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Laplacians on infinite graphs: Discrete vs. continuous
Aleksey Kostenko and Noema Nicolussi

Abstract. There are two main notions of a Laplacian operator associated with graphs: dis-
crete graph Laplacians and continuous Laplacians on metric graphs (widely known as quantum
graphs). Both objects have a venerable history as they are related to several diverse branches of
mathematics and mathematical physics. The existing literature usually treats these two Lapla-
cian operators separately. In this overview, we will focus on the relationship between them
(spectral and parabolic properties). Our main conceptual message is that these two settings
should be regarded as complementary (rather than opposite) and exactly their interplay leads to
important further insight on both sides.

1. Introduction

Laplacian operators on graphs have a long history and enjoy deep connections to
several branches of mathematics and mathematical physics. There are two differ-
ent notions of Laplacians appearing in this context: the key features of (continuous)
Laplacians on metric graphs, which are also known as quantum graphs, include their
use as simplified models of complicated quantum systems (see, e.g., [4, 19,21, 56])
and the appearance of metric graphs in tropical and algebraic geometry, where they
serve as non-Archimedean analogues of Riemann surfaces (see, e.g., [1, 17]). The
subject of discrete Laplacians on graphs is even wider, and a partial overview of the
immense literature can be found in [2,9, 10,43, 70].

The study of both types of graph Laplacians is heavily influenced by the corre-
sponding investigations in the manifold setting (e.g., spectral geometry of manifolds).
In fact, one can also put Laplacians on manifolds, metric graphs, and discrete graphs
under the overarching umbrella of Dirichlet forms, which provides the systematic
framework for studying heat and diffusion processes. From this perspective, metric
graph Laplacians have much in common with Laplacians on manifolds since both can
be treated in the framework of strongly local Dirichlet forms. Moreover, the notion of
an intrinsic metric, first mentioned by E. B. Davies and later emphasized by M. Biroli,
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U. Mosco, and K.-T. Sturm (see, e.g., [65]), allows to directly transfer many important
results from manifolds to the abstract setting of strongly local Dirichlet forms (and
hence metric graph Laplacians). In contrast to this, discrete graph Laplacians are dif-
ference operators and hence provide examples of nonlocal operators (e.g., no Leibniz
rule). In particular, difficulties in analyzing random walks on graphs often stem from
exactly this fact. On the other hand, this area has seen a tremendous progress in the
last decade. In our opinion, the successful introduction and systematic use of the
notion of intrinsic metrics on graphs played (and continues to play!) a major role in
this breakthrough (see the fresh monograph [43]).

Despite a vast interest in both types of graph Laplacians, the existing litera-
ture usually treats them separately. In the present overview, we mainly focus on the
relationship between them and survey connections on different levels (spectral and
parabolic properties). This leads to a systematic way of connecting the settings and
several applications. Our main conceptual message is that discrete and continuous
graph Laplacians should be regarded as complementary (rather than opposite) and
exactly their interplay leads to important further insight on both sides. This relation-
ship can also be formulated in the language of intrinsic metrics. Indeed, a large class
of intrinsic metrics on discrete graphs is obtained as restrictions to vertices of intrinsic
metrics on (weighted) metric graphs. In particular, from this perspective metric graphs
indeed serve as a bridge between graphs and manifolds, a heuristic principle which
is often mentioned in context with graph Laplacians. Let us also mention that the
stochastic side of these connections, namely the approach of using Brownian motion
on metric graphs to study random walks on discrete graphs, has been employed sev-
eral times in the literature [3,22,23,33,36,67] (see also references therein).

Most of the results presented here are carefully explained in the recent monograph
[49], which also contains many other results not mentioned in this text.

2. Preliminaries

2.1. Graphs

Let us recall basic notions (we mainly follow the terminology in [16]). Let §; =(V, &)
be an undirected graph; that is, 'V is a finite or countably infinite set of vertices and &
is a finite or countably infinite set of edges. Two vertices u, v € 'V are called neigh-
bors, and we shall write u ~ v if there is an edge e, , € & connecting u and v. For
every v € 'V, we define &, as the set of edges incident to v. We stress that we allow
multigraphs; that is, we allow multiple edges (two vertices can be joined by several
edges) and loops (edges from a vertex to itself). Graphs without loops and multiple
edges are called simple.
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Example 2.1 (Cayley graphs). Let G be a finitely generated group and let S be a
generating set of G. We shall always assume that

o S issymmetric, S = S™! and finite, #S < oo,
o the identity element of G does not belong to S (this excludes loops).

The Cayley graph §c = €(G, S) of G w.r.t. S is the simple graph whose vertex set
coincides with G and two vertices x, y € G are neighbors if and only if xy~! € §.

Sometimes it is convenient to assign an orientation on §;: to each edge e € &
one assigns the pair (e,, e;) of its initial e, and terminal e, vertices. We shall denote
the corresponding oriented graph by gd = (V, I ), where & denotes the set of ori-
ented edges. Notice that for an oriented loop we do distinguish between its initial and
terminal vertices. Next, for every vertex v € V, set

&f ={(ce)e€le,=v}. & ={(e.e)e€le.=v}. (1)
and let év be the disjoint union of outgoing &, and incoming &, edges,
€, :=6Fue; =EFU&;, &F :={(+.,e)|ecEf) (2.2)
The (combinatorial) degree of v € V is
deg(v) := #(év) = #(é,}L) + #(é;) =#(&,) +#le € & | eisaloop). (2.3)

Notice that if &, contains no loops, then deg(v) = #(&,). The graph g, is called
locally finite if deg(v) < oo forallv € V.

A sequence of (unoriented) edges P = (€yg,uys Coj,v0s -« » Cupy_y,v,)> Where
ey, v; 4, connects the vertices v; and v; 41, is called a path of (combinatorial) length
n € Zso U {oo}. Notice that for simple graphs each path $# can be identified with
its sequence of vertices P = (vg)i_,- A graph G, is called connected if for any two
vertices there is a path connecting them.

We shall always make the following assumptions on the geometry of §;.

Hypothesis 2.2. §; is connected and locally finite.

Remark. We assume connectivity for convenience reasons only (one can always
consider each connected component of a graph separately). However, the assump-
tion that a graph is locally finite is indeed important in our considerations.

2.2. Metric graphs

Assigning each edge e € & a finite length |e| € (0, 00), we can naturally associate
with (§4,]-|) = (V, &,]|-|) ametric space §. First, we identify each edge e € & with
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a copy of the interval I, = [0, |e|], which also assigns an orientation on & upon iden-
tification of e, and e, with the left, respectively, right endpoint of Z,. The topological
space ¢ is then obtained by “glueing together” the ends of edges corresponding to
the same vertex v (in the sense of a topological quotient; see, e.g., [6, Chap. 3.2.2]).
The topology on § is metrizable by the length metric po—the distance between two
points x, y € § is defined as the arc length of the “shortest path” connecting them
(such a path does not necessarily exist and one needs to take the infimum over all
paths connecting x and y).

A metric graph is a (locally compact) metric space § arising from the above
construction for some collection (§;,|-|) = (V, &, |- |). More specifically, § is then
called the metric realization of (§4, |- |), and a pair (§, | - |) whose metric realization
coincides with § is called a model of §. For a thorough discussion of metric graphs
as topological and metric spaces we refer to [31, Chap. I].

Remark. Let us stress that a metric graph § equipped with the length metric ¢
(or with any other path metric) is a length space (see [6, Chap. 2.1] for definitions
and further details). Notice also that complete, locally compact length spaces are
geodesic; that is, every two points can be connected by a shortest path.

Clearly, different models may give rise to the same metric graph. Moreover, any
metric graph has infinitely many models (e.g., they can be constructed by subdivid-
ing edges using vertices of degree two). A model (V, &, | - |) is called simple if the
corresponding graph (V, €) is simple. In particular, every metric graph has a sim-
ple model, and this indicates that restricting to simple graphs, that is, assuming in
addition to Hypothesis 2.2 that §; has no loops or multiple edges, would not be a
restriction at all when dealing with metric graphs.

Remark. In most parts of our paper, we will consider a metric graph together with
a fixed choice of its model. In this situation, we will usually be slightly imprecise
and do not distinguish between these two objects. In particular, we will denote both
objects by the same letter § and write § = (V,&,|-|) or g = (84, - |).

Remark (Metric graph as a 1d manifold with singularities). Sometimes it is useful
to consider metric graphs as 1d manifolds with singularities. Since every point x € §
has a neighborhood isomorphic to a star-shaped set

&(deg(x).ry) :={z = re?@ik/dee™) | p a0 1), k=1,.. deg(x)}cC, (24

one may introduce the set of tangential directions Ty (§) at x as the set of unit vec-
tors e27ik/dee®) "} — 1 ... deg(x). Then all vertices v € V with deg(v) > 3 are
considered as branching points/singularities and vertices v € V with deg(v) = 1 as
boundary points. Notice that for every vertex v € V the set of tangential directions
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T, (§) can be identified with év. If there are no loop edges at the vertex v € V, then
T, (9) is identified with &, in this way.

3. Graph Laplacians

When speaking about graph Laplacians, one often considers one of the operators in
the next two examples.

Example 3.1 (Combinatorial Laplacian). For a simple graph §; = (V, &) satisfying
Hypothesis 2.2, the so-called combinatorial Laplacian is defined on C('V) by
(Leoms /) ®) = Y f(0) = f()

u~v

= deg(v) f(v) = Y_ fw). ve. (3.1)

u~v

Here C('V) is the set of complex-valued functions on a countable set V. Notice that
the second summand on the RHS,

(AN = fw). vew.

is nothing but the operator generated by the adjacency matrix of §;, which explains
the name of L omp. The combinatorial Laplacian plays a crucial role in many areas
of mathematics, physics, and engineering. In particular, the relationship between the
spectral properties of L.omp and various graph parameters is one of the core topics
within the field of Spectral Graph Theory (see [9, 10] for further details).

Example 3.2 (Normalized Laplacian). Assuming again that §; = ('V, &) is a simple
graph satisfying Hypothesis 2.2, consider another operator defined on C(V) by

(Lo £)(0) = Goais D 10 = f )

1
=10 = gy 2= /@ (32)

u~v

for every v € V. The second summand on the RHS,
1
M) = —= ) fu), ve,
deg(v) MZ;)

is the so-called Markov (averaging) operator. Notice that due to our assumptions on
G4, M is a stochastic matrix known as the transition matrix for the simple random
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walk on the graph. The normalized Laplacian serves as the generator of the simple
random walk on g, (see, e.g., [2,70]).

Remark. If the underlying graph §; is regular (deg = c is constant on V; for in-
stance, Cayley graphs are regular), then L omp = € * Lyorm = ¢ - I — 4. However, in
general these two Laplacians may have very different properties. For instance, Lo
generates a bounded operator in £2(V;deg) and Lcomp gives rise to a bounded operator
in £2('V) only if §; has bounded geometry, i.e., deg is bounded on 'V (see (3.6)).

The above two examples can be put into a much more general framework.
Namely, let 'V be a countable set. A function m:V — (0, co) defines a measure of full
support on V in an obvious way. A pair (V, m) is called a discrete measure space.
The set of square summable (w.r.t. m) functions

EWim) = {1 € CON 1S By = X 10 m0) <

veV
has a natural Hilbert space structure.
Suppose that b: V x V — [0, 00) satisfies the following conditions:
(1)  symmetry: b(u,v) = b(v, u) for each pair (u,v) € VxV,
(ii)  vanishing diagonal: b(v,v) = Oforallv € V,
(iii) locally finite: #{u € V | b(u,v) # 0} < oo forallv € V'

(iv) connected: for any u, v € 'V there is a finite collection (vg);_, C 'V such
that v = vg, v = v, and b(vg—1,vg) > Oforall k € {1,...,n}.
Following [41,43], b is called a (weighted) graph over 'V or over (V,m) if in addition
ameasure m of full support on V is given (b is also called an edge weight). To simplify

notation, we shall denote a graph b over (V, m) by (V,m; b).

Remark. To any graph b over 'V, we can naturally associate a simple combinatorial
graph 9. Namely, the vertex set of G is V and its edge set &}, is defined by calling
two vertices u, v € 'V neighbors, u ~ v, exactly when b(u, v) > 0. Clearly, §, =
(V, &p) is an undirected graph in the sense of Section 2.1. Let us stress, however, that
the constructed graph Gy is always simple.

The (formal) Laplacian L = L, ;, associated to a graph b over ('V,m) is given by

(Lf)(v) = % S b, w)(f(0) — f(w), veV. (3:3)
ue’y

'In fact, using the form approach, one can considerably relax this condition by replacing it
with the local summability: )", c+, b(u,v) < oo forallu € V.
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It acts on functions f € C(V) and this naturally leads to the maximal Laplacian h in
£2('V; m) defined by

h=_L | dom(h), dom(h) ={f € >(Vim) | Lf € £*(V:m)}. (3.4)

This operator is closed; however, if 'V is infinite, it is not symmetric in general (cf. [41,
Thm. 6]). Taking into account that b is locally finite, it is clear that C.(V) C dom(h),
where C. (V) is the space of compactly supported functions in C (V) (w.r.t. the dis-
crete topology on V). Therefore, we can introduce the minimal Laplacian h® as the
closure in £2('V; m) of the pre-minimal Laplacian

W =L } dom(t), dom(h) = C,(V). 3.5)

Then b’ € h® € h and (h')* = (h®)* = h. If h® = h, then h is self-adjoint as an
operator in the Hilbert space £2('V;m) (and h' is called essentially self-adjoint). The
problem of self-adjointness is a classical topic, which is of central importance in
quantum mechanics (see, e.g., [58, Chap. VIIL.11]). We shall return to this issue in
Section 8.1. Let us now only mention that the self-adjointness takes place whenever
L = L,, 5 gives rise to a bounded operator on £>('V; m). It is rather well known (see,
e.g., [13, Lem. 1], [40, Thm. 11], and [66, Rem. 1]) that the Laplacian L = L, p is
bounded on £2('V; m) if and only if the weighted degree function Deg: 'V — [0, 0o)
given by

Deg:v — ﬁ;b(u,v) (3.6)

is bounded on V. In this case, h® = h and ||Deg||oo < il e2(v.m) < 2[Degl|oo-

Remark. For the combinatorial Laplacian Lompb, we have Deg,,.. (v) = deg(v) and
hence L.omb is bounded exactly when §; has bounded geometry. For the normalized
Laplacian Lo, Deg,om(v) < 1 forall v € V and hence || Lyorm|l < 2.

There is another way to associate a self-adjoint operator in £2('V;m) with the
Laplacian L. With each graph b one can associate the energy form q: C(V) — [0, 0]
defined by

s =wlf=5 X bww|/e) - fa) 6

u,vevV

Functions f € C('V) such that q[ f] < oo are called finite energy functions. Clearly,”
Cc(V) belongs to the set D(q) of finite energy functions and (hf, )20 = g[f]

2 Actually, it suffices to assume that b satisfies the local summability condition; see [41,43].
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forall f € C.(V). If b is a graph over ('V, m), introduce the graph norm
2. 2
112 2= aLF1+ 1 1 pam (3.8)

forall f € D(a) NL2(V;m) =: dom(q). Clearly, dom(q) is the maximal domain of
definition of the form q in the Hilbert space £2('V;m); let us denote this form by q » .
Restricting further to compactly supported functions and then taking the graph norm
closure, we get another form:

ap =0 | dom(gp). dom(ap) = Cc(V) .
It turns out that both qp and g are Dirichlet forms (for definitions see [26]) and qp
is a regular Dirichlet form. Moreover, the converse is also true: “every (irreducible)
regular Dirichlet form over (V,m) arises as the energy form q.p for some (connected)
graph b over ('V,m)” (this claim is wrong as stated; however, to make it correct one
needs to replace locally finite by the local summability condition on » and also to
allow killing terms; see [41, Thm. 7]).

Remark. The notion of irreducibility for Dirichlet forms on graphs is closely con-
nected with the notion of connectivity. Recall that a graph b is called connected if
the corresponding graph & is connected. Then the regular Dirichlet form g p is irre-
ducible exactly when the underlying graph b is connected (e.g., [43, Chap. 1.4]).

Now using the representation theorems for quadratic forms (see, e.g., [38]), one
can associate in £2('V; m) the self-adjoint operators hp and hy, the so-called Dirich-
let and Neumann Laplacians over ('V, m), with, respectively, qp and g . Usually, it
is a rather nontrivial task to provide an explicit description of the operators hp and,
especially, hy.* However, the following abstract description always holds:

hp =h | dom(hp), dom(hp) = dom(h) N dom(qp), (3.9

which also implies that hp is the Friedrichs extension of the adjoint h® = h* to h.

4. Laplacians on metric graphs

4.1. Function spaces on metric graphs

Let § be a metric graph with a fixed model (V, &, | - |). Let also u: & — (0, 00)
be a weight function assigning a positive weight p(e) to each edge e € &. We shall
assume that edge weights are orientation independent and we set u(€) = u(e) for all

3In fact, to decide whether hyy and hp coincide for given b and m, or equivalently that
GN = qp,is already a highly nontrivial problem. This property is related to the uniqueness of
a Markovian extension. For further details we refer to [43,46], [49, Chap. 7.2].
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ée év, v € V. Notice that u can be identified with an edgewise constant function
on ¢ in an obvious way. Identifying every edge e € & with a copy of I, = [0, |e]],
we can introduce Lebesgue and Sobolev spaces on edges and also on §. First of all,
with the weight © we associate the measure y on § defined as the edgewise scaled
Lebesgue measure such that pu(dx) = p(e)dx, on every edge e € &. Thus we can
define the Hilbert space L?(§; i) of measurable functions f:§ — C which are
square integrable w.r.t. the measure p on §. Similarly, one defines the Banach spaces
LP(&; ) for p € [1,00]. In fact, if p € [1, 00), then

L2 = | = (et | fo € L7610, DAl <001

ecé

where

el g = [ o) @) = ) [ £l de.

If w(e) = 1, then we shall simply write L?(e). Next, the subspace of compactly
supported L? functions will be denoted by LZ (§; ). The space L (§; i) of locally
LP functions consists of all measurable functions f such that fg € LZ(&; 1) for all
g € C.(%). Notice that both L and LZ are independent of the weight /4.

For edgewise locally absolutely continuous functions on §, let us denote by V
the edgewise first derivative,

Vifr f. 4.1
Then for every edge e € &,
H'e)={f € AC(e) | Vf € L*(e)}, H?*(e)={f € H'(e)|Vf e H'(e))}

are the usual Sobolev spaces (upon the identification of e with I, = [0, |e|]), and
AC (e) is the space of absolutely continuous functions on e. Let us denote by

H! (6 \7V)and H2.(§ \ V) the spaces of measurable functions f on § such that
their edgewise restrictions belong to H !, respectively, H?; that is,

H G\ V) ={f € L}.(9) | fle € H(e) Ve € €}

for j € {1,2}. Clearly, for each f € H?2 (¢ \ V) the quantities

loc

fle)= lim f(r), fler)i= lim f(xe) (42)

and the normal derivatives

8f(el) = lim M’ 8f(et) ‘= lim f(xe) - f(er)

Xe—er X — ] Xe—er  |Xe — eq]

(4.3)
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are well defined for all e € &. We also need the notation

df (er).

geé;,
- (4.4)
df (er), €&

’

0z f(v) := {

for every v € V and € € év. In the case of a loopless graph, the above notation
simplifies since we can identify &, with &, forall v € V.

4.2. Kirchhoff Laplacians

Let & be a metric graph together with a fixed model (V,&,|-|) and u, v: & —
(0, 00) two edge weights on § (for this model). For every e € & consider the maximal
operator H max defined in L?(e; ) by

1 d (o) d
- —v(Xe)—,
p(xe) doxe “dux,

dom(Hemax) = {f € L?(e:p) | fivf' € AC(e). wef € L (e:p)}.  (4.6)

He,maxf = Teﬂ Te = 4.5)

Since p and v are constant on e, dom(H, max) coincides with the Sobolev space
H?(e). The maximal operator on § is then defined in L2(9; i) as

Hoox = €D He mas. (4.7)

ecé

Clearly, for each f € dom(H,.x) the quantities (4.2), (4.3), and hence (4.4) are well
defined for all e € &. Now, in order to reflect the underlying graph structure, we
impose at each vertex v € 'V the Kirchhoff boundary conditions

f is continuous at v,
> v@d:f(v) =0. (4-8)
éeé,

To motivate our definition, consider V as the differentiation operator on § acting
on functions which are edgewise locally absolutely continuous and also continuous
at the vertices. Notice that when considering V as an operator acting from L2(¢; )
to L2(€;v), its formal adjoint VT acting from L2(&;v) to L?(§; 1) acts edgewise as

Vi f —%(vf)’. (4.9)

Thus the weighted Laplacian A acting in L?(§; 1), written in the divergence form
A: f > —VT(V f), acts edgewise as the following divergence form Sturm—Liouville
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operator:
1
A f = —@f). (4.10)
m

The continuity assumption imposed on f results for A in a one-parameter family
of symmetric boundary conditions at the vertices (the so-called §-coupling). In the
present text, with the Laplacian A acting on § we shall always associate the Kirch-
hoff vertex conditions (4.8). In particular, imposing these boundary conditions on the
maximal domain yields the (maximal) Kirchhoff Laplacian:

H=—-A | dom(H),

] 4.11)
dom(H) = {f € dom(H,,.x) | f satisfies (4.8) on "V}.

4.3. Energy forms

Restricting further to compactly supported functions, we end up with the pre-minimal
operator

H = —-A }dom(H'), dom(H') = dom(H) N C.(§). 4.12)

Integrating by parts, one obtains for all f € dom(H’)
(H'f f2 = /g V()] *v(dx) = Q[f]. (4.13)

which implies that H' is a nonnegative symmetric operator in L2(§; ). We define
HC as the closure of H' in L2(§; u). It is standard to show that

(H)* = H. (4.14)

In particular, the equality H® = H holds if and only if H is self-adjoint (or, equiva-
lently, H’ is essentially self-adjoint).

With the form £ we associate two spaces: first, the Sobolev space H'!(9) =
H'(8; 1, v) is defined as the subspace of L?(&; i) consisting of continuous func-
tions, which are edgewise absolutely continuous and have finite energy [ f] < oo.
Equipping H ' (§) with the standard graph norm turns it into a Hilbert space. Also,
we define the space Hy (§) = H((9; 11, v) as the closure of compactly supported H !
functions,

HY = HY(§: . v) == HIG) o,

where H!(§) := H'(§) N C.(¥). Restricting Q to these spaces, we end up with
two closed forms in L2(¢; j1):

Qp=2 | Hy, Qny=9H. (4.15)
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According to the representation theorem, they give rise to two self-adjoint nonneg-
ative operators Hp and Hy in L2?(¢; u), the Dirichlet and Neumann Laplacians,
respectively. Notice also that Hp coincides with the Friedrichs extension of H':

dom(Hp) = dom(H) N Hy ().

Remark. Following the analogy with the Friedrichs extension, it might be tempting
to think that the domain of the Neumann Laplacian Hy is given by dom(H) N H!(9).
However, the operator defined on this domain has a different name—the Gaffney
Laplacian—and it is not symmetric in general. Moreover, this operator is not always
closed (see [48]).

5. Connections

One of the immediate ways to relate Laplacians on metric and discrete graphs is by
noticing a connection between their harmonic functions. Despite being elementary,
this observation lies at the core of many of our considerations and hence we briefly
sketch it here. Every harmonic function f* on a weighted metric graph (¢, i, v) (i.e.,
f satisfies A f = 0 and the Kirchhoff conditions (4.8)) must be edgewise affine. The
Kirchhoff conditions (4.8) imply that f is continuous and, moreover, satisfies

S 0@ = Y 2 - rw) =0

I = le]
eely eegy, ey

at each vertex v € V. This suggests to consider a discrete Laplacian (3.3) with edge
weights given by
Y iel, ece, ot UFV
b(u, v) — €&y ecly el ’ ’ (5.1)

, u=v.

Indeed, then for every A-harmonic function f on the weighted metric graph (¢, i, v),
its restriction to vertices f := f |y is an L-harmonic function; that is, Lf = 0. More-
over, the converse is also true. Phrased in a more formal way, the map

1y:C(§) — C(V)

fe fly,
when restricted further to the space of continuous, edgewise affine functions on §
becomes bijective and establishes a bijective correspondence between A-harmonic

and L-harmonic functions. This indicates a possible connection between the cor-
responding Laplacians on § and §; (this immediately connects, for instance, the

(5.2)
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corresponding Poisson and Martin boundaries). However, one also has to take into
account the measures u and m; that is, the vertex weight m should be chosen in a
way which connects the corresponding Hilbert spaces L2(§; 1) and £2('V; m). The
desired connection is given by the choice

m:v Z lelu(e), veV, (5.3)

ety

under the additional assumption that (&, w, v) has finite intrinsic size:

7€) = suple] | )
ecé V(e)

< 0. (5.4)

The quantity n(e) := |e|,/ “f((:)) is the intrinsic length of the edge e € & (see Sec-

tion 7.1 for further details).

Remark. In at least two special cases, the correspondence between the Kirchhoff
Laplacian for (¢, i, v) and the discrete Laplacian for the above weights b and m has
been known for a quite long time. First of all, in the case of so-called unweighted
equilateral metric graphs (i.e., u = v = 1 on § and |e| = 1 for all edges e), (3.3)
with the weights (5.1), (5.3) turns into the normalized Laplacian (3.2). Connections
between their spectral properties have been established in [53, 69] for finite metric
graphs and then extended in [5, 7, 18] to infinite metric graphs, and in fact one can
even prove some kind of local unitary equivalence [55]. Thus these results allow
to reduce the study of Laplacians on equilateral metric graphs to a widely studied
object—the normalized Laplacian Lo, the generator of the simple random walk
on g, (see [2,10,70]). The second well-studied case is a slight generalization of the
above setting: again, |e| = 1 for all edges e; however, & = v on § (these are named
cable systems in the work of Varopoulos [67]). The corresponding Laplacian L with
the coefficients (5.1), (5.3) is the generator of a discrete time random walk on §; with
the probability of jumping from v to u given by

pleu,)
ZwNU /’L (ev,w)
and 0 otherwise. There is a close connection between this random walk and the Brow-

nian motion on the cable system, and exactly this link has been exploited several times
in the literature (see [67] and some recent works [3,22,23]).

p(u,v) = when u ~ v,

If the underlying model of (&, u, v) has finite intrinsic size (5.4), it turns out that
the maximal Kirchhoff Laplacian H in L?(§; ) and h(§, 1, v), the corresponding
maximal Laplacian with the weights (5.1), (5.3), share many basic properties.



A. Kostenko and N. Nicolussi 308

Spectral properties.

e Self-adjoint uniqueness; see [20, Sec. 4] and [49, Chap. 3].

e Positive spectral gap; see [20, Sec. 4], [47], and [49, Chap. 3].

e Ultracontractivity estimates; see [20, Sec. 5.2], [49, Chap. 4.8], and [60].

Parabolic properties.

e Markovian uniqueness; see [49, Chap. 4.4].

e Recurrence/transience; see [31, Chap. 4] and [49, Chap. 4.5].

e Stochastic completeness; see [23,33,35,36], and [49, Chap. 4.6].

The above lists are by no means complete and we refer to the recent mono-
graph [49] for further details, results, and literature.

Remark. In fact, the idea to relate the properties of A and L by taking into account
the relationship between their kernels has its roots in the fundamental works of M. G.
Krein, M. 1. Vishik, and M. Sh. Birman in the 1950s. Indeed, it turns out that L serves
as a “boundary operator” for A and exactly this fact allows to connect basic spectral
properties of these two operators. However, in order to make all that precise one
needs to use the machinery of boundary triplets and corresponding Weyl functions,
a modern language of extension theory of symmetric operators in Hilbert spaces,
which can be seen as far-reaching development of the Birman—Krein—Vishik theory
(see [14,15,62]). First applications of this approach to finite and infinite metric graphs
can be traced back to the 2000s (see, e.g., [5,19,56]). One of its advantages is the fact
that the boundary triplets approach allows to treat metric graphs avoiding restrictive
assumptions on the edge lengths [20, 44].

6. Cable systems for graph Laplacians

The above considerations naturally lead to the following question: which graph
Laplacians may arise as “boundary operators” for a Kirchhoff Laplacian on a
weighted metric graph? Let us be more precise. Suppose a vertex set V is given.
Each graph Laplacian (3.3) is determined by the vertex weight m:V — (0, co) and
the edge weight function b: V x V — [0, oo) having the properties (i)—(iv) of Sec-
tion 3. With each such b we can associate a locally finite simple graph &, = ('V, &)
as described in Section 3.

Definition 6.1. A cable system for a graph b over ('V, m) is a model of a weighted
metric graph (g, i, v) having 'V as its vertex set and such that the functions defined
by (5.3) and (5.1) coincide with m and, respectively, b. If in addition the underlying
graph (V, &) of the model coincides with §, = (V, &), then the cable system is
called minimal.
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Thus the problem stated at the very beginning now can be formulated as follows:
Which locally finite graphs (V,m; b) have a (minimal) cable system? It turns out that
the existence of a minimal cable system is a nontrivial issue already in the case of a
path graph (see [49, Chap. 5.3]). Let us also present the following example.

Example 6.2 (Cable systems for Lcomp). Consider the combinatorial Laplacian Lcomp
on a simple, connected, locally finite graph §;, thatis, m =1 on V, b(u,v) = 1
exactly when u ~ v and u # v, and b(u, v) = O otherwise. It turns out that in this
case (V, m; b) admits a minimal cable system if and only if for each e € & there is a
disjoint cycle cover of €4 containing e in one of its cycles.*

However, we stress that a general cable system may have loops and multiple edges
and thus the simplicity assumption on the model of (&, u, v) (that is, the minimality
of a cable system for ('V, m; b)) might be too restrictive. Moreover, the underlying
combinatorial graph (V, &) of a cable system for b can always be obtained from the
simple graph §;, = (V, §p) by adding loops and multiple edges. The next result was
essentially proved in [23] (see also [49, Chap. 6.3]).

Theorem 6.3. Every locally finite graph (V, m; b) has a cable system.

After establishing existence of cable systems, the next natural question is their
uniqueness. In fact, every locally finite graph b over (V, m) has a large number of
cable systems. In particular, the construction in [23, p. 2107] is a special case of a
general construction using different metrizations of discrete graphs. These connec-
tions will be discussed in the next section.

7. Intrinsic metrics on graphs

7.1. Intrinsic metrics on metric graphs

We define the intrinsic metric ¢ of a weighted metric graph (¥, i, v) as the intrinsic
metric of its Dirichlet Laplacian Hp (in particular, note that Qp is a strongly local,
regular Dirichlet form). By [65, eq. (1.3)] (see also [24, Thm. 6.1]), 0jn 1S given by

Oine(X,y) = sup {f(x) = () | f € Dioc}. x.y €9,
where the function space f)loc is defined as

Dige = {f € H.(9) | v(x)|Vf(x)}2 < u(x) forae. x € }?}.

“https://mathoverflow.net/questions/59117/ (2011): Assigning positive edge weights to a
graph so that the weight incident to each vertex is 1.


https://mathoverflow.net/questions/59117/
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In fact, gin admits an explicit description: define the intrinsic weight

n= nu,v = \/g on g (71)

This weight gives rise to a new measure on § whose density w.r.t. the Lebesgue
measure is exactly n (we abuse the notation and denote with 1 both the edge weight
and the corresponding measure).

Recall that a path & in § is a continuous and piecewise injective map #:/ — §
defined on an interval / C R. If I = [a, b] is compact, we call & a path with starting
point x := & (a) and endpoint y := P (b), and its (intrinsic) length is defined as

| Py = ZL, n(dx), (7.2)
J

(@ :tj+1))

wherea =ty < --- < t, = b is any partition of I = [a, b] such that P is injective on
each interval (¢, 1) (clearly, ||, is well defined).

Lemma 7.1. The metric oy defined by

0q(x,y) :=inf|P|,, x,y€¥, (7.3)
P

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on (§, u,v) (w.rt. Qp); that is, Qiny = 0.

The proof is straightforward and can be found in, e.g., [31, Prop. 2.21] (see
also [45, Lem. 4.3]). Notice that in the case y = v, n coincides with the Lebesgue
measure and hence g, is nothing but the length metric g9 on § (see Section 2.2).

Remark. If a path &, consists of a single edge e € &, then

Pl =/en(dX) = |e] % ~ (@),

which connects giny = 05 on (§, u, v) with the intrinsic edge length (see (5.4)).

7.2. Intrinsic metrics on discrete graphs

The idea to use different metrics on graphs can be traced back at least to [12] and
versions of metrics adapted to weighted discrete graphs have appeared independently
in several works; see, e.g., [22,23,29,52]. In our exposition we follow [24,39].

For a connected graph b over (V, m), a symmetric function p: V x V — [0, 00)
such that p(u, v) >0 exactly when b(u, v) >0 is called a weight function for (V,m;b).
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Every weight function p generates a path metric 0, on 'V w.r.t. b via

0p(u,v) = inf > (k1. vi). (74)
k

=(v0Q;...,Up ) U=00, V=0Up

Here the infimum is taken over all paths in b connecting u and v, that is, all sequences
P = (v, ..., vy,) such that vy = u, v, = v and b(vr_;, vg) > O for all k. Since we
assume b to be locally finite, o, (1, v) > 0 whenever u # v.

Example 7.2 (Combinatorial distance). Let p: 'V x V — {0, 1} be given by

)L bu,v) #0,
pae.v) = {o, b(u,v) = 0. (75

Then the corresponding metric g, is nothing but the combinatorial distance gcomb
(a.k.a. the word metric in the context of Cayley graphs) on a graph b over V.

Definition 7.3. A metric o on 'V is called intrinsic w.r.t. (V, m; b) if

b, v)o(, v)* < m(v) (7.6)
2

uey

holds for all v € V. Similarly, a weight function p: V x V — [0, 0co) is called an
intrinsic weight for (V,m; b) if

Z bu,v)p(u,v)> <m), vevV.

uey
If p is an intrinsic weight, then the path metric o, is called strongly intrinsic.

For any given locally finite graph (V, m; b) an intrinsic metric always exists (see
[34, Ex. 2.1], [39], and also [11]).

Remark. It is straightforward to check that the combinatorial distance @¢omp 1S not
intrinsic for the combinatorial Laplacian Loy (72 = 1 on 'V in this case). On the other
hand, g¢ompb 1S €quivalent to an intrinsic path metric if and only if deg is bounded on
V; that is, the corresponding graph has bounded geometry. If sup, deg(v) = oo, then
Lcomp is unbounded in £2('V), and it turned out that gcomp is Not a suitable metric on
V to study the properties of Loy (in particular, this has led to certain controversies
in the past; see [42,71]).

7.3. Connections between discrete and continuous

Consider a weighted metric graph (&, , v) and its intrinsic metric g,. With each
model of (§, i, v) we can associate the vertex set 'V together with the vertex weight
m:V — (0, 00) and the graph b: V x V — [0, 00); see (5.3), (5.1). The next result
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shows that the intrinsic metric o, of (§, 1, V) gives rise to a particular intrinsic metric
for (V,m; b).

Lemma 7.4 ([49]). Fix a model of (§, ., v) having finite intrinsic size and define the
metric 0y on'V as a restriction of o, onto V x'V,

oy(u,v) :=0y(u,v), (M,v) €V V. (7.7

Then ov is an intrinsic metric for (V,m;b). Moreover, (§,0y) is complete as a metric
space exactly when ('V, gv) is complete.

Let us mention that Lemma 7.4 also has an interpretation in terms of quasi-
isometries (see, e.g., [2, Def. 1.12] and [54, Sec. 1.3]).

Definition 7.5. A map ¢: X; — X, between metric spaces (X1, 01) and (X», 02) is
called a quasi-isometry if there are constants @, R > 0, and b > 0 such that

a '(o1(x.y) = b) < 02(¢(x). (1)) < alo1(x.y) +b). (7.8)

for all x, y € X, and, moreover,

U Br(¢(x);02) = Xa. (7.9)

xeXq
Here and below Br(x;0) = {y € X | o(x,y) < R} is aball in a metric space (X, 0).

It turns out that the map 1y defined in Section 5 is closely related with a quasi-
isometry between weighted graphs and metric graphs.

Lemma 7.6. Assume the conditions of Lemma 7.4. Then the map
p0:V—>8, o) =v (7.10)
defines a quasi-isometry between the metric spaces (§, 0y) and (V, ov).

Proof. The proof is a straightforward check of (7.8) and (7.9) for the map ¢ with
a=1,b=0,and R = n*(&) (notice that the finite intrinsic size (5.4) is necessary
for the net property (7.9) to hold). ]

Remark. The notion of quasi-isometries was introduced in the works of M. Gromov
and M. Kanai in the 1980s. It is well known in context with Riemannian manifolds
and (combinatorial) graphs that roughly isometric spaces share many important prop-
erties: e.g., geometric properties (such as volume growth and isoperimetric inequali-
ties), parabolicity/transience, Liouville-type theorems for harmonic functions of finite
energy, and many more. However, we stress that most of these connections also
require additional (rather restrictive) conditions on the local geometry of the spaces.
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Some of our conclusions are reminiscent of this notion, but in fact our results go
beyond this framework. For instance, the strong/weak Liouville property (i.e., all pos-
itive/bounded harmonic functions are constant) is not preserved under bi-Lipschitz
maps in general [51]. However, the equivalence holds true for our setting (see [49,
Lem. 6.46]). In addition, we stress that we do not require any additional local con-
ditions (e.g., bounded geometry). On the other hand, our results connect only two
particular roughly isometric spaces (&, 0,) and (V, o) and not the whole equiva-
lence class of roughly isometric weighted graphs or weighted metric graphs.

By Lemma 7.4, each cable system having finite intrinsic size” gives rise to an
intrinsic metric oy for (V,m; b) using a simple restriction to vertices. It is natural
to ask which intrinsic metrics on graphs can be obtained as restrictions of intrinsic
metrics on weighted metric graphs. Due to the lack of space we omit the description
of these results, which roughly speaking state that to construct an intrinsic metric on
a graph b over (V, m) is almost equivalent to constructing a cable system. Let us
state only one result here (see [49, Lem. 6.27 and Thm. 6.30]).

Theorem 7.7 ([49]). Let b be a locally finite, connected graph over (V,m) equipped
with a strongly intrinsic path metric o. Assume also that o has finite jump size,

s(o0) = sup {Q(u, v) |u,veV, b(u,v) > O} < 00.

Then there exists a weighted metric graph (§, |1, v) together with a model such that
(5.4) is satisfied, m and b have the form (5.3) and (5.1), respectively, and, moreover,
o coincides with the induced path metric 0y = 0y|vxv.

Remark. It is hard to overestimate the role of intrinsic metrics in the progress
achieved for weighted graph Laplacians during the last decade. Surprisingly, the
above-described procedure to construct an intrinsic metric for (V, m; b) in fact pro-
vides a way to obtain all finite jump size intrinsic path metrics on (V,m; b). Moreover,
upon normalization assumptions on cable systems (e.g., restricting to weighted met-
ric graphs with equal weights, i.e., & = v, and also assuming no multiple edges and
that all loops have the same length 1), the correspondence in Theorem 7.7 becomes
in a certain sense bijective (see [49, Thm. 6.34]).

Let us mention that some versions of this result have been used earlier in [23,33].

8. Applications

Our main goal in this final section is to demonstrate the established connections
between discrete graph Laplacians and metric graph Laplacians. We will describe

>Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size immediately extends to cable systems.
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some applications to the self-adjointness problem and to the problem of recurrence.
For further results as well as applications (Markovian uniqueness, spectral gap esti-
mates, stochastic completeness, etc.) we refer to [49, Chap. 7-8].

8.1. Self-adjointness

The first mathematical problem arising in any quantum mechanical model is self-
adjointness (see, e.g., [58, Chap. VIII.11]); that is, usually a formal symmetric expres-
sion for the Hamiltonian has some natural domain of definition in a given Hilbert
space (e.g., pre-minimally defined Laplacians) and then one has to verify that it gives
rise to an (essentially) self-adjoint operator. Otherwise,® there are infinitely many
self-adjoint extensions (or restrictions in the maximally defined case) and one has to
determine the right one which is the observable.

There are several ways to introduce the notion of self-adjointness. For the Kirch-
hoff Laplacian as well as for the graph Laplacian (take into account the locally finite
assumption), the self-adjointness means that the minimal Laplacian coincides with
the maximal Laplacian in the corresponding L? space. On the other hand, consider-
ing the associated Schrodinger or wave equation, the self-adjointness actually means
its L2—solvability (see, e.g., [63, Sec. 1.1]). Perhaps, the most convenient way for us
would be to define the self-adjointness via solutions to the Helmholtz equation

Au = Au, AeR. 8.1)

Since A is nonpositive, the maximally defined operator is self-adjoint if and only if for
some (and hence for all) A > 0 equation (8.1) admits a unique solution u € L2(§; ),
which is clearly identically zero in this case (see, e.g., [57, Thm. X.26]). Recalling
that, in the context of both manifolds and graphs, functions satisfying (8.1) are called
A-harmonic, the self-adjoint uniqueness can be seen as some kind of a Liouville-
type property of ¢, and this indicates its close connections with the geometry of the
underlying metric space. We begin with the following result, which is widely known
in the context of Riemannian manifolds.®

Theorem 8.1. Let (9, t, v) be a weighted metric graph and let o, be the corre-
sponding intrinsic metric. If (§, 0y) is complete as a metric space, then the Kirchhoff
Laplacian H is self-adjoint.

0f course, one needs to check whether the corresponding symmetric operator has equal
deficiency indices, which is always the case for Laplacians or, more generally, for symmetric
operators which are bounded from below or from above.

7Under the positivity of the spectral gap, one can in fact replace A > 0 by A = 0 and hence
in this case one is led to harmonic functions.

8M. P. Gaffney [27] noticed the importance of completeness of the manifold in question
and the essential self-adjointness in this case was established later [59] (see also [8, 64]).
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In the context of metric graphs, the above result seems to be a folklore; however,
it is not an easy task to find its proof in the literature. In fact, the above considerations
enable us to provide a rather short one.

Proof. Assume that H is not self-adjoint. Since the minimal Kirchhoff Laplacian
H® = H* is nonnegative, this means that ker(H + I) # {0}; that is, there is 0 #
f € dom(H) such that A f = f (see [57, Thm. X.26]). Moreover, we can choose
such an f real-valued and hence | | is subharmonic. Moreover, | f| € L2(§; )
since f € dom(H). On the other hand, if (¥, 0,) is complete as a metric space, then
applying Yau’s L?-Liouville theorem [65, Cor. 1(a)], we conclude that f = 0. This
contradiction completes the proof. |

Remark. A few remarks are in order.

(i)  Simple examples (e.g., § is a path graph) show that the completeness w.r.t.
0y 1s not necessary.

(i) By the Hopf-Rinow theorem (a metric graph § equipped with g, is a
length space), completeness of (§, 0;) is equivalent to bounded compact-
ness (compactness of distance balls), as well as to geodesic completeness.

As an immediate corollary of Theorem 8.1 and the above discussed connections,
we obtain a version of the Gaffney theorem for graph Laplacians.

Theorem 8.2 ([34]). Let b be a locally finite graph over (V,m) and let o be an
intrinsic metric which generates the discrete topology on V. If (V, 0) is complete as
a metric space, then h° is self-adjoint and h® = h.

Proof. Let us only sketch the proof (missing details can be found in [49, Chap. 7.1]).
By Theorem 7.7, there is a cable system for (V, m; b). Moreover, the correspond-
ing Kirchhoff Laplacian H is self-adjoint if and only if so is h (see [20, Sec. 4],
[49, Thm. 3.1 (1)]). Taking into account Lemma 7.4 and applying Theorem 8.1, we
complete the proof. ]

Remark. A few remarks are in order.
(i)  Theorem 8.2 was first established in [34, Thm. 2].

(i1)) Both Theorem 8.1 and Theorem 8.2 are not optimal. For instance, Theo-
rem 8.2 does not imply the self-adjointness of the combinatorial Laplacian
Lcomp, When it is unbounded (see [37], [41, Thm. 6]). However, Theo-
rems 8.1 and 8.2 enjoy a certain stability property under additive pertur-
bations, which preserve semiboundedness ([30, Thm. 2.16], [45]).

(iii) We refer for further results and details to [45], [49, Chap. 7.1], and [61].
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8.2. Recurrence and transience

Recurrence of a random walk/Brownian motion means that a particle returns to its ini-
tial position infinitely often (see, e.g., [26] for a formal definition). In fact, recurrence
appears (quite often under different names) in many different areas of mathematics
and mathematical physics and enjoys deep connections to various important problems
(e.g., the type problem for simply connected Riemann surfaces).

The famous theorem of G. Pélya states that the simple random walk on Z¢ is
recurrent if and only if either d = 1 or d = 2. Intuitively, one may explain recurrence
of a random walk/Brownian motion as insufficiency of volume in the state space
(volume of a ball of radius R in Z% or R? grows faster as R — oo for larger d). The
qualitative form of this heuristic statement in the manifold context has a venerable
history (we refer to the excellent exposition of A. Grigor’yan [28] for further details),
and in the case of complete Riemannian manifolds, it was proved in the 1980s inde-
pendently by L. Karp, N. Th. Varopoulos, and A. Grigor’yan (see [28, Thm. 7.3])

that
o rdr
_—_—nmm = m
vol (Br(x))

guarantees recurrence. Moreover, this condition is close to be necessary. This result
was extended to strongly local Dirichlet forms by K.-T. Sturm [65] and hence it also
holds in the setting of weighted metric graphs. Again, using the obtained connections
between metric graph and weighted graph Laplacians, we can proceed as in the pre-
vious subsection and establish the corresponding volume growth test for weighted
graph Laplacians, which was originally obtained by B. Hua and M. Keller [32]. Due
to the lack of space we only refer to [49, Chap. 7.4] for further details.

We would like to finish this article by reflecting on another interesting topic. Per-
haps, the most studied class of graphs are Cayley graphs of finitely generated groups
(Example 2.1). Random walks on groups is a classical and very rich subject (the liter-
ature is enormous and we only refer to the classic text [70]). Recall that a group G is
called recurrent if the simple random walk on its Cayley graph €(G, §) is recurrent
for some (and hence for all) S. The classification of recurrent groups was accom-
plished in the 1980s by proving the famous Kesten conjecture. It is a combination of
two seminal theorems—relationship between decay of return probabilities and growth
in groups established by N. Th. Varopoulos and the characterization of groups of
polynomial growth by M. Gromov (see, e.g., [68, Chap. VI.6], [70, Thm. 3.24]).

Theorem 8.3 (N. Th. Varopoulos). G is recurrent if and only if G contains a finite
index subgroup isomorphic either to 7, or to 7.

It turns out that the problem of recurrence on weighted metric graphs can be
reduced to the study of recurrence of random walks on groups (see [49, Thm. 7.49]).
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Let (9c, i, v) be a weighted metric graph where §¢ = €(G, S) is a Cayley graph of
a finitely generated group G. Also, let Hp be the corresponding Dirichlet Laplacian.
Define

Vl(e”"’l) ulves
by (u,v) = euvl " u,veG. (8.2)
! 0, u Ly ¢S,

Theorem 8.4. The heat semigroup ("D, ¢ is recurrent if and only if the discrete
time random walk on G with transition probabilities

by (u,v)

v s = P(X = X, = = =,
pv(u,v) (Xn+1 v | Xy =u) deS by, ug)

u,v € G, (8.3)

is recurrent.
Combining Theorem 8.4 with Theorem 8.3, we arrive at the following result.

Corollary 8.5. Assume the conditions of Theorem 8.4.

(i)  If G contains a finite index subgroup isomorphic either to 7. or to 7.> and
the edge weight v satisfies

sup —— < 00, (8.4)

then the heat semigroup (e 7"HD),_ ¢ is recurrent.

(i) IfGis transient (i.e., G does not contain a finite index subgroup isomorphic
either to Z or to Z? ) and the edge weight v satisfies

Y
inf —= > 0, (8.5)

then the heat semigroup (e ""MD),. is transient.

In fact, the above result has numerous consequences and actually can be im-
proved. Let us finish by its applications to ultracontractivity estimates. To simplify
the exposition we restrict now to unweighted metric graphs.

Theorem 8.6 ([20,49]). Assume the conditions of Theorem 8.4 and let also p=v = 1.
Suppose that G is not recurrent and the edge lengths satisfy

sup |e| < oo. (8.6)

ecé

Then (e~! HD)t>0 is ultracontractive and, moreover,
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(i) ifya(n) ~n" asn — oo with some N € Z>3, then’
le™ 2| Lo < Cnt ™2, 1> 0; (8.7)

(i) if G is not virtually nilpotent (i.e., y has superpolynomial growth'®), then
(8.7) holds true for all N > 2.

Remark. Notice that applying Theorems 1.2 and 1.3 of [50] to the Dirichlet Lapla-
cian Hp and then using Theorem 8.6, we arrive at the Cwikel-Lieb—Rozenblum
estimates for additive perturbations, that is, for Schrédinger operators —A + V(x).
It is also well known (see [25]) that ultracontractivity estimates and Sobolev-type
inequalities lead to Lieb-Thirring bounds (©, estimates on the negative spectra);
however, we are not going to pursue this goal here. For further details and historical
remarks we refer to [49, Chap. 8.2].
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