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Torsion in algebraic groups and problems which arise

Umberto Zannier

Abstract. This article is based on the lecture that I had the honor and pleasure to deliver at
the 8th European Congress of Mathematics in Portorož, Slovenia (originally planned for June
2020, then shifted to June 2021 for public health reasons). In the talk I tried to give an overview
of some issues linked to torsion in algebraic groups, focusing on some recent research. Taking
into account the purposes of reaching a large audience of mathematicians, from all subjects,
I started with elementary general concepts, recalling some historical steps, before shifting to
more specific themes which I was more familiar with. In these notes, I maintained the same
principles, and only slightly expanded the contents of the lecture; indeed, I have not gone into
any detailed argument.

1. Torsion in commutative algebraic groups

Torsion (etymology): the word torsion (in mathematics) often denotes a quantity,
suitably defined in differential terms, which measures local “twisting” of a curve in
Euclidean space (roughly speaking, it expresses “how far” the curve locally is from
being a plane curve). However, in this exposition we shall adopt the usual algebraic
meaning, namely according to the following definition.

Definition. An element g in a group G is torsion if gm D 1 D identity of G, for some
integer m > 0. (Such an m is called an exponent for g, whereas the minimal such m

is called the – exact – order of g.)

This terminology apparently is not unrelated to the former one, as it seemingly
originated from the structure of homology groups of spaces obtained by twisting.
For instance, the real projective plane P2.R/, defined by gluing antipodal points in a
closed half sphere, has the torsion group Z=2 as its first homology group (over Z).

A torsion element g as above generates a so-called finite cyclic group; now the
etymology comes from the circle, because the powers gn repeat cyclically: : : : ; g;

g2; : : : ; gmC1 D g; gmC2 D g2; : : : and generally gnCm D gn, n D 0; 1; : : : :

2020 Mathematics Subject Classification. Primary 11-02; Secondary 11Gxx, 14Gxx, 14Kxx,
14Lxx.
Keywords. Number theory, Diophantine geometry, algebraic groups.

https://creativecommons.org/licenses/by/4.0/


U. Zannier 162

Indeed the circle comes into the picture beyond this simple intuition, through its
topology (especially the fundamental group).

1.1. Algebraic groups

We shall consider some examples of torsion elements, and their structure, in algebraic
groups: roughly speaking an algebraic group is defined first as an algebraic vari-
ety, i.e., a set of points satisfying a given system of algebraic equations in an affine
or projective space, and then one has a group law expressed by polynomials in the
coordinates.

An algebraic group is an irreducible variety if and only if it is connected, and, in
general, it is anyway a finite union of translates of the connected component of the
identity element (which is a normal subgroup).

In this article we shall meet only commutative algebraic groups, a property which
entails that torsion elements form a subgroup.

For simplicity we shall consider only algebraic groups and points defined over
the field C of complex numbers and tacitly identify such a group with the set of
its complex points. (However, this does not mean that we shall disregard the actual
minimal field of definition of the points of interest for us, a field which may be small
and is highly important for arithmetical information.)

Examples.

Additive algebraic group. The additive algebraic group, denoted by Ga, is simply
the affine line A1 as an algebraic variety. The group law is expressed additively by
.x; y/ 7! x C y. The set of complex points Ga.C/ of Ga is simply C.

A torsion element g 2 C of exponent m now satisfies mg D 0, hence g D 0,
which means that there is no torsion other than 0 (as over any field of characteristic
zero, whereas every element is torsion of exponent p in positive characteristic p).

Multiplicative algebraic group. The multiplicative algebraic group Gm is the affine
line deprived of the origin A1 � ¹0º as an algebraic variety, with the algebraic group
law .x; y/ 7! xy. The set Gm.C/ of its complex points is the multiplicative group of
nonzero complex numbers C� WD C n ¹0º.

A torsion element g 2 C� of exponent m satisfies gm D 1, so the torsion elements
are precisely the (complex) roots of unity. There are m having exponent m; these lie
on the unit circle S1 WD ¹z 2 C W jzj D 1º, and they form the vertices of a regular
m-gon in the complex plane C.

Note the (analytic) exponential map z 7! e2�iz , which sends homomorphically C
onto C� and has a kernel Z Š �1.C�/; this is a non-divisible group, which explains
torsion elements in the image (whereas there are no nontrivial ones in the domain).
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Through this map we have the analytic isomorphism Gm.C/ D C� Š C=Z, the quo-
tient of C by a discrete subgroup (of rank 1).

Elliptic curves. The additive and multiplicative algebraic groups are curves (i.e.,
have dimension 1). However, they do not exhaust the possibilities for a curve to be
a connected algebraic group. Indeed, (the) other fundamental examples are given by
(complex) elliptic curves. They can be defined in the projective plane P2 by equations
of the shape

EWy2
D 4x3

� g2x � g3 in A2
C point at infinity O WD .0 W 1 W 0/ in P2;

where g2; g3 2 C are such that 4x3 � g2x � g3 has no multiple roots, i.e.,

g3
2 � 27g2

3 ¤ 0:

What is particularly remarkable is the existence of an algebraic-group (commutat-
ive) law among the points of each such curve. Namely, if we prescribe that the origin
is the point at infinity O , then to add points P; Q 2 E, we first draw the line through
P; Q (or the tangent to E if P D Q) which (taking into account multiplicities) will
intersect E in a third point R. The group law is such that P C Q C R D O , whereas
P C Q is the point opposite to R with respect to the x-axis.

This outstanding law (called classically the chord and tangent process, apparently
observed first by Newton) indeed may be expressed by polynomials in the homogen-
eous coordinates and satisfies the group axioms (the associative law being not entirely
trivial to check). It is fundamental in several respects, e.g., in the theory of Diophant-
ine equations, since, when the curve has rational coefficients, it produces rational
points out of rational ones.

Somewhat similarly to the case of Gm, each of these curves is found to be ana-
lytically isomorphic to a (compact) complex torus C=L, where L is again a suitable
discrete subgroup, however now of maximal rank 2, i.e., a lattice in C. The isomorph-
ism occurs through the Weierstrass exponential map: z 7! .}L.z/; }0

L.z//, where }L

is the Weierstrass function associated to L:

}L.z/ D z�2
C

X
l2L�¹0º

�
.z � l/�2

� l�2
�
:

This function is meromorphic on C and admits L as its group of periods. (It sends L

to O .)
The addition C on C (and on C=L) then explains the group law on E in the sense

that the former is transported to the latter by the said exponential.
In particular, it appears that now there are m2 torsion elements of exponent m.
The complex elliptic curves, up to complex isomorphism, form a family of dimen-

sion 1 (parameterized by the so-called j -invariant j.E/ D 1728g3
2=.g3

2 � 27g2
3/,
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which can assume any complex value). Together with Ga and Gm, they exhaust the
isomorphism classes of complex (connected) algebraic groups of dimension 1.

Abelian varieties. Abelian varieties are the irreducible (or, equivalently, connected)
projective algebraic groups. They are automatically commutative (the terminology
“abelian” arising for a different reason).

Elliptic curves represent precisely the abelian varieties of dimension 1. But
abelian varieties exist in any dimension: a simple example is a power Er of an elliptic
curve E, though this is extremely special. Other very important (though still special)
abelian varieties arise as Jacobians of (smooth) algebraic curves of genus g > 0; such
a Jacobian has dimension g.

Like for elliptic curves, every complex abelian variety, say of dimension g, is
analytically isomorphic to a complex torus, i.e., a quotient Cg=L where L is a (full)
lattice; however for g > 1 not every complex torus is an abelian variety, a certain
subtle “bilinear” condition on the lattice (existence of a Riemann form), in heavy part
arithmetical, being necessary and sufficient.

Products. We may obtain other algebraic groups by taking products, e.g., of the form
Gr

a � Gs
m; the complex points are now vectors in CrCs , where the last s coordin-

ates are nonzero and where the operations are coordinatewise (additive on the first r

coordinates, multiplicative on the last s ones). For topological reasons the powers Gs
m

are sometimes called (complex multiplicative) tori.
Similarly, we may take products among the other algebraic groups we have seen.

However, one should take into account that there exist extensions of algebraic groups,
i.e., exact sequences 0!G1 !G !G2 ! 0, where G is not (necessarily isomorphic
to) the product G1 � G2 (examples occur already in dimension 2, on taking G1 D Ga

or Gm and G2 D an elliptic curve). When G1 D Gs
m and G2 is an abelian variety, any

G in such an exact sequence is called a semiabelian variety.

1.2. Some results about torsion in algebraic groups

Additive case. We have already noted that Ga has no nontrivial torsion in character-
istic zero, thus in particular over C.

Multiplicative case. In this case, we have recalled that the torsion elements of
Gm.C/ D C� are the complex roots of unity.

Through the exponential map z ! e2�iz , the roots of unity correspond to z D

rational number, which raises a link with Number Theory.
Roots of unity naturally appear in describing discrete periodical phenomena. For

instance one finds here finite Fourier series, i.e., linear combinations of exponential
functions (on Z) having roots of unity as bases; they are a discrete counterpart of
the famous series expansions introduced systematically by Fourier, at the very heart
of Harmonic Analysis. The finite Fourier series represent all periodic functions on Z
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and are of the utmost relevance in myriads of topics and applications, including Cod-
ing Theory, Combinatorics, Fast Multiplication, Group Theory, (Analytic) Number
Theory, Numerical Analysis, and so on.

An effectivity issue. Let us pause to note that, already for roots of unity, even to decide
whether a specific number (or, more generally, specific point of a given algebraic
group) is torsion seems not completely obvious. For instance, consider the following:

Small challenge: Is ˛ WD
3 C 4

p
�1

5
a root of unity?

Note that ˛ indeed lies in the unit circle S1, as 32 C 42 D 52. So the natural test
of computing j˛j does not disprove the sought eventuality for this particular number.

Now, we can check whether ˛2; ˛3; : : : ; or any given power ˛m, is or is not equal
to 1, but a possible torsion-exponent is not bounded a priori; so, unless we find 1 at
some stage, we are left with an open possibility for the next check.

In conclusion, a little reflection may be needed to (see how to) answer such (type
of) question(s) algorithmically in the general case. (Now a negative answer may be
obtained using the Euler function value �.q/ for the degree over Q of a root of unity
of exact order q, which bounds the possible torsion order in terms of the degree of the
given number. This works generally, but for the actual question maybe the simplest
way is to observe that ˛ is not an algebraic integer.1 We invite the interested reader to
seek several different arguments for answering the question.)

From a number theoretical viewpoint, Gauss (Disquisitiones Arithmeticae 1801)
was the first to study in depth the arithmetical properties of roots of unity. In partic-
ular, this led him to criteria for constructing a regular n-gon with ruler and compass
(ancient problem of Greek mathematics). For instance this is possible for

n D 3; 4; 5; 6; 8; 10; 12; 15; 16; 17; : : : ; but not for n D 7; 9; 11; 13; 14; 18; 19; : : : :

As is well known, Fermat primes 22k
C 1 play a heavy role here: : : :

In fact, already a few years before the publication of the Disquisitiones, Gauss
had succeeded to construct the regular polygon of 17 sides, obtaining in practice the
remarkable equality

16 cos
2�

17
D �1 C

p
17 C

q
34 � 2

p
17 C 2

r
17 C 3

p
17 �

q
170 C 38

p
17:

We may say that Gauss anticipated the Galois theory of the cyclotomic fields; in
fact, in particular he defined the so-called Gaussian periods, which a posteriori turn

1This fits with a well-known theorem of Kronecker: “Roots of unity are those algebraic
integers having all conjugates of complex absolute value 1”, which may be rephrased as: “An
algebraic number is a root of unity if and only if all its absolute values are 1”.
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out to be suitable invariants for subgroups of automorphisms. (They may be also
conceived as values of certain finite Fourier series alluded to above.) For instance,
Gauss obtained from them “explicit” generators for all the subfields of a principal
cyclotomic field Q.e2�i=p/, where p is a prime number. (They are highly import-
ant for other reasons as well.) In particular, Gauss expressed, through the famous
Gauss sums, any number

p
n, n 2 Z, as a sum of roots of unity, which is not at all

obvious. This also started the theory of abelian extensions of Q and of number fields
(so-called “Class-field theory”).

In this case of the roots of unity (through viewpoints introduced by Deuring; : : : ;

Tate; : : : ; Grothendieck; : : :) the Galois groups which arise may be seen as an algeb-
raic manifestation and realization of the monodromy (group) of the circle S1 D ¹z 2

C W jzj D 1º. For instance, we have

�1.S1/ D �1.C�/ D Z;

and its finite quotients are the Z=.m/ which correspond to the finite covers of S1, and
so to the homomorphisms

S1 ! S1W z 7! zm;

with kernel the group Um D e2�iZ=m Š Z=.m/ of mth roots of unity. So Um is the
topological covering group and the Galois group over Q acts on it, and we have

Aut.Um/ Š
�
Z=.m/

��
Š Gal

�
Q.Um/=Q

�
D Gal

�
Q.e2�i=m/=Q

�
;

as proved essentially by Gauss. So the algebraic Galois group of the corresponding
field extension equals the (abstract) automorphism group of the topological covering
group.

Elliptic case. Now the theory of torsion elements is again highly interesting, rich,
and actually (much) more difficult than in the cyclotomic case. We have already
recalled that there are m2 elements of exponent m. The coordinates of these points
generate (over the ground field Q.g2; g3/) a field which is found to contain the cyc-
lotomic field Q.e2�i=m/, so we may say that the cyclotomic case recalled above falls
just as a special piece of the elliptic theory.

The torsion points now lie on a space which may be identified with the product
S1 � S1 of two circles (a torus), and the topological covering group corresponding
to torsion points of order m is now .Z=.m//2. The elements of the Galois group
again correspond to automorphisms of the covering group and thus may be viewed
inside the finite matrix group GL2.Z=.m//. A fundamental issue is to understand the
image of the Galois group (as m varies). This Galois theory somewhat depends on
the coefficients g2; g3.
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The “generic” case of transcendental j -invariant had been dealt with by Fricke &
Weber between the XIX and XX centuries: they proved that the image is essentially
the “largest possible one” (i.e., SL2.Z=.m// if we work over C).

The algebraic case lies much deeper, and suppose to fix ideas that g2; g3 2 Q.
There are two essentially different subcases, according to whether the ring of endo-
morphisms of the elliptic curve is “trivial” (i.e., Z) or not; the latter case, called
Complex Multiplication, is “exceptional” in various ways (now the endomorphism
ring is an order in some imaginary quadratic field).

Already Gauss (beginning of Chapter VII of Disquisitiones) foresaw the interest
and depth of this issue in some of these situations, which he interpreted as analogous
to cyclotomy, i.e., as the (arithmetical) theory of the dissection of a lemniscate (in
place of a circle) into equal parts. It is also interesting that the general case of prime m

had been considered by Galois (in a letter to Chevalier, 29 May 1832), especially from
the viewpoint of solvability by radicals of the corresponding algebraic equations.

We skip any other detail and only recall a few basic more modern achievements.

Some elliptic results

� A deep landmark result on the above-mentioned Galois image is Serre’s Open
Image Theorem (70s): in a sense it extends Gauss’ achievements (and more) to
the most general elliptic case, proving that the Galois image is as large as pos-
sible (compatibly with the endomorphism ring) up to bounded index. (We omit a
precise statement, which would lead us outside the scope of these notes.)

� Another very important and deep theorem is due to Mazur (70s), who proved
that for g2; g3 2 Q the possible torsion orders of rational torsion points never
exceed 12. This result corresponds to finding all rational points on suitable modu-
lar curves, providing a link of the present topic with major questions in the theory
of Diophantine equations.

� Merel 1994, with some new ingredient, extended this kind of result to number
fields other than Q (some independent work being due to Kamienny & Parent, and
previously to Demianenko & Manin in the case of prime-power torsion order).

Case of abelian varieties. The arithmetic and Galois structure of torsion elements is
even more difficult than the special elliptic case. But nowadays there has been great
progress, thanks to the work of Deligne, Bogomolov, Faltings, Serre; : : : ; Masser &
Wüstholz; : : : ; Mazur, Ribet, Pink, Tamagawa, Cadoret; : : : :

2. Algebraic relations among torsion points

We have recalled some results on individual torsion points. Let us now see some
problems on relations among torsion points.
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An old significant example comes from Gordan 1877 who studied the equation

cos 2�x C cos 2�y C cos 2�z C 1 D 0; x; y; z 2 Q;

with the purpose of classifying the finite subgroups of PGL2.C/. On writing

2 cos 2�z D e2�iz
C e�2�iz;

we see that this amounts to a certain algebraic equation among the three roots of
unity e2�ix , e2�iy , e2�iz , or else a certain (inhomogeneous) linear relation among
three roots of unity and their reciprocals.

Later on, general linear equations in roots of unity were studied systematically,
in particular by Mann 1965 and Conway & Jones 1976, in the setting of what the
latter authors called trigonometric diophantine equations. These results in particular
bounded the maximal torsion order in a linear equation with nonzero constant term
and no vanishing subsums (with coefficients in Q). As a very special instance, their
conclusions very easily imply that

the only triangles with rational sides and angles rational multiples of � are
equilateral,

and similar results follow for polygons with a given number of sides.
More recent applications appear, for example, in the work of Gross, Hironaka, and

McMullen (to cyclotomic factors of En-Coxeter polynomials, 2009), of Bourgain,
Gamburd, and Sarnak (to Markov surfaces 2016), of Kedlaya, Kolpakov, Poonen,
and Rubinstein (to rational angles among vectors in R3, 2020), and in a joint work of
the author with Dvornicich & Veneziano (to rational angles in plane lattices, 2020).

Uniform quantitative results (regarding the number of solutions of a given linear
equation) were proved, e.g., by Schlickewei, Evertse, Beukers & Smyth, and in a
joint work of the author with Bombieri, also towards the conjecture of Lang to be
discussed in the next section. (Subsequently these results have been quantitatively
refined by several authors, including Amoroso & Viada and Martinez.)

2.1. The conjecture of Lang

Independently of the above authors, Lang had raised in the 60s the related problem
of studying polynomial equations:

F.�; �/ D 0; �; � roots of unity, of unrestricted exponent:

Note that such a pair .�; �/ is a torsion point on the plane curve F.x; y/ D 0,
viewed inside G2

m.
Let F be given. As expected by Lang, there can be infinitely many solutions of the

said shape only if F has a binomial factor of the shape axmCbyn or axmynCb; this
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was quickly proved by Ihara, Serre, and Tate (and proofs may be got also through the
previously mentioned results on linear equations, on considering monomial terms).

This was later extended to arbitrary dimensions by M. Laurent and Sarnak &
Adams, proving (among other things) the conjecture of Lang:

An algebraic subvariety of Gr
m can have infinitely many torsion points only

if it contains a positive dimensional special subvariety, i.e., a translate of an
algebraic subgroup by a torsion point.

More precisely, their results yield the following theorem.

Theorem 2.1. Let † be any set of torsion points inside Gr
m. The Zariski closure of †

is a finite union of translates (by torsion points) of algebraic subgroups.

It is moreover not difficult to see that any connected algebraic subgroup of Gr
m

can be defined by finitely many equations of the shape x
a1

1 � � � x
ar
r D 1 and is (algeb-

raically) isomorphic to some Gh
m (h � r). Hence in practice the principle is that

every prescribed algebraic relation within varying torsion elements can be
explained in finite terms by a multiplicative structure of algebraic group.

Methods. The Galois theory of Gauss is a precious tool in all these achievements,
though also other ingredients are relevant.

As for the previously mentioned work, later this had several applications.
For instance we quote the work by Sarnak (on Betti numbers of congruence

groups, 1994), by Ailon & Rudnick (on gcd.f .t/n � 1;g.t/n � 1/, 2004), by Kurasov
& Sarnak (on crystalline measures, 2020).

2.2. Multiplicative relations on curves – unlikely intersections

The mentioned issues on torsion points may be extended to deal with more general
multiplicative relations among coordinates of points on a curve X inside a torus Gr

m.
That is, we weaken the condition that all the coordinates are torsion and only impose
that a certain number of independent multiplicative relations hold among the coordin-
ates.

It is easy to see that if we prescribe on the irreducible curve X a single multi-
plicative relation, i.e., of the shape x

a1

1 � � � x
ar
r D 1 with .x1; : : : ; xr/ 2 X , then we

obtain infinitely many points as .a1; : : : ; ar/ varies through all nonzero integer vec-
tors; this corresponds to intersect X with the union of all proper algebraic subgroups
of Gr

m. However, it turns out that imposing another such relation, independent with
the former but otherwise arbitrary (which corresponds to intersect X with the union
of algebraic subgroups of codimension � 2), yields only finitely many points, unless
the curve X is special in the sense that it is contained in a proper algebraic subgroup
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of Gr
m. (For r D 2 we obtain nothing new since imposing two independent relations

yields torsion coordinates, but for r > 2 this is a weaker restriction, making the the-
orem stronger.)

With the more demanding assumption that X is not contained in any proper trans-
late of algebraic subgroup, this was dealt with in a joint work of the author with
Bombieri & Masser 1999, and later proved in the sharper form by Maurin 2008,
relying partly on methods by Rémond. (This case is more difficult; for instance it
contains implicitly the so-called Mordell–Lang context for tori.) A different approach
for this stronger theorem was found later by the former authors with Habegger 2010
(this time using the results of Mordell–Lang type). A still further approach with the
stronger assumption appeared in a joint work of the author with Capuano, Masser,
and Pila 2016, based on the counting method alluded to below; this argument has the
advantage of extending to the abelian context (but not containing the sharper form).

Several results followed by other authors as well, also for some higher-dimen-
sional analogues, and further in the abelian case.

The topic, sometimes called Unlikely Intersections, was independently raised also
by Zilber 2002 (with entirely independent motivations from Logic) and again inde-
pendently by Pink 2005.2 They put forward certain general conjectures still widely
open (those of Pink embracing still further realms). These conjectures dealt also with
abelian varieties in place of tori, where exact analogues may be stated. We shall briefly
discuss this context in the next subsection.

2.3. The conjecture of Manin–Mumford

A motivation for the above-mentioned problems stated by Lang had been a conjecture
formulated independently by Manin & Mumford in the 60s.

Manin–Mumford conjecture. A curve of genus � 2 embedded in its Jacobian vari-
ety has only finitely many torsion points.

This may be indeed seen as an analogue (of more difficult nature) for abelian
varieties of some of the above problems for multiplicative tori. It became a theorem
due to Raynaud in the 80s; he was able to prove, more generally, the analogue of
Lang’s conjecture above, and for arbitrary abelian varieties (not merely Jacobians)
and arbitrary subvarieties. Several other proofs then followed, due, e.g., to Serre,
Coleman, Hindry, Buium, Hrushovski, Pink & Roessler, M. Baker & Ribet.

Still other proofs (by Bilu 1997 for Gr
m and Szpiro, Ullmo, and S. Zhang 1997 for

the abelian case) gave stronger results of Galois equidistribution of the conjugates of
torsion points when the degree of the field of definition of the points grows. Moreover,

2Certain rather special cases had been raised earlier by Schinzel, with still different lan-
guage and motivations, coming mainly from his theory of reducibility of lacunary polynomials.
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these proofs worked also for points of “small height”.3 Remarkable uniform estimates
here (e.g., for the number of torsion points on the curve) have been given very recently
by Kuehne 2021.

A further proof was found in a joint work of Pila and the author (2009): this relied
on the analytic isomorphism of a complex abelian variety with a complex torus, in
which torsion points correspond to rational points (as in the case of roots of unity).
Then one reduces to counting rational points on suitable analytic subvarieties of the
torus and comparing bounds from below (coming from the large degree of torsion
points – work by Masser) and from above. This last step is done through estim-
ates by Bombieri & Pila 1989, Pila, and finally Pila–Wilkie 2006. In turn, this last
work involves the (model)-theory of the so-called o-minimal structures (developed
by van der Dries et al.).

2.4. “Special points” and the André–Oort conjecture

As far-reaching analogues of torsion points, one may consider the so-called special
points in Shimura varieties. An important kind of such varieties arises as moduli
spaces of abelian varieties with certain properties (i.e., parametrizing abelian variet-
ies of given dimension with supplementary symmetries). The special points, playing
the role of torsion points, are those corresponding to Complex-Multiplication abelian
varieties. Moreover, one may also define special subvarieties of positive dimension,
analogues of the translates (by torsion points) of algebraic subgroups (in the conjec-
ture of Lang) or of abelian subvarieties (in the theorem of Raynaud, in turn analogue
of Lang’s for abelian varieties).

We skip any formal definition, since the context is quite technical, but we note that
one may formulate statements analogue to the above ones. A very relevant instance
is the André–Oort conjecture, raised by André 1989 and Oort 1990s independently.
Once that the above terminology has been introduced in precise terms, a possible
phrasing of it is as follows:

The Zariski closure of a set of special points is a finite union of special sub-
varieties.

This formulation reminds of what we have seen in the multiplicative and abelian
cases.

After the proof of a special case by André (i.e., the significant case of CM-points
on a curve in the plane A2, viewed as representing pairs of elliptic curves), the above-

3The height of a point with algebraic coordinates is a real non-negative number which
measures its arithmetical complexity; one may define a canonical height on the algebraic points
of a commutative algebraic group, which vanishes precisely at torsion points; we cannot pause
here on this concept, introduced first by Weil, despite its great relevance.
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mentioned counting method was applied by Pila to this context, proving substantially
more general instances.

A final step for the full conjecture (for the moduli space Ag ) was finally devised
by Tsimerman 2015 after many important intermediate results and steps, in particular
by Colmez, Edixhoven, Gao, Klingler, Pila, Pila & Tsimerman, Ullmo & Yafaev,
Yuan & S. Zhang; : : : : (A still more general form of the conjecture has been obtained
very recently by Pila, Shankar, and Tsimerman, relying also on further ingredients
provided by Binyamini and by Esnault & Groechening.)

Several other results in a similar spirit have been obtained and much work in the
context is still in progress.

Dynamical analogues. Still further analogues of special points occur in dynamics,
which we describe roughly as the study of iterates f; f ı2 WD f ı f; : : : ; f ın; : : : of
a map f W X ! X from a space X to itself. The simplest examples (already leading
often to very difficult problems) occur with rational maps f W P1 ! P1. As possible
analogues of torsion points one can consider preperiodic points for f , i.e., the points
x 2 X such that f ın.x/ D f ım.x/ for some integers n > m (so that the sequence
.f ır.x//r2N is finite). For instance, if X D Gm, f .x/ D xd (any d � 2), the preperi-
odic points are precisely the torsion points. One may formulate analogues of the above
statements, and some quite nontrivial remarkable results have been proved, mainly
due to the work of M. Baker, Bell, DeMarco, Ghioca, Hsia, Mavraki, Scanlon, Sil-
verman, Szpiro, Tucker, Yuan, S. Zhang; : : : ; among others. However, only a partial
picture has been obtained to date in this direction compared to the original context of
torsion points, and even a satisfactory formulation of suitable complete conjectures
seems not to have been reached so far.

3. Torsion in families of algebraic groups

We have briefly discussed torsion in individual algebraic groups, and algebraic rela-
tions among them. To go one step further, we can consider torsion conditions in
algebraic groups (and points) varying in families. The multiplicative group Gm does
not admit genuine “variation”, but already for elliptic curves we have truly noncon-
stant families. A typical and historically relevant instance of this is the Legendre
family of elliptic curves, defined by

L�Wy
2
D x.x � 1/.x � �/ C point at infinity O;

where � is a complex parameter in C � ¹0; 1º. For each b 2 C � ¹0; 1º up to two
exceptions, there are only six values of � producing a curve isomorphic to Lb , and
each complex elliptic curve is isomorphic to some Lb , so the family indeed is intrins-
ically not “constant”.
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Regarding families of points (also called sections), we may consider, just as a
simple instance, the points

P� D
�
2;
p

2.2 � �/
�
2 L�;

where the choice of the sign is immaterial for us.
It may be shown that

(1) P� is not identically torsion on L� (i.e., there is no integer m > 0 such that
mP� D O for all �), but

(2) Pb becomes torsion on Lb (of unrestricted exponent) for an infinite, even
dense, set of b 2 C. This set consists of algebraic numbers, and the corres-
ponding minimal torsion exponents tend to 1;

(3) these numbers b have bounded height. So for instance there are only finitely
many rational or even quadratic irrational ones, and in fact the degree over
Q of these numbers tends to 1. (Néron had previously shown that they form
a so-called thin set in any given number field.)

Property (1) follows from the general principle that torsion points are unramified
except above the locus of bad reduction. Property (2) may be proved through the Betti
map, mentioned below. Property (3) follows from results by Silverman & Tate 1980s.
Properties (2) and (3) actually hold for all sections (defined over xQ) satisfying (1).

Further Galois-equidistribution results for these numbers b are due to DeMarco
& Mavraki 2019. Note that the equidistribution here does not concern the (conjugates
of the) hypothetical torsion points, but regards the (conjugates of the) values b for
which Pb is a torsion point. Hence this result has a quite different meaning with
respect to the previously mentioned equidistribution theorems of Bilu and Szpiro,
Ullmo, and Zhang. This equidistribution implies in particular the above-mentioned
complex density.

For the actual choice of family (using the Betti map appearing below) one can
also prove density of the relevant b in the real half-line .�1; 2/, so that Pb 2 Lb.R/.
On the other hand, a joint work of the author with Lawrence observes that we never
have p-adic density for this set.

3.1. Masser’s problem and the Pink conjectures

Masser considered a second family of points, for instance

Q� D
�
� C 1;

p
�.� C 1/

�
2 L�:

The same remarks (1), (2), and (3) hold for this family, and moreover P�, Q� may
be shown to be generically linearly independent on L�, i.e., if rP� C sQ� D O for
certain integers r; s and all �, then r D s D 0.
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From (3) we see that the values b of � for which each point becomes separately
torsion form a sparse set, so Masser asked the following.

Masser’s question. Is the “doubly sparse” set

¹b 2 C W Pb; Qb are both torsion on Lbº

even a finite set?
Here Galois groups of torsion points do not give enough information, essentially

because the degree of the relevant numbers “b” is unbounded (and actually tends
to 1).

Using the above-mentioned counting method (and other tools), Masser & the
author (2008) gave an affirmative answer to the question, actually to its natural gen-
eralization to other pairs of families and sections.

Later this was further extended to arbitrary algebraic pencils of abelian varieties
and in other directions (e.g., of Unlikely Intersections type), also by M. Baker, Bar-
roero, Bertrand, Capuano, Daw, DeMarco, Dill, Habegger, G. Jones, Orr, Pila, Pillay,
H. Schmidt, Stoll, Tsimerman; : : : :

Some of these results may be seen as relative analogues of the Manin–Mumford
conjecture (i.e., where the ambient abelian variety moves in a family), and some other
ones as dynamical analogues (i.e., when the torsion points are replaced by preperiodic
points with respect to suitable rational maps).

The problem of Masser was recognized as a special case of conjectures by Pink
(and also of Zilber in other cases). As alluded above, these conjectures deal with much
more general contexts (including the André–Oort one) and are still widely open.

3.2. The Betti map

The counting method alluded to above worked for families and points defined over
xQ, but some of the tools failed over C. This obstacle was overcome in a joint work of
the author with Corvaja & Masser 2017 by specialization, to reduce to the algebraic
case.

This gave as a byproduct somewhat analogous conclusions for families paramet-
erized by spaces of dimension > 1.

Specialization appeared delicate because of certain possible degeneracies, diffi-
cult to exclude a priori. To get control on this, a relevant tool came from the so-called
(real analytic) Betti map: it gives the real coordinates of the point, in terms of a lattice
basis for the torus representing the abelian variety, the basis varying locally holo-
morphically in the family.

Example 3.1. In the case of the Legendre family, consider a lattice L� � C such that
C=L� Š L� (for instance through a Weierstrass exponential giving the Legendre
equation). Then, e.g., in the region R � C defined by max.j�j; j1 � �j/ < 1, by
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formulae going back to the XIX century, one can express a Z-basis of L� in terms
of hypergeometric functions, in fact as L� D Z!1 C Z!2, where !1 D i�F.1 � �/,
!2 D �F.�/ and where F.�/ D

P�
�1=2

n

�2
�n. For a given � 2 R and a point Q 2

L� we may take a representative for Q in C=L� of the shape ˇ1!1 C ˇ2!2 with
ˇ1; ˇ2 2 R=Z. Then by definition the ˇi are the Betti coordinates of Q and the Betti
map takes the value .ˇ1; ˇ2/ at Q.4

The Betti map is highly relevant in our context because its rational values cor-
respond precisely to torsion points. We have already mentioned some proofs where
essential use is made of this map.

The Betti map appeared implicitly already in a work by Manin 1960s and was
recently studied (for higher dimensions) in a work of Voisin 2019 and of André,
Corvaja & the author 2020, with further contributions by Gao and applications by
Voisin and by Dimitrov–Gao–Habegger and Kuehne.

4. Some applications

4.1. Pell equations in polynomials

The Pell equation

x2
� y2D D 1; D non-square positive integer;

to be solved in integers x; y ¤ 0, is a celebrated Diophantine equation, proposed in
fact by Fermat in the XVII century but actually having roots in ancient mathematics.
It is linked with many important issues in Number Theory, such as integral points on
curves (especially general affine conics), class-numbers and units of quadratic rings,
orthogonal groups over Z, Diophantine approximation and continued fractions, and
so on.

There is also a polynomial analogue, more recent and apparently less known,
but in fact also old, studied for instance already by Abel 1826, where D D D.t/ is a
(complex, for instance) polynomial of even degree 2d and not a square, and one seeks
polynomial solutions x.t/; y.t/ ¤ 0. Following a suggestion of Serre, this equation
may then be called Pell–Abel equation.

As in the classical case, a possible nontrivial solution generates infinitely many
ones through the formulae xn ˙ yn

p
D D .x ˙ y

p
D/n, n 2 Z (and all solutions are

generated in this way, up to sign, from a “minimal” one).

4This map may be defined in any given open simply connected region, like the above R,
and we can cover the domain C n ¹0; 1º with such regions. Then the map depends on a choice
of basis for a given region and is subject to monodromy as we travel through loops meeting
several regions.
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For the Pell–Abel equation, when deg D D 2 there are always solutions (over C),
and the polynomials x.t/, y.t/ which arise are related to Chebyshev polynomials.
But if deg D � 4, contrary to the classical case, it is generally unexpected to have
solutions (unless we work over a finite field). This assertion can be put on a rigorous
ground for instance using the Betti map. Indeed, the issue is linked with torsion in
the Jacobian of the smooth complete hyperelliptic curve H D HD defined affinely by
u2 D D.t/. In fact, denoting 1˙ the poles of t on H , it is not difficult to prove that
(nontrivial) solutions exist if and only if the class of the divisor 1C �1� 2 div.H/

has finite order in the divisor class group – i.e., in the Jacobian – of H .5 Abel gave
a translation of such condition in terms of the continued fraction for

p
D.t/ being

periodic (as happens in the classical case).
The polynomials D.t/ for which nontrivial solutions of the Pell–Abel equation

exist are sometimes called Pellian.
In a joint work of the author with Masser we studied some 1-parameter families

for fixed d , like D�.t/ D Dd;�.t/ WD t2d C t C �. As said, for d D 1, Db is always
Pellian. For d D 2 we easily realized that Db.t/ is Pellian for infinitely many b 2 C
(satisfying (3) of Section 3), whereas we proved that for d D 3 there are only finitely
many such values. We then extended the analysis to arbitrary 1-dimensional families
of polynomials D.t/ of higher degree and those results would lead, for example, to
the following theorem.

Theorem 4.1. For any d � 3, there are only finitely many b 2 C for which the Pell–
Abel equation for Dd;b.t/ is solvable.

We note that 0 lies in all these sets Pd WD ¹b 2 C W Dd;b is Pellianº, for we have

.2t2d�1
C 1/2

� .2td�1/2Dd;0.t/ D 1:

Open question. Is the union
S

d�3 Pd of these finite sets itself finite?
If the answer is at all affirmative, it appears to require new tools to be proved,

since the method that we used to deal with each single degree d � 3 is not completely
uniform as d varies.

The Pell–Abel equation, similarly to the original version, appears in many math-
ematical topics; just to mention a recent instance, it has been studied by Kollar in
connection with decidability issues and the Hilbert X problem over function fields.
(We recall that the usual Pell equation had been used by Matijasevic in his final step
solving the original Hilbert X problem.)

5A generalized Jacobian has to be considered if D.t/ has multiple roots. This link with
Jacobians may be viewed as somewhat analogue of Dirichlet class number formula for real
quadratic fields, the analogy being closer if we work over finite fields.
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4.2. Integration in finite terms

The problem of expressing indefinite integrals in terms of “simple” functions goes
back to long ago and appeared among the first examples and motivations for differ-
ential algebra. In this direction, we recall for instance the following (more or less
classical) definition.

Definition. We call Integrable in Finite Terms (abbr. IFT) a differential whose (indef-
inite) integral can be expressed by a finite tower of operations either of algebraic type,
or by taking exponentials or by taking logarithms (starting from rational functions).
We also call elementary an integral which can be likewise expressed.

Even recently, much attention has been given to the study of possible algebraic
relations among (definite) integrals of algebraic functions, special cases of periods
(after Grothendieck; : : : ; Kontsevich & Zagier; : : :), a topic not entirely unrelated
with this theme.

We have already mentioned Abel in connection with Pell’s equations in poly-
nomials, and indeed his research involved also elementary integration. Subsequently
the matter was studied by authors like Chebyshev, Liouville, Ritt, Kolchin; : : : ; giving
rise for instance to Differential Galois theory.

More recently, J. Davenport investigated pencils of algebraic differentials, to be
integrated in finite terms; he sought to understand whether,

if the general member of the family cannot be likewise integrated, the same
happens for the special members, up to finitely many exceptions.

Together with Masser we found how to establish when this type of assertion is
correct, and we also found some counterexamples.

By means of a criterion of Risch and other considerations, it turns out that the
analysis for such results in fact involves torsion, now in generalized Jacobians, which
are algebraic groups obtained as extensions of usual Jacobians by products of groups
of type Ga or Gm.

Jointly with Masser, we carried out this, applying in particular some of the above
results, and here are special cases of the output (all results joint with Masser 2018–
2020).

Theorem 4.2. There are only finitely many b 2 C such that the integral
R

.2zCb/ dz
p

z4CzCb
is elementary.

Example 4.3. The special value b D 1=2 is in the said finite set:Z
.2z C 1=2/ dzp

z4 C z C 1=2

D
1

2
log

�
4z4

� 4z3
C 2z2

C 2z � 1 C .4z2
� 4z C 2/

p
z4 C z C 1=2

�
:
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This corresponds to a torsion point of order 4 in an extension by Ga of the elliptic
curve w2 D z4 C z C .1=2/.

The next example yields a negative answer towards Davenport’s issue.

Example 4.4 (Counterexample). The differential z dz

.z2�t2/
p

z3�z
(over C.t/) is not

identically IFT but it becomes IFT for infinitely many specializations t ! b.

In this example, note the underlying elliptic curve w2 D z3 � z with CM: this is
no coincidence, since it can be shown that if the (usual) Jacobian of the underlying
curve (corresponding to the differential) does not contain CM elliptic curves, then
Davenport’s expectation is correct.

4.3. Elliptical billiards

Further applications of some of the results are to elliptical billiards, namely billiard
tables whose border is an ellipse and such that consecutive segments of billiard tra-
jectory obey the usual law of reflection at the border.

Work going back to Poncelet and Jacobi shows that to such a billiard one can
associate an elliptic family. In fact, it may be shown by nice arguments of Geometry,
of type almost going back to Euclid, that all segments in a given billiard trajectory are
tangent to a same conic, confocal with the ellipse, the so-called caustic. This caustic
varies in a family of dimension 1. If the caustic is given, then the set of pairs .P; l/,
where P lies on the ellipse and l is a line through P tangent to the caustic, describes
a curve of genus 1 embedded in P 2

1 . This curve becomes an elliptic curve after choice
of an origin, whence, as the caustic varies, we obtain the said elliptic family.

A choice of a slope for a billiard shot from a given point yields a section of this
family (depending on the point and parameterized by the slope). The torsion values
of such a section correspond to the trajectories which are periodic, whose analysis is
a main issue in the study of billiards.6

In this frame, on applying some of the above-mentioned results, in a recent joint
work with Corvaja (2021) we deduced certain finiteness theorems for periodic tra-
jectories in such billiards. For instance, we have the following conclusion.

Theorem 4.5. For each ˛ 2 .0; �/ there are only finitely many periodic pairs of
billiard shots from a given point in an elliptical billiard such that the initial directions
form an angle ˛.

This may be shown to be not generally true for rectangular billiards.

6Part of this is a special case of a famous theorem of Poncelet, dealing with more general
pairs of conics. The context has been generalized to higher dimensions by Griffiths & Harris
1977, which raises again questions related to the present realm.
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Another finiteness conclusion (proved however with results of “Unlikely Inter-
sections” type going beyond torsion – see above) concerns the set TP;Q;R of billiard
trajectories which connect two given points P; Q and pass through another given
point R: for instance, we have the following theorem.

Theorem 4.6. If Q is a hole (i.e., lies on the boundary) and P; R are not both foci of
the ellipse, then the set TP;Q;R is finite.

It is somewhat curious that some of these results in the degenerate case of a cir-
cular billiard are related to the above discussion around Lang’s conjecture.

Still further conclusions in the same spirit may be stated, e.g., concerning boom-
erang billiard shots. The link with the algebraic theory of elliptic families also shows
how arithmetic information may affect chaotic behavior in an elliptical billiard. For
instance, shots from a given point, and having slope of large enough arithmetic height,
cannot lead to periodic trajectories (we tacitly deal here with ellipses and points
defined over the algebraic numbers, which implies that the shot-slope is algebraic
too if we have periodicity). This kind of implication seems not to have previously
appeared in the theory of billiards.

5. Final remarks

Some open issues:

(1) To prove further cases of the conjectures of Pink and Zilber.

(2) To achieve effectivity in the counting of rational points appearing in some of
the proofs.
This last issue is related to the theory of o-minimality in Model Theory. Some
crucial recent work towards effectivity is due to Binyamini, and also to Daw,
Jones, Schmidt; : : : :

(3) To prove finiteness in families where also the degrees vary.

Some of the methods from o-minimality have been developed (by Cluckers,
Comte, Forey, and Loeser) in the p-adic context, and already applied by Chambert-
Loir and Loeser 2017.

One expects here further applications.

6. References

I have realized that giving references for all the topics that we have touched would
lead to a very long list, with some difficult choices and a heavy risk of leaving out
something relevant. So, I have decided to quote just two of my own publications on
these subjects, whose union contains a relevant quantity of references.
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(1) The book [1] on Unlikely Intersections was written about 10 years ago: much
work has appeared later, but the book contains an account of a substantial part
of the contents of these notes, and many references.

(2) The more recent survey paper [2] contains further descriptions and more
updated bibliography with respect to the former reference.
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