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Some recent developments on the geometry of random
spherical eigenfunctions

Domenico Marinucci

Abstract. A lot of efforts have been devoted in the last decade to the investigation of the
high-frequency behaviour of geometric functionals for the excursion sets of random spheri-
cal harmonics, i.e., Gaussian eigenfunctions for the spherical Laplacian Ag. In this survey, we
shall review some of these results, with particular reference to the asymptotic behaviour of vari-
ances, phase transitions in the nodal case (Berry’s cancellation phenomenon), the distribution
of the fluctuations around the expected values, and the asymptotic correlation among different
functionals. We shall also discuss some connections with the Gaussian kinematic formula, with
Wiener chaos expansions, and with recent developments in the derivation of quantitative central
limit theorems (the so-called Stein—Malliavin approach).

1. Introduction

Spherical eigenfunctions are defined as the solutions of the Helmholtz equation
Asafi+rfe =0, fi:S*—=>R, £=1.2,...,

where Ago is the spherical Laplacian and {—Ay = —£({ + 1)}¢=1»,... is the set of
its eigenvalues. A random structure can be constructed easily by assuming that the
eigenfunctions { f¢(-)} follow a Gaussian isotropic random process on S2. More pre-
cisely, for each x € S?, we take fe(x) to be a Gaussian random variable defined on a
suitable probability space {2, J, P}; without loss of generality, we assume { fy(-)} to
have mean zero, unit variance, and covariance function given by

E[ fe(x) fe(»)] = Pe({x. ). x.y €S>
1 4t
W!W(tz —1), tel-11],

where { P;(-)} denotes the family of Legendre polynomials: this is the only covariance

Py(t) =
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structure to ensure that the random eigenfunctions are isotropic, that is, invariant in
law with respect to the action of the group of rotations SO(3). Random spherical
eigenfunctions, also known as random spherical harmonics, arise in a huge number
of applications, especially in connection with mathematical physics: in particular,
their role in quantum chaos has drawn strong interest in the last two decades, starting
from the seminal papers [7, 8,43, 61]; also, they represent the Fourier components of
isotropic spherical random fields, whose analysis has an extremely important role in
cosmology (see, e.g., [35]). Of course, random spherical harmonics are just a spe-
cial case of a much richer literature on random eigenfunctions on general manifolds;
special interest has been drawn for instance by arithmetic random waves, i.e., ran-
dom eigenfunctions on the torus T 4 which were introduced in [52] and then studied,
among others, in [9, 10, 19,26,27,33,36,53, 54]; see also [17,55] and the references
therein. Although some of the results that we shall discuss have related counterparts
on the torus, on the higher-dimensional spheres, on more general compact manifolds,
and in the Euclidean case, we will stick mainly to S? for brevity and simplicity.

A lot of efforts have been spent in the last decade to characterize the geometry of
the excursion sets of random spherical harmonics, which are defined as

Au(f:S?) :={x €S?: fy(x) =u}, ueR. (1.1)

A classical tool for the investigation of these sets is given by the so-called Lipschitz—
Killing curvatures (or, equivalently, by Minkowski functionals; see [1]), which in
dimension 2 correspond to the Euler—Poincaré characteristic, (half of) the bound-
ary length and the excursion area. A general expression for their expected values
(covering much more general Gaussian fields than random eigenfunctions) is given
by the Gaussian kinematic formula (see [1,58]). Over the last decade, more refined
characterizations for random spherical harmonics have been obtained, including neat
analytic expressions (in the high-energy limit A, — co) for the fluctuations around
their expected values and the correlation among these different functionals; much of
the literature has been concerned with the nodal case, corresponding to u = 0, to
which we shall devote special attention. In this survey, we shall review some of these
results and present some open issues for future research.

2. The Gaussian kinematic formula for Lipschitz—Killing curvatures
on excursions sets
2.1. The Kac—Rice formula and the expectation metatheorem

The first modern attempt to investigate the geometry of random processes and fields
can probably be traced back to the groundbreaking work by Kac (1943) and Rice
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(1945) [25,49] on the zeroes of stochastic processes. Their pioneering argument can
be introduced as follows: let f(-,-) : 2 x R — R be a continuous stochastic process
satisfying regularity conditions; our aim is to derive the expected cardinality of its
zero set in some finite interval (say [0, T']), i.e., the mean of

No([0,T]) := Card {r € [0, T] : f(¢) = 0}.
Now assume that { £(-)} is C! with probability one, such that £(0), f(T) # 0 and
{t:f)=0, f'(1) =0} = 2;

then the following result (Kac’s counting lemma) can be established easily (see [3,
p. 69]):

T
No(0.7) = tim [ Seo(F@)l 7o) ar

where as usual 14 denotes the indicator function of the set A. With further efforts and
assuming that all exchanges of integrals and limits can be justified, one obtains also

T
E[No(0.T1)] = [0 E[|/(0)] | £1) = 0] pye (©) d. @.1)

where E[:|-] denotes as usual the conditional expected value and py(-) the marginal
density of f(-), which is assumed to exist and admit enough regularity conditions (in
the overwhelming majority of the literature and in this whole survey, f(-) will indeed
be assumed to be Gaussian); (2.1) is the simplest example of the Kac—Rice formula.

The basic idea behind the Kac—Rice approach has proved to be extremely fruitful,
leading to an enormous amount of applications and generalizations. In particular, in
the research monographs [1, 3], (slightly different) versions of a general expectation
metatheorem (in the terminology of [1]) are proved. More precisely, let us take M to
be a compact, d-dimensional oriented C! manifold with a C! Riemannian metric g.
Assume that f : M — R4 and h : M — R¥ are vector-valued random fields which
satisfy suitable regularity conditions (see [1,3] for more details and [56] for some very
recent developments). Let B C R¥ be a subset with boundary dimension smaller than
or equal to kK — 1; then define

Nu(f,h,M,B) ={t e M : f(t) =u, h(t) € B}, ueRY.

The following extension of the Kac—Rice formula holds.

Theorem 2.1 ([1,3]). It holds that

E[Nu(f.h. M. B)] = /ME[Idet{Vf(l)HHB(h(I)) | f(t) = u]pray(u)og (dr),
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where as before 1 g (-) denotes the indicator function, V f(-) the (covariant) gradient
of f(), and og(:) the volume form induced by the metric g.

Remark. By taking k = 1, f := Vh the gradient of & (and hence V f = V2 its
Hessian) and u = (0, ..., 0), Theorem 2.1 yields the expected number of critical
points with values in B for the scalar random field /. Simple modifications similarly
yield the expected values for maxima, minima, and saddle points.

The previous results have all been restricted to vector-valued random fields whose
image space has co-dimension zero. However, the results can be similarly generalized
to strictly positive co-dimensions. Indeed, under the same setting as before assume
instead that f : M — R4 is such that d’ < d; then VX is a d x d’ rectangular
matrix, and the following generalization of the expectation metatheorem holds (see

[1,3D.
Theorem 2.2 ([1,3]). It holds that
E[Hu(f.h. M, B)]
= [ Eldec{(v )" (Vr@))]

where Hy,(f, h, M, B) denotes the d — d' dimensional Hausdorff measure of the set
{teM: f(t) =uandh(t) € B}.

1/2

Ig(h) | f(1) = u]psay(u)og(dr),

Example 2.3. Let M = S? be the standard unit-dimensional sphere in R3, let f :
S? x © — R be a random field, and let

Len( f) := Ho(f.S?,0) = meas {t eS?: f(t) = O},

i.e., the length of the nodal lines of f(-). Then
E[Len(f)] = /SzEH det {(V L) (VF@O)}|'? | £() = 0] prry (0o (dr)
= /ng[HVf(f)H | £(t) = 0] proy(0)a (di),

where || - || denotes Euclidean norm and o (-) the standard Lebesgue measure on the
unit sphere. In particular, assuming that the law of f(-) is isotropic (that is, invariant
with respect to the action of the group of rotations SO(3)), we get

E[Len(f)] = 4z xE[[| VO] | f() = 0] pry (0).
2.2. Intrinsic volumes and Lipschitz—Killing curvatures

In the sequel, as mentioned earlier we will restrict our attention only to Gaussian pro-
cesses, which have driven the vast majority of research in this area. We need now to
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introduce the Gaussian kinematic formula (see [1, 58]); to this aim, let us first recall
the notion of Lipschitz—Killing curvatures. In the simplest setting of convex subsets
of the Euclidean space R4, Lipschitz—Killing curvatures (also known as intrinsic vol-
umes) can be defined implicitly by means of Steiner’s tube formula; to recall the latter,
for any convex d-dimensional set A C R? define the Tube of radius p around A as

Tube(A4, p) := {x eRY :d(x,A) < p}, d(x,A) = inf d(x,y),
yeA

where d (-, -) is the standard Euclidean distance. Then the following expansion holds:

d

jta{ Tube(4, p)} = Z wa—jp? I L;(A),
j=0

where £;(A) denotes the jth Lipschitz—Killing curvatures, uz(-) denotes the d-
dimensional Lebesgue measure, and

wj =

is the volume of the j-dimensional unit ball (wg = 1, w; =2, w2 = 7, w3 = %n).
Lipschitz—Killing curvatures can be shown to be additive and to scale with dimen-
sionality, in the sense that

L;(AA) = A £ (A) VA >0,
Lj(A1 U Az) = £ (A1) + £ (A2) — L (A1 N Az).

For j = d, it is immediately seen that &£;(A) is just the Hausdorff measure of A,
whereas for j = 0 we obtain £¢(A4) = ¢(A), the (integer-valued) Euler—Poincaré
characteristic of A. A more general definition of &£;(-) can be given for basic com-
plexes (i.e., disjoint union of complex sets), for which the following characterization
(due to Hadwiger, see [1]) holds:

Li(A) = 2d (d) /g P(ANgE,_;)u(dg), (2.2)

wd_ja)j Vi

where §; = R? x O(n) is the group of rigid motions, E;_ jisany d — j dimensional
affine subspace, and the volume form p(dg) is normalized so that

forall x e RY, A C R?, u{g:gx € Ay = #H(A),

where as before J# (-) denotes the Hausdorff measure. For instance, for 4 = S? it is
well known and easy to check that (2.2) gives

Lo(SH) =2, Li(S*) =0, £2(S?) =4z,
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which represent, respectively, the Euler—Poincaré characteristic, (half) the boundary
length, and the area of the 2-dimensional unit sphere.

2.3. The Gaussian kinematic formula

From now on, we shall restrict our attention to Gaussian processes f : M — R, which
we shall take to be zero-mean and isotropic, meaning as usual that E[ f(¢)] = 0 and
f(gt) 4 f(@) forallt € M Cc R and g € SO(d); more explicitly, the law of the
field f(-) will always be taken to be invariant to rotations. In order to present the
Gaussian kinematic formula, let us first introduce a Riemannian structure governed
by the covariance function of the field { f(-)}; more precisely, consider the metric
induced on the tangent plan 7; M by the following inner product [1, p. 305]:

¢/ (X:.Y):=E[X,f-Yif]. XY €T M.

This metric takes a particular simple form in case the field f(-) is isotropic; in these
circumstances, gf (-, -) is simply the standard Euclidean metric, rescaled by a factor
that corresponds to the square root of (minus) the derivative of the covariance density
at the origin.

Example 2.4. Consider the random spherical eigenfunction satisfying
Afe=—Xfe, fi:S*—=>R, £=0,1,2,...,

with

0+ 1)

E[fe()] =0, E[fe(x1) fe(x2)] = Pe({x1,x2)),  P{(1) = - >

Then the induced inner product is simply

L0+ 1
gl (x,y) = (T+)(X7Y>R3§

this change of metric can of course be realized by transforming S? into

Si/m = /Ag/2S2.

Let us now write cf]f (A) for the jth Lipschitz—Killing curvatures of the set A
under the metric induced by the zero-mean Gaussian field f; for instance, in the case
of spherical random eigenfunctions we get immediately

)
2l(s?) = xo(si/m) =2, 2f4s» =0 £I(s?) = 4n7‘5.
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For further notation, as in [1] we shall write

1 ;
pj(u) = WCXP(—uz/z)HJ‘—l(”) j=z1

2
pou) = 1 — du) = / o(t)dt.
1/2

where as usual ¢(¢) = (27)~ /2 exp(—12/2) denotes the standard Gaussian density
and we introduced the Hermite polynomials

2 dk 2
Hi(u) = (— 1)kexp(” )d e p(—”?), k=0,1,2,....ueR; (23)

for instance Ho(u) = 1, Hy(u) = u, Ho(u) = u?> —1,.... Finally, we shall introduce

the flag coefficients
d d wyq
= — k=0,1,...,d. 2.4
[k} (k) OkWd—k ’ -

We are now in the position to state the following.

Theorem 2.5 (Gaussian kinematic formula, [1, Theorem 13.4.1] and [58]). Under
regularity conditions, forall j = 0,1, ...,n one has that

—Jj
]E[:ﬁjf(Au(f; M))] Z [k + ]] pk(u)ikﬂ (M). 2.5)

Before we proceed with some examples, it is worth discussing formula (2.5). We
are evaluating the expected value of a complex geometric functional on a complicated
excursion set, in very general circumstances (under minimal regularity conditions on
the field and on the manifold on which it is defined). It is clear that the expected value
should depend on the manifold, on the threshold level, and on the field one considers,
and one may expect these three factors to be intertwined in a complicated manner.
On the contrary, formula (2.5) shows that their role is completely decoupled; more
precisely

 the threshold u enters the formula merely through the functions p; (1) which are
very simple and fully universal (i.e., they do not depend neither on the field nor
on the manifold);

e on the left-hand side Lipschitz—Killing curvatures appear, but they are computed
on the original manifold, not on the excursion sets, and they are therefore again
extremely simple to compute;
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e the role of the field f is confined to the new metric gf (-, -) that it induces and
under which the Lipschitz—Killing curvatures are computed on both sides; under
the (standard) assumption of isotropy, this implies only a rescaling of the manifold
by means of a factor depending only on the derivative of the covariance function
at the origin.

Example 2.6. Let us consider a zero-mean isotropic Gaussian field f defined on S¢
(the unit sphere in R4*1): its covariance function can be written as

o0

E[/() f(2)] = 3 22 CGyg (1. 3%2).

S
€0d+1

where 55411 = (d + 1)wg4 is the surface measure of s, Gy, (+) denotes the nor-
malized Gegenbauer polynomials of order ¢, whereas

2z+d—1(z+d—2) 2

ngq = 7 (1 NME , asl — oo,

is the dimension of the eigenspace corresponding to the {th eigenvalue Ay :=
£(£ + d — 1); here {Cy} is a sequence of non-negative weights which represent the so-
called angular power spectrum of the random field. The derivative of the covariance
function at the origin is

o0

=Y taly

d+1

Recall that the Lipschitz—Killing curvatures of the manifold S? := AS% are given by

£,;(As) =2 (‘f’) e

J /) Sd+1—j

for d — j even, and O otherwise, see [1, p. 179]. Then the Gaussian kinematic formula
reads

—J
E[‘f/f(Au(f;Sd) = Z (u)[ ]$k+j(ﬁgd)

&.?v'

- Z k(u)[ ]xk+,-(sd)u("+f’/2.

Example 2.7. As a special case of the previous example, assume that f = f; is
actually a unit variance random eigenfunction on S? corresponding to the eigenvalue
—£(l+1),£=0,1,2,....
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Then the Gaussian kinematic formula gives

E[£] (Au(f1:S%)] = E[Lo(Au(f; SZ))]

ags
=2{1 - o)} + —u¢( Y(4m) ——— ( + 1)
1a¢
E[£{* (4u(f6:87)] = p1 () m iZ(SZ){ ( ;1)}
so that 5 1/2
E[£1(44(fi:5%)] = ﬂexp(— %){—Z@; 1)} |
and finally

E[£2(Au(fe:SP)] = {1 — @(u)} £2(S?) = {1 — D(u) }47.

Example 2.8. In the special case of the nodal volume &£4_1(Ag (S%), fe¢) of random
eigenfunctions, i.e., half the Hausdorff measure of the zero-set of the eigenfunction,
the Gaussian kinematic formula gives

7 4 A d-1)/2 J
B[], (Au(f:5%)] = (7) B[ £4-1 (Au(fi:5)]
dj/2
L)

and £4(S?) = (d + 1)wg4 1, we have

= Pl(u)

n/ /2
r'(4$+1)

so that, recalling w; =

2 1/2
E[:ed_l(Au(ﬁ;Sd))]ziexp(—”—) dod o (Sd)()%)

2 2 Jwiwg—1 d

w2\ 7d/2 Ao 1/2
= exp ( — 7) y, (—) . (2.6)
r(g)\d

For u = 0 equation (2.6) was derived for instance in [6] (see [61]) and it is con-
sistent with a celebrated conjecture in [63], which states that for C*° manifolds the
nodal volume of any eigenfunction corresponding to the eigenvalue £ should belong
to the interval [c; VE,coE ] for some constants 0 < ¢; < ¢ < o0o. The conjecture
was settled for real analytic manifolds in [22]; for smooth manifolds the lower bound
was established much more recently; see [29—31] while the upper bound is addressed
in [32]. As a consequence of the results in the next two sections below in the case of
the sphere in a probabilistic sense, the upper and lower constants can be taken nearly
coincident, in the limit of diverging eigenvalues.
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3. Wiener chaos expansions, variances, and correlations

In view of the results detailed in Section 2, the question related to the expectation of
intrinsic volumes in the case of Gaussian fields can be considered completely settled.
The next step of interest is the computation of the corresponding variances, and the
asymptotic laws of fluctuations around the expected values, in the high-frequency
regime. The first rigorous results in this area can be traced back to a seminal paper
by Igor Wigman [61], where the variance of the nodal length (i.e., Len( f, S?) :=
2&1(Ao( f¢, S?))) for random spherical harmonics in dimension 2 is computed and
shown to be asymptotic to

log ¢
32
We shall start instead from the derivation of variances and central limit theorems for
Lipschitz—Killing curvatures of excursion sets at u # 0, although these results were
actually obtained more recently than (3.1).

Let us recall first the notion of Wiener chaos expansions. In the simplest setting,
consider Y = G(Z), i.e., the transform of a zero mean, unit variance Gaussian random
variable Z, such that E[G(Z)?] < oo; it is well known that the following expansion
holds, in the L2(Q) sense:

Var [ Len( f, S?)] = + Opsoo(1). (3.1

o0

Jqy(G
G(Z)=)_ qq(, 'y(2). (32)

q=0

where {H;(-)}4=0,1,2,... denotes the family of Hermite polynomials that we intro-
duced earlier in (2.3), and J,;(G) are projection coefficients given by J,(G) :=
E[G(Z)H4(Z)] (see, e.g., [24,46]). The summands in (3.2) are orthogonal, because
when evaluated on pairs of standard Gaussian variables Z;, Z,, Hermite polynomials
enjoy a very simple formula for the computation of covariances:

E[Hy, (Z1)Hyy(Z2)] = 8821 {E[Z1 Z2)} "' (3.3)

1

where 521]2 denotes the Kronecker delta. Equation (3.3) is just a special case of the cel-
ebrated diagram (or Wick’s) formula; see [46] for much more discussion and details.
We thus have immediately

_ q
Var{G(Z)} = Z o
q=0
More generally, let {Zy, ..., Z;, ...} be any array of independent standard Gaussian

variables, and consider elements of the form

Hy (Zy)---Hy,(Zp), q1+-+4qp =4q:
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the linear span (in the L2(2) sense) of these random variables is usually written as €y,
(denoted by the gth-order Wiener chaos; see again [46]) and we have the orthogonal

decomposition
o0
L*Q) =e,.
q=0

3.1. Wiener chaos expansions for random eigenfunctions

Let us now explain how these techniques can be pivotal for the investigation of fluc-
tuations of geometric functionals. We start from the simplest case, the excursion
volume/area for the 2-dimensional sphere, which we can write as

L2 i 5) = [Ty (fio0) d

I[u,00) (-) denoting the indicator function of the semi-interval [u, c0). It is not difficult
to show that

Jq (H[u,oo) (')) = ]E[]I[u,oo) (2)H, (Z)]
= [ B oz = 1w,
the last result following by integration by parts, under the convention that
(—DH 1)) :=1—D(u).

In view of (3.2), we thus have [40,41]

£2(Au(fi:S?)) = / Z( DY Hy 1 ()¢ () ———— (f‘( )
Z( D s (00,
where
iy = /S Ha(fu(w) dx
as a consequence, we have also
Var {£(Au(f:S?))} Z HZ  (w)¢>(u) Varhegh. (34

= ')2

The crucial observation to be drawn at this stage is that the variances of the com-
ponents {4} exhibit a form of phase transition with respect to their order g, in the
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high-frequency/high-energy limit £ — oco. In particular, a simple application of the
diagram formula (3.3), isotropy, and a change of variable yield

Varlheg) = [ B{H (i) Hy(fi3)} dx dy
= 8n2q! /ﬂ {Pg(cos 0)}q sin 0 do;
0

for instance, for ¢ = 2 we obtain exactly

g
Var{hg,,} = 2 x 8712/0 sz(cos 0)sinf db = 167‘[22£ T
Given two sequences of positive numbers a,, b,, we shall write a,, ~ b, when we
have that a,, /b, — ¢ as n — oo, ¢ > 0. By means of the so-called Hilb asymptotics
[57,61], it is possible to show that, as £ — oo [42],

! forg =2
1 tr
Var{hy.q} ~ 7% | Wl// dy ~ { £ 2logl forqg =4
{2 forg =3,5,....

Note that hg;; =0 forall £ =1,2,..., whereas the term for ¢ = 3 requires an ad-
hoc argument given in [34,40]. As a consequence, the dominant terms in the variance
expansion correspond to ¢ = 2 when H; (1) is non-zero, i.e., for u # 0; for u = 0 the
even-order chaoses vanish and all the remaining terms contribute by the same order
of magnitude with respect to £. In conclusion, we have that

L2 (Au(fe; Sz)) - E[cfz(Au(fe§ Sz))]
= %Hl w)p(u)her + Op(\/ log E/ﬁz), 3.5

and for u # 0
Var {£2(Au (f2:$%))} ~ {%H1 (u)qﬁ(u)}zVar{hg;z}, as £ — oo.
Because
hia = [ Af20) =1} dx = | fel o ~ Bl el )

equation (3.5) is basically stating that the fluctuations in the excursion area for u # 0
are dominated by the fluctuations in the random norm of the eigenfunctions.
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Interestingly, the same behaviour characterizes also the other Lipschitz—Killing
curvatures; for the boundary length we have the expansion

221 (44 559) = limy [ |9 o8 (fe) =) v

which holds both @ almost surely and in L?(Q2); here we write §.(-) = %I[(-). Simi-
larly for the Euler—Poincaré characteristic we have

Lo(Aufi5%) = lim [ det {7 fu(0)}3:(7 fo00) o) (o) .

Similar arguments can be developed, expanding the integrand function into poly-
nomials evaluated on the random vectors {V?2 f;(-), V f¢(+), fe(-)}; algebraic simplifi-
cations occur and the expansions read as follows.

Theorem 3.1. As { — oo, for j =0,1,2
£ (Au(fe. $) —E[Z; (Au(fi:S?))]

= _% [2 E j] up’z_j(u)()tg/z)(Z—j)/z /Sz H>(fe(x))dx + Rg;j.  (3.6)

where
E[R%,]] = 0(—)00(63_2]);

as a consequence, one has also the variance asymptotics

. 2
Var {£; (Au(fe:S?))} = %{ [2 : }up’z_ (A /2)(2‘”/2}

327'[2 2

—j—1
st FoeOTh. (3.7)

X

Some features of the previous result are worth discussing.

e The asymptotic behaviour of all the Lipschitz—Killing curvatures is proportional
to a sequence of scalar random variables {/¢.> }¢en. As a consequence, these geo-
metric functionals are fully correlated in the high-energy limit £ — co.

e For the same reasons, these functionals are also fully correlated, in the high-
energy limit, when evaluated across different levels u;, u,: for the boundary
length, this correlation phenomenon was first noted in [62].

e The leading terms all disappear in the “nodal” case u = 0, where the variances
are hence an order of magnitude smaller. This is an instance of the so-called
Berry cancellation phenomenon [61], to which we shall return in Section 4. We
noted before that the leading terms are proportional to the centred random norm;
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it is thus natural that these terms should disappear in the nodal case, which is
independent of scaling factors. Note that for j = 0 the cancellation of the leading
term occurs also at u = 1.

Remark. The proof of Theorem 3.1 was given in [11], in the case of the 2-dimen-
sional sphere S2. However, we conjecture the result to hold as stated for spherical
eigenfunctions in arbitrary dimension; see below for more details. Extensions have
also been given to cover for instance the 2-dimensional torus (see [14]), for which a
formula completely analogous to (3.1) holds.

Similar results can be shown to hold for other geometric functionals; let us con-
sider for instance critical values, defined by

Nu(fe:S?) =#{x € S*: V fy(x) = 0and fy(x) > u}.

The asymptotic variance of {N, ( f¢; Sz)}gzl,z,m was established in [15, 16], and in
particular we have

IE[Nu(fe;SZ)] = Aeg1(u),
_ ; R 2 _1),—t%/2
g1(u) = m/u (27" 4+ (7 = 1)e ) di
= u¢(u) +V2(1 = o(v2u)),

Var [Wa(:67)] = §A28300) Var { /S Ha(fu(x) dx} t 0tme(6)

2
PR S+ o),

where

o0
1
g2(u) =/ Fe—”z/z(z—&z —e (1 -4t + %) dt.
u T

Later in [12] it was shown that the critical values above the threshold level u satisfy
the asymptotic

M (f1:8?) —E[ M (fe:S7)]
= ) /S (/i) dx + oy (Var [N f:52)]),

As a consequence, one has also, for all u # 0, 1, the correlation result

Corr® {Mu (f55%), Z; (Au(fe: 7))}
_ Cov? {Mu(fi:8%). £ (Au(fe:S?))}
Var { Ny, (f2; S?)} Var {£; (Au(fe: S?))}

— 1, asf — oo;
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the value u = 1 has to be excluded only for j = 0. We also have that
Corr? {Mu, (o3 S?), N, (fe; SZ)} —1, asf — oo,

that is, asymptotically full correlation between the number of critical values above
any two non-zero thresholds v, u5.

As for the Lipschitz—Killing curvatures, a form of Berry’s cancellation occurs
at u = 0 and u — +o00; the total number of critical points has then a lower-order
variance (see [16]), as we shall discuss in Section 4.

3.2. Quantitative central limit theorems

The results reviewed in Section 3.1 can be considered as following from a reduction
principle (see [20]), where the limiting behaviour of {N, (f¢; S?), £;(Au(f2; S?))}
is dominated by a deterministic function of the threshold level u, times a sequence of
random variables {/;,,} which do not depend on u. To derive the asymptotic law of
these fluctuations, it is hence enough to investigate the convergence in distribution of
{he;2}, as £ — oo. In fact, it is possible to show a stronger result, namely a quantitative
central limit theorem; to this aim, let us recall that the Wasserstein distance between
two random variables X and Y is defined by

’

dw(X.Y):= sup |ER(X)—Eh(Y)
heLip(1)

where Lip(1) denotes the class of Lipschitz functions of constant 1; i.e., |h(x) —
h(y)| <|x — y|forall x,y € R. Dy (-,-) defines a metric on the space of probability
distributions (for more details and other examples of probability metrics; see [46,
Appendix C]). Taking Z ~ N(0, 1) to be a standard Gaussian random variable, a
quantitative central limit theorem is defined as a result of the form

X, —EX,
lim dW(u Z) =0

n—>00 v/ Var(Xp) ’

The field of quantitative central limit theorems has been very active in the last few
decades; more recently, a breakthrough has been provided by the discovery of the so-
called Stein—Malliavin approach by Nourdin, Peccati, and Nualart [45,46,48]. These
results entail that for sequences of random variables belonging to a Wiener chaos,
say €, a quantitative central limit theorem for the Wasserstein distance can be given
simply controlling the fourth-moment of X,,, as follows:

(xn—ﬂ«:xn z)< 242 | (Xn—EXn)“ _3 68
"\ Narx,) ")~ 3mg V/ Var(X,) ' '
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Similar results hold for other probability metrics, for instance the Kolmogorov and
total variation distances; see again [46].

Quantitative central limit theorems lend themselves to an immediate application
for the sequences {4} that we introduced above. It should be noted indeed that by
construction all these random variables belong to the gth-order Wiener chaos; it is
then possible to exploit (3.8) to obtain quantitative central limit theorems for these
polyspectra at arbitrary orders: their fourth moment can be computed by means of
the diagram formula. These results were first given in [40] and then refined in [37],
yielding the following.

Theorem 3.2. As £ — oo, one has

O(JLZ) forq =2,3,

hig — Elhig] )
dW<¥,Z —10(sY,) forg=4
/ ) ogl ’
Varlheo) OWU~Y*) forq=5.6,....

Now, we have just shown that for nonzero thresholds u # 0 the Lipschitz—Killing
curvatures and the critical values are indeed proportional to a term belonging to the
second-order chaos, plus a remainder that it is asymptotically negligible. The follow-
ing quantitative central limit theorem then follows immediately (see [11,40,50]).

Theorem 3.3. As £ — oo, foru # 0(j = 1,2) and foru # 0,1 (for j = 0) one has
that

p (:ﬁj(Au(fe;Sz))—E[:ﬁj(Au(fg;Sz))]
w

,z) = oW ?).
JVar (£ (4u(:5%)))

3.3. A higher-dimensional conjecture

The results we discussed so far have been limited to random-spherical harmonics
on the 2-dimensional sphere S2. Research in progress suggests however that further
generalizations should hold: to this aim, let us define the set of singular points P; :=
{ueR: up} (u) = 0} (for instance, Py = Py = {0}, P, ={0,1}, P3 ={0,++/3},...).
Let us now consider Gaussian random eigenfunctions on the higher-dimensional unit
sphere s4: e.g.,

Asd fo.a = —Aed feas Aea =L +d —1);
these eigenfunctions are normalized so that (see [37,51])
Elfeal =0. E[fZ)=1. E[fea®) fea()] = Grap((x.y)).

where as before Gy.4/2(-) is the standardized £th Gegenbauer polynomial of order %
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(normalized with Gg.4/,(1) = 1); it is convenient to recall that

Atzd
G,. 1) = —.
l,d/z( ) d
We recall also that the dimension of the corresponding eigenspaces is
204+d—-1(04+d—-2 2 d—1
’”;d_T( 01 )” @—nit - wtoe

By means of Parseval’s equality we have also as a consequence

252 2(d + 1)%w?
Var|:/ Hz(fg;d(x)) dxi| = %d = ( ) Cha
sd ng.d ng.d
(d + 1)2w§+1(d -1
~ gd—1

as { — oo.

We then propose the following.

Conjecture 3.4. As{ — oo, forallk =0,1,...,d one has that

Lic(Au(f1:89)) — E[£i(Au(f2:59))]
1147, Aea \ 40P
— 5[] s (P) [ A aten a

+ Op(,/gd—zkﬂ )
Remark. An immediate consequence of this conjecture would be

Li(Aulfe8D) “B[Le (/eSO __ heg
- p (D).

JVar [£(Au( fi:59)] JVar [he.q (2)]

g = [ Halfia0) d.

Remark. The remainder term in Conjecture 3.4 is expected to be O(+v/£4~2k), in the
L?(R2) sense.
Three further consequences of Conjecture 3.4 would be the following.

e (Variance asymptotics). As £ — oo, forall k = 0,1, ..., d and for non-singular
points u ¢ Pg_g, one has

Var { L1 (Au(f2:S9))}
CHIL@Pau?  dl ool (d + 128

Qrd) @0 (d —k)k! w20, 2ngq

+ O(Zd_2k+l).



D. Marinucci 354

o (Central limit theorem). As £ — oo, forallk =0, 1,...,d and for non-singular
points u ¢ Pj_j, one has

dw(i’ik(Au(fe;Sd)) — E[£k (4u(f1:89)] Z) =o(1)
\/Var [£x(Au(fe:S)]

where Z ~ N (0, 1).

o (Correlation asymptotics). As £ — oo, forall ki, k, = 0,1,...,d and all uq, u,
such that wyus Hg g, (u1)Hg—,(u2) # 0, one has

Jim Cor? (£, (Au(f:59). Liy (Au(f125D)) = 1.

The driving rationale behind these conjectures is the ansatz that the asymptotic
variance of the geometric functionals should be governed by fluctuations in the ran-
dom L?(S%) norm of the eigenfunctions, for non-singular points u ¢ P;. In this sense,
we believe the result has even greater applicability, for instance to cover combina-
tions of random eigenfunctions defined on more general submanifolds of R”, such as
Berry’s random waves or ‘“‘short windows” averages of isotropic random eigenfunc-
tions on general manifolds (see [7, 8, 18,21,47, 64]). These issues are the object of
currently ongoing research.

4. Nodal cases: Berry cancellation and the role of the fourth-order
chaos

Section 4 has discussed the behaviour of geometric functionals for non-zero threshold
levels u # 0; under isotropy, it has been shown that all these functionals are asymptot-
ically proportional, in the L?(2) sense, to a single random variable representing the
(centred) random L?(S?)-norm of the eigenfunction. This dominant term has been
shown to disappear in the nodal case u = 0 (and, more generally, for p/;_, (u)u =0,
i.e., for the singular points u € P;); the asymptotic behaviour must then be derived
by a different route in these circumstances.

As mentioned above, the first paper to investigate the variance of the nodal length
for random spherical harmonics was the seminal work by Igor Wigman [61], which
made rigorous an ansatz by Michael Berry in the physical literature [8]. In particular,
by using a higher-order version of the expectation metatheorem (see again [1,3]) the
following representation for the second moment of the nodal length can be given:

Bl{Len(fii )] = [ BIRT AT @} | e =0 fi) =0

X Pfet), fe(t2) (0, O)Gg (dtl)ag (dtz),
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where as before we write Len( f¢; S?) = 2£1(Ao( f¢; S?)) for the nodal length. The
integrand in the previous formula is denoted by the 2-point correlation function of the
nodal length and generalizes the Kac—Rice argument to second-order moments; anal-
ogous generalizations are possible for the other geometric functionals we considered
and for higher-order moments as well (see [1]). By means of a challenging and care-
ful expansion of this correlation function and a deep investigation of its behaviour for
{ — oo, Wigman was able to investigate the asymptotic for the variance of the nodal
length and to show that (3.1) holds.

A natural question which was investigated shortly after this seminal paper was
the possibility to derive the asymptotic variances of nodal statistics, and further char-
acterizations such as the law of the asymptotic fluctuations, in terms of the Wiener
chaos expansions that we discussed in Section 3. The first efforts were devoted to
the analysis of the “nodal area” £, (Ao ( f¢; S?)), for which it is easily shown that all
even-order terms vanish at u = 0; from (3.4) we are then left with (see [42])

Var {£2(40(f2;S%))} = i2 >
g=1

C2g+1 172 )
S HE0) +0(C),

where

T
eag1 = Jim 02 / P77 (cos 0) sin 0d0
e 0

oo 0 iNk+1 2k
= [T wpa. s = Y S S
0 k=0 '

The computation of the variance and the results in Theorem 3.2 lead easily also to
a central limit theorem, which was given first in [40] and then extended to higher
dimensions in [50].

Theorem 4.1 ([40]). As { — oo, one has
dw (iz(Aom; 5) — El£a(40(£1:57)] Z) =o().
\/Var {£2(A0(f2:S?))}

and hence

£2(A0(fe:S?)) —E[£2(A0(fe:S?))]
JVar {2 (Ao (f2:5%)}

The proof of the previous result is standard; in short, the idea is to write

—q N(0,1).

M (_1)2k+1
£2(A0(f1:S%) —E[L2(A0(fe:S%))] = Z msz(MW(u)hé;zkH + Ry,
k=1 )



D. Marinucci 356

where the remainder term is such that, as M — oo,

00 (_1)2k+1
Ri= 3 Gy o 0p@heais = op(yVar {£2(40(:52)} ).

k=M+1

It is then enough to show that the central limit theorem holds for M (sufficiently large
but) finite; this can be achieved by an application of the multivariate fourth moment
theorem to the terms (/3. . .., hg.2p41) (see [46]). It should be noted that in the case
of the defect the limiting behaviour depends on the full sequence {h¢.2x+1}k=12,..;
this is due to the exact disappearance of the two natural candidates to be leading
terms, that is, {/g.;»} and {f.4}, both whose coefficients vanish for u = 0.

It is thus even more remarkable that for the nodal lines the situation simplifies
drastically to yield the following result.

Theorem 4.2 ([39]). As £ — oo, one has

1 2 1
Len(fi:§%) — E[ Len(f:8%)] = — %th;4+o,,(,/Var{he;4}), @.1)

and hence, in view of (3.2)
.Q2) _ .Q2
W(Len(fg,S ) —E[Len(f¢; S )]72) — o)),
\/Var {Len(f;:S?)}

The most notable aspect of Theorem 4.2 is that the limiting behaviour of nodal
lines is asymptotically fully correlated with the sequence of random variables {/4.4},
so that in principle it would be possible to “predict” nodal lengths by simply comput-
ing the integral of a fourth-order polynomial of the eigenfunctions over the sphere.

A natural question that arises is the structure of correlation among functionals
evaluated at different thresholds and those considered for the nodal case u = 0.
Focussing for instance on the boundary length, it is immediate to understand that
the latter, which is dominated by the second-order chaos term {/y.>} when u # 0,
must be independent from the nodal length, which is asymptotically proportional to
{hg.a}. A more refined analysis, however, should take into account the fluctuations of
the boundary length when the effects of the random norm || f¢||12(s2) is subtracted,
that is, dropping the second-order chaos term from the Wiener expansion. This cor-
responds to the evaluation of the so-called partial correlation coefficients Corr™, for
which it was shown in [38] that

Jim Corr™ (Len(f¢: S?), £1(Au(fe:S?)) = 1.

More explicitly, when compensating the effect of random norm fluctuations, the
boundary length at any threshold u# # 0 can be fully predicted on the basis of the
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£j(u1) &£jwz) Len(0) Len"(u) &L2(0) M, Nowo

Li(u1) 1 1 0 0 0 1 0
Lj(uz) 1 1 0 0 0 1 0
Len(0) 0 0 1 1 0 0 1
Len*(u) 0 0 1 1 0 0 1
£(0) 0 0 0 0 1 0 0
Ny 1 1 0 0 0 1 0
N_oo 0 0 1 1 0 0 1

Table 1. The limiting value of Corr? (,°),as £ — oc.

knowledge of the nodal length, up to a remainder term which is asymptotically neg-
ligible in the limit £ — oo. It is interesting to note that a similar phenomenon occurs
also for the total number of critical points, for which (building on earlier computations
in [16]) it was shown in [13] that

Ae
LQ2y .Q2 _ M 2 .
N_oo(f2:S?) E[N_oo(fg, S )] = 2332\/§7rh£;4 + 0p,(£7 log l);

as a consequence, the nodal length of random spherical harmonics and the number of
their critical points are perfectly correlated in the high-energy limit:

Zlim Corr? (Len(fg; S?), Neoo( f: Sz)) =1

Let us now denote by Len* (1) the boundary length at level u after the fluctuations
induced by the random norm have been subtracted (e.g., after removing its projection
on the second-order chaos); moreover, for brevity’s sake we write

Zj(Au(fe:S%) = L), j =012,
Nu(fe:$?) = Nu,  Len(fy:S?) = Len(0),
so that N_ is the total number of critical points and £, (0) is the excursion area for

u = 0. The correlation results that we discussed so far can be summarized in Table 1;
here, we denote by uy, u> # 0, 1 any two non-singular threshold values.

5. Eigenfunctions on different domains

For brevity and simplicity’s sake, this survey has focussed only on the behaviour of
random eigenfunctions on the sphere. Of course, as mentioned in Section 1, this is just
a special case of a much broader research area, including for instance eigenfunctions
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on R? and on the standard flat torus T¢ := R?/Z¢. We do not even attempt to do
justice to these developments, but it is important to mention some of them which are
particularly close to the results we discussed for S2.

5.1. Eigenfunctions on the torus: arithmetic random waves

Eigenfunctions on the torus were first introduced in [52] and have then been studied
by several other authors; see for instance [10,23,26,33,36,53,54] and the references
therein. In dimension 2 these eigenfunctions (arithmetic random waves) are defined
by the equations

ATzfn +Efn=0, E,=4mn, n= a? +b2,

for a, b € 7Z; the dimension of the nth eigenspace is N, := Card{a,b € Z :
a? + b? = n}, while the expected value of nodal lengths is [52]

VE,
242

A major breakthrough was then obtained with the derivation of the variance in [26].
In this paper, the authors introduce a probability measure on S! defined by

1
() = Y San(),

" ab:a2+b2=n

E[ Len(f: T?)] =

(a,p) (+) denoting the Dirac measure; its kth-order Fourier coefficients are defined by
Hn(k) := [s1 exp(ikO)nn(dB). In [26] it is then shown that the variance of nodal
lengths has a non-universal behaviour and is proportional to

L+ fin(4)* En

Var{Len(fn;Tz)} = =13 N2
n

E
ol =21, asn — ocos.t N, > oco.
N7

It was later shown in [36] that the behaviour of Len(T?, f,,) is dominated by its
fourth-order chaos component, similarly to what we observed above for random
spherical harmonics (the result on the torus was actually established earlier than the
corresponding case for the sphere). More precisely, we have that

Len(f,: T?) — E[ Len(fn: T?)]

= Z Proj [ Len( f,: T?)|2¢]

q=2

= Proj [ Len( fy: T2)|4] + op(\/Var{Len(fn; T?2)} )
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where Proj[-|¢] denotes projection on the gth-order chaos. On the contrary of what we
observed for the case of the sphere, here it is not possible to express the fourth-order
chaos as a polynomial functional of the random eigenfunctions { f } alone. Moreover,
the limiting distribution is non-Gaussian and non-universal; i.e., it depends on the
asymptotic behaviour of lim; o [in; (4) which varies along different subsequences
{n;}j=1,,.. (the attainable measures for the weak convergence of the sequences
{in; ()}nen have been investigated in [26,27]). Further results in this area include
[10,44] for arithmetic random waves in higher dimension and [28] for the excursion
area on subdomains of T2; as mentioned earlier, an extension of Theorem 3.1 to the
torus has been given in [14]. It should be noted that arithmetic random waves can be
viewed as an instance of random trigonometric polynomials, whose zeroes have been
studied, among others, in [2,4].

5.2. The Euclidean case: Berry’s random waves

Spherical harmonics on the sphere S? are known to exhibit a scaling limit; i.e., after
a change of coordinates they converge locally to a Gaussian random process on R?
which is isotropic, zero mean, and has covariance function

1)k 2k

_ 2 _y &
E[f(0)f0)] = Jo@xllx = yl). x.y € R, Jo(z) i= Z T
here Jo(-) corresponds to the standard Bessel functions, for which the following scal-
ing asymptotics hold:

Pg(cos %) oo Jo(W), ¥ ER.

The behaviour of nodal lines ££(f) = {x € R?: f(x) = 0, ||x|| < 27+E} can
then be studied in the asymptotic regime E — o0; this is indeed the physical set-
ting under which Berry first investigated cancellation phenomena in his pioneering
paper [8]. The topology of nodal sets for Berry’s random waves was studied in [17,
43, 55] and others. Concerning nodal lengths, a (quantitative) central limit theorem
was established in [47], where intersections of independent random waves were also
investigated; more recently, [60] proved a result analogous to Theorem 4.2, namely
that, as £ — oo,

Le(f)-E[Le(f)]

2_324_"’\/7/|XH<2MF (f) dx +op(Var{2p (1)), 6.1)

We expect that results analogous to (4.1) and (5.1) will hold for more general Rie-
mannian waves on 2-dimensional manifolds [64]; extensions to random waves in R3
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have been studied, among others, in [18], but in these higher-dimensional settings it is
no longer the case that nodal volumes are dominated by a single chaotic component.

5.3. Shrinking domains

As a final issue, we recall how some of the previous results can be extended to shrink-
ing subdomains of the torus and of the sphere. In this respect, a surprising result was
derived in [5] concerning the asymptotic behaviour of the nodal length on a suitably
shrinking subdomain B, C T?; indeed it was shown that, for density one subse-
quences in n,

lim Corr (Len(T?, f,),Len(T? N By, f,)) = 1,
n—>oo

entailing that the behaviour of the nodal length on the whole torus is fully determined
by its behaviour on any shrinking disk Bj, provided the radius of this disk is not
smaller than n~'/2%¢_ some ¢ > 0. Of course, the asymptotic variance and distribu-
tions of the nodal length in this shrinking domain are then immediately shown to be
the same as those for the full torus, up to a normalizing factor. Interestingly, the same
phenomenon does not occur on the sphere, where on the contrary it was shown in
[59] that
lim Corr (Len(Sz, f1),Len(S? N By, /) =0,

{—o00

so that the nodal length when evaluated on a shrinking subset By of the 2-dimensional
sphere is actually asymptotically independent from its global value; in the same paper,
it is indeed shown that (4.1) generalizes to

Len(S® N By, f;) — E[Len(S* N By, f7)]

1 21
=-3 \/gzhm(Be) +o0p (\/ Var {hg.4(Be)} ) (5.2)
hea(Bo = [ Ha(futo) d

from this characterization, a central limit theorem follows easily along the same lines
that we discussed in Section 4; see [59] for more details and discussion.
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