to solve it in this generality, I believe that it is true.

Conjecture 3.7. The Calabi–Yau property holds for bordered minimal surfaces in
any smooth Riemannian manifold .N; g/ with dimN � 3. Explicitly, for every bor-
dered Riemann surface, M , and conformal minimal immersion X W xM ! N it is
possible to approximate X uniformly on M by complete conformal minimal immer-
sions M ! N .
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[6] A. Alarcón and F. Forstnerič, Every bordered Riemann surface is a complete proper curve
in a ball. Math. Ann. 357 (2013), no. 3, 1049–1070 Zbl 1288.32014 MR 3118624
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