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Propositional proof complexity

Alexander A. Razborov

Abstract. Propositional proof complexity studies efficient provability of those statements that
can be expressed in propositional logic, in various proof systems, and under various notions
of “efficiency.” Proof systems and statements of interest come from a variety of sources that,
besides logic and combinatorics, include many other areas like combinatorial optimization and
practical SAT solving. This article is an expanded version of the ECM talk in which we will
attempt to convey some basic ideas underlying this vibrant area.

1. General overview

Like with many other areas in theoretical computer science, the framework of propo-
sitional proof complexity can be easily explained to a mathematically advanced high
school student. In fact, its core definitions are so easy to give that we prefer to inter-
lace them with the discussion rather than to separate the two.

Definition 1.1 (preliminaries). We fix a set of Boolean (that is, 0-1 valued, where 0

stands for FALSE and 1 stands for TRUE) variables. A literal is either a variable x

or its negation that will be denoted by Nx. The alternate notation :x is also used in
the literature, and sometimes we will use the uniform notation xa, a 2 ¹0; 1º, where
x1 def

D x and x0 def
D Nx. A clause C is a disjunction of literals: C D x

a1

i1
_ � � � _ x

aw

iw
in

which no variable appears twice. A conjunctive normal form (CNF in what follows) is
a conjunction of clauses � DC1 ^ � � � ^Cm, often identified with the set ¹C1; : : : ;Cmº

of which it is comprised. Whenever n appears as a subscript in �n, it always stands
for the number of variables.

One very important complexity measure for this article is width. The width of a
clause is the number of literals w in it. The width of a CNF is the maximal width of
a clause in it. A k-CNF is a CNF of width � k. An assignment (sometimes called
truth assignment) is a mapping ˛ W V ! ¹0; 1º. It is naturally extended to literals,
clauses, and CNFs. For example, for the assignment ˛ given by ˛.x1/D 1, ˛.x2/D 0,
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˛.x3/ D 1, and ˛.x4/ D 0 we have ˛. Nx2/ D 1, ˛. Nx1 _ x2 _ x4/ D 0, ˛.x2 _ x3/ D 1,
and ˛.. Nx1 _ x2 _ x4/ ^ .x2 _ x3// D 0. A CNF � is satisfiable if there exists at
least one truth assignment ˛ such that ˛.�/ D 1; ˛ itself is called then a satisfying
assignment. Otherwise, � is unsatisfiable.

The algorithmic problem SATISFIABILITY of determining whether a given
CNF � is satisfiable or not is NP-complete. In fact, it is the most fundamental NP-
complete problem, as well as historically the first [4, Chapter 2.4]. It is central to the
field of computational complexity.

In proof complexity, accents are slightly shifted. Instead of deciding whether �

is satisfiable or not, we want a proof of the answer, and we are interested in the
resources necessary to represent this proof, in most cases abstracting away from the
complexity of finding it.

If we want to certify the satisfiability of � , then the task becomes trivial: a proof
consists of a satisfying assignment ˛ itself. Let us note in passing, however, that
this immediately changes once we impose additional restrictions on the verification
process. Significantly oversimplifying, any proof can be written in a special “holo-
graphic” form such that, once submitted, its validity can be checked by verifying a
small number of “lemmas” in it, selected randomly. This leads to one of the most
beautiful and difficult topics in the computational complexity theory called prob-
abilistically checkable proofs (PCPs). Unfortunately, this topic is way beyond the
scope of our article, so we refer the reader to [4, Chapter 11].

The main question of interest in the propositional proof complexity is how to
prove efficiently that a CNF � is unsatisfiable.

Remark 1.2. If we view � itself as representing a mathematical statement, then what
we call a “proof” is actually its refutation. The reason why this change of direction
is very convenient will become clear below. For now, let us just warn the reader that
the terminology is unfortunately rather inconsistent. Say, an unsatisfiable CNF may
be called in the literature “a contradiction” or even “a tautology.” In what follows we
also may at times be sloppy about this.

Remark 1.3. We have restricted ourselves to CNFs mostly because this class is suf-
ficiently broad to easily encompass virtually all statements we will be interested in.
It will also be a must when we discuss so-called weak proof systems. But sometimes
people do consider more complicated Boolean (and not only Boolean in fact) expres-
sions to be proved/refuted.

Once we have determined that our goal is to study efficient provability of (the
unsatisfiability of) CNFs, the next task is to define what we mean by a “proof system.”
In the most abstract form this definition was given in the seminal paper [25] by Cook
and Reckhow.
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Definition 1.4 (proof systems). Let UNSAT be the set of all unsatisfiable CNFs.
A propositional proof system is a surjective polynomial-time computable function
P W ¹0; 1º� � UNSAT, where ¹0; 1º� is the set of all finite binary strings.

The intuition is that proofs are encoded by binary strings w and the function P

first checks whether w is a legitimate proof (and outputs something trivial like x ^ Nx

if it is not). Then P.w/ is the theorem that the proof w proves, and the surjectivity
of P is the property of a proof system called completeness: every unsatisfiable CNF
possesses at least one proof (that is, refutation).

In this abstract form, the definition has turned out very useful for general “struc-
tural” studies in proof complexity; see e.g. [40, 55]. But the main focus of our article
is on concrete fixed proof systems that are interesting for some external reasons.

Before branching into specifics, we still can give a few crucial definitions at this
level of generality.

Definition 1.5 (size complexity). For a propositional proof system P and �2UNSAT,
let SP .� ` 0/ be the size complexity of � defined as the minimal possible bit length
jwj of w 2 ¹0; 1º� such that P.w/ D � . The proof system is p-bounded if SP .� ` 0/

is bounded by a polynomial in the bit length j� j of � itself.

Whether p-bounded proof systems P exist is the main motivating question of
proof complexity. It is not hard to see, however, that in this generality (that is without
any other restrictions on P ) this is equivalent to a major question in the computational
complexity.

Theorem 1.6 ([25]). A p-bounded proof system P exists if and only if NP D co�NP.

The following will allow us to compare different proof systems according to their
strength and arrange them into a hierarchy.

Definition 1.7 (simulation and equivalence). A proof system P p-simulates another
proof system Q if there is a polynomial-time computable function s such that the
following diagram commutes:

¹0; 1º� ¹0; 1º�

UNSAT

s

Q P

Informally, any Q-proof w can be efficiently converted into a P -proof s.w/ of the
same theorem; note that the poly-time computability of s automatically implies that
js.w/j is bounded by a polynomial in jwj. Two proof systems are p-equivalent if they
p-simulate each other.

We now move on to consider concrete proof systems.
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2. Strong proof systems

The classification of proof systems into “weak” and “strong” is loosely defined and
it is not universally agreed upon. Roughly speaking, a proof system P is considered
strong if we cannot rule out that it is p-bounded, and it is sufficiently widely believed
that this inability is in a sense inherent. We will see below at least one proof system
in the “gray area.”

Strong proof systems are usually associated with original motivations for the
propositional proof complexity coming from mathematical logic, more exactly from
the study of weak theories of bounded arithmetic. On this subject I will be very brief
(as I was in my ECM presentation); the reader willing to learn more about these
fascinating connections with classical proof theory is referred to the monographs
[21, 24, 38, 39]. As before, we precede the discussion with a few definitions.

Definition 2.1 (Frege, informal). Take any textbook in the mathematical logic. It will
most likely begin with a description of propositional calculus given as a Hilbert-style
proof system. That is, it will contain finitely many axiom schemes like A ) .A _ B/

or A _ :A and inference rules like

A A H) B

B
.modus ponens/:

Here A; B; C; : : : are placeholders for which one can substitute an arbitrary Boolean
formula. This is a Frege proof system.

Remark 2.2. One very important distinction in propositional proof complexity is
whether we consider proofs in the tree-like form or allow arbitrary directed acyclic
graphs (DAGs). In other words, do we allow intermediate “lemmas” to be used more
than once or not? This is of little significance in the classical proof theory since any
DAG can be expanded into a tree (if you need to use a lemma more than once, just
repeat its inference). But this may result in an exponential increase in the size of the
proof and, as a result, for weak proof systems we should strictly distinguish between
the two possibilities. It is a non-trivial fact that for the Frege proof system these two
versions are actually p-equivalent [37].

Textbooks in the mathematical logic seldom use the same finite sets of axioms and
inference rules, and in many cases they use even different sets of Boolean connectives
(e.g., we have just seen the implication ) that was not in our original de Morgan
language ¹:; ^; _º). But it turns out that modulo polynomial equivalence all these
choices are immaterial.

Theorem 2.3 ([60]). Any two Frege proof systems, understood as Hilbert-style com-
plete proof systems based on a finite number of axiom schemes and inference rules,
are p-equivalent.
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Remark 2.2, along with Theorem 2.3, strongly suggests that the concept of Frege
proof system is very robust and hence natural. This system is denoted by F; thus, the
function SF.� ` 0/ is well defined up to a polynomial.

Definition 2.4 (extended Frege, informal). An extended Frege proof system, denoted
by EF, is the Frege proof system augmented with the following extension rule. This
rule allows to introduce at any moment a fresh new propositional variable xA as an
abbreviation for a formula A. The proof then may proceed using also the extension
axioms xA � A, and this can happen recursively.

All that has been said about the robustness of Frege proof systems fully applies to
EF as well. That is, SEF.� ` 0/ does not depend on whether it is DAG-like or tree-like
or on the choice of the underlying Frege proof system.

Returning to the connections with weak arithmetic, these theories capture various
complexity classes in the sense that, roughly speaking, all functions provably total
in such a theory T are precisely the functions from that class. Total provability of
a function f .x/ means that it is representable by a formula A.x; y/ such that T

proves1 .9Šy � t /A.x; y/ and A.n; f .n// is true for any n. It involves the bounded
existential quantifier .9y � t / in front. It turns out that if we are interested in the
provability, in the same theory T , of “almost” quantifier-free formulas (for experts,
�b

0 formulas), then such formulas can be translated into an increasing sequence ¹�nº

of propositional formulas. Then the provability of the original statement in T becomes
“essentially equivalent” to the efficient provability of its propositional translation in
a proof system PT naturally associated with T . In most cases, it simply means that
SPT

.�n ` 0/ is bounded by a polynomial in n, and F and EF happen to correspond
to the most central systems of weak arithmetic. For more details see the monographs
[21, 24, 38, 39] already cited above.

Showing that F or EF are not p-bounded is widely believed to be out of reach
of the current methods and in general even more difficult than solving notorious
open problems in the computational complexity like NC1

¤ P or P ¤ NP. They are
paradigmatic strong systems in our informal classification. A good explanation, both
philosophical and heuristical, predicates that the most important feature of a proof
system P is the expressive (in the computational sense of the word) power of its lines,
that is what computational power is afforded to concepts underlying auxiliary state-
ments appearing in the proof. For a Frege proof system lines are just arbitrary Boolean
expressions, and they correspond to the complexity class NC1. For the extended Frege
we get arbitrary Boolean circuits, and those correspond to the class P. It appears to
be even more difficult, and usually way more difficult, to analyze what one can prove
using concepts definable by a complexity class than what we can compute within this

1The exclamation mark stands for “unique.”
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class. I am not aware of any good explanation of this fact, this is just what has been
happening in the area so far.

The final observation I would like to offer about F and EF strongly differentiates
the propositional proof complexity from its sister discipline, circuit complexity. Let
me remind the reader that in the latter field we know that almost all Boolean functions
are hard; this is the famous Shannon effect (see e.g. [36, Chapter 1.4]). Moreover, we
strongly believe that a variety of very natural Boolean functions corresponding to NP-
complete problems are hard. That is, we have a host of natural and explicit candidates
for hardness; we simply do not know yet how to prove that they are actually hard.

Nothing like that happens in proof complexity, and potential candidates are few
and far between. In [16], Bonet, Buss, and Pitassi set off for a slightly modified task
to find good tautologies separating F and EF, that is hard for F, easy for EF. Their
own conclusion, to which I fully concur, was that “no particularly good or convincing
examples are known.” If we relax the requirement and simply ask for tautologies that
would be good candidates to show that the Frege proof system is not p-bounded, I
believe there are only two principles that have passed the test of time even by loose
standards, and both are equally plausible to be hard for EF.

The first is random k-CNFs. Pick up sufficiently many clauses of width k at ran-
dom. Then the resulting CNF will be in UNSAT w.h.p. but there does not appear to
be even a good starting point for F or EF (or, for that matter, any other conceivable
proof system) to certify the unsatisfiability in particular instances.

The second kind of examples is made by CNFs expressing facts like “NP does
not have small size circuits.” For an extensive discussion of these statements and their
relations to other topics in proof and computational complexities I refer the reader to
[59, Section 1].

All proof systems in the remainder of this article will be weak (“potentially” weak
in one case).

3. Benchmarks

In computer science, a “benchmark” usually stands for a “good” standardized test, or
a family of tests, used to run competing pieces of software or hardware to compare
these pieces to each other. In the propositional proof complexity, it also turns out that
there is a handful of combinatorial principles, expressible as unsatisfiable CNFs, that
wander from one framework to another and appear in papers over and over again.
This uniformity turns out indispensable for understanding the general picture and
trying out new methods for proving both lower and upper bounds that can be then
applied to many other tautologies.

For now, let us define two such principles that, arguably, are the most prominent
and popular ones (we will see a few more later in the text).
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Definition 3.1 (pigeonhole principle). Let m > n be integers; introduce propositional
variables xij (i 2 Œm�, j 2 Œn�). The pigeonhole principle (sometimes also called the
Dirichlet principle, particularly in the Russian literature) is the unsatisfiable CNF
PHPm

n made of the following clauses:

� xi1 _ � � � _ xin, for all “pigeons” i 2 Œm� (“every pigeon flies to a hole”);

� Nxij _ Nxi 0j , for all pairs of different “pigeons” i ¤ i 0 2 Œm� and all “holes” j 2 Œn�

(“no two pigeons fly to the same hole”).

This is the so-called “basic” pigeonhole principle. One can also add to it dual
axioms, the functionality axioms Nxij _ Nxij 0 or the surjectivity axioms x1j _ � � � xmj .
Varying the parameter m D m.n/ as well, we obtain a large family of pigeonhole
principles and, somewhat surprisingly, they may display very different behavior with
respect to the same proof system. I refer the reader to the survey [57] entirely devoted
to the pigeonhole principle, with the warning that several important results have been
obtained since its release.

Our second principle was introduced in [62] that, arguably, was the earliest paper
in the propositional proof complexity.

Definition 3.2 (Tseitin tautologies). Let G D .V; E/ be a simple graph with odd
number of vertices. Introduce propositional variables xe , one variable per edge e 2 E.
The Tseitin tautology Tseitin.G/ is the following system of linear equations over F2:M

e3v

xe D 1 .v 2 V /

(˚ is the parity function, addition mod 2). This principle says that in any spanning
sub-graph of G (determined by the values .xe j e 2 E/) there exists a vertex of even
degree.

Remark 3.3. The attentive reader may have observed that, as stated, Tseitin.G/ is
not a CNF. It is usually converted into a CNF by straightforwardly expanding all
parities into a family of clauses. For example, x ˚ y ˚ z is the same as .x _ y _ z/^

. Nx _ Ny _ z/^ . Nx _ y _ Nz/^ .x _ Ny _ Nz/. This expansion incurs an increase in the size
of the contradiction by a factor of 2��1, where � is the maximal vertex degree of G.
This is often unacceptable when � is large so in most applications Tseitin tautologies
are considered only for constant-degree graphs that are also sometimes assumed to
be regular (all vertices have the same degree).

It turns out that Tseitin tautologies work best when G is a good expander. There
are several standard definitions of graph expansion, very much equivalent in the
bounded-degree case. Here we only recall that of edge expansion, as the most conve-
nient for our purposes.
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Definition 3.4 (edge expansion). For a graph G D .V; E/ and S � V , let E.S; xS/

be the set of all cross-edges between S and xS
def
D V n S . The (edge) expansion c.G/

of G is defined as

c.G/
def
D min

² ˇ̌
E.S; xS/

ˇ̌
jS j

j S � V; 1 � jS j � jV j=2

³
:

4. Bounded-depth Frege

In this section, we will discuss several restrictions of the Frege proof system to which
Theorem 2.3 no longer applies. On the other hand, the remark from Section 2 (that
a proof system is largely determined by the expressive power of its lines) applies in
full, and a bounded-depth Frege proof system is determined by the bound on depth
and the set of propositional connectives (the basis) it employs.

Let us start with the standard de Morgan basis ¹:;_;^º. The first useful observa-
tion is that using de Morgan rules :.A_B/� .:A^:B/, :.A^B/� .:A_:B/,
any formula can be converted into a formula with tight negations, that is a formula in
which negations occur only at the variables.

Definition 4.1 (bounded-depth Frege). The logical depth of a ¹:;_;^º-formula with
tight negations is the maximum number of alternations _ _ � � � ^ ^ ^ � � � _ of _ and
^, where the maximum is taken over all paths from the root of the formula to its
leaves (i.e., literals). Alternatively, we can allow disjunctions and conjunctions with
an arbitrary number of arguments, and then logical depth becomes the ordinary depth
(= height) of the tree representing the formula.

The depth-d Frege proof system Fd is the fragment of a Frege proof system over
¹:;^;_º in which all lines are required to have logical depth � d .

As in Definition 2.1, we do not specify axiom schemes and inference rules since
all “reasonable” choices lead to p-equivalent systems. For most of this section, we
view the depth d as arbitrarily large but fixed constant; this is what we mean by
“bounded depth.”

The corresponding circuit class, made of sequences of Boolean functions that can
be computed by circuits of polynomial size and bounded depth, is well known in
circuit complexity. It is denoted by AC0 and by now it is relatively well understood,
beginning with exponential size lower bounds for bounded-depth circuits proved in
the celebrated series of papers [1, 34, 63].

While lower bounds for Fd were established with the same general method (so-
called restrictions), this required to overcome a great deal of additional difficulties as
compared to the case of circuits. But before we start discussing concrete results I find
it prudent to make the following disclaimer.
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This short article is not intended to be a comprehensive survey in the propositional
proof complexity or its sub-areas; for more extended account, see e.g. the monograph
[39] and historical remarks made therein. Its purpose is limited to giving the first
impression about the area to non-specialists, and my choice of illustrating examples
is necessarily incomplete and subjective.

That said, the first lower bounds for bounded-depth Frege were proved for the
pigeonhole principle.

Theorem 4.2 ([41, 48]). SFd
.PHPnC1

n ` 0/ � exp.�.n1=5d
//.

Here, and in what follows, “�” is the notation dual to “big-O”: f � �.g/ means
that there exists an absolute constant " > 0 such that f � "g for all values of the
parameters appearing in f; g.

Corollary 4.3. For any fixed d > 0, Fd is not p-bounded.

To illustrate one point made in Section 3, let us note that once we increase the
number of pigeons to 2n, the situation changes dramatically.

Theorem 4.4 ([5, 42]). SFd
.PHP2n

n ` 0/ � n.log n/O.1=d/
. For d D 2, this refines as

SF2
.PHP2n

n ` 0/ � nO.log n/.

Whether this can be improved to polynomial, perhaps at the expense of using
more pigeons, is open despite decades of research.

Problem 4.5. Does there exist a fixed d > 0 such that SFd
.PHP1

n ` 0/ � nO.1/?

As we noted above, once a method to analyze a proof system (in particular, to
prove lower bounds for it) is established, it usually can be extended to other contra-
dictions as well. As an illustration, the following was proved by a direct (albeit, very
clever) reduction from Theorem 4.2.

Theorem 4.6 ([13]). Let ¹Gnº be a sequence of bounded-degree graphs with c.Gn/�

�.1/. Then for any fixed d > 0, SFd
.Tseitin.Gn/ ` 0/ � exp .�.n1=5d

//.

But sometimes the next improvement/generalization requires a very serious en-
hancement of known techniques. Let us for example reverse the gears and instead of
asking about size lower bounds in any fixed depth, ask what is the largest depth, as a
function of the number of variables n, for which the bound still holds.

The bounds in Theorems 4.2 and 4.6 work up to d D " log log n. It was recently
improved to d D o.

p
log n/ in [50]. While this is still the same basic method of

restrictions the previous work was based upon, this improvement literally had to take
it to a new level of sophistication.
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Theorem 4.7 ([50]). For ¹Gnº as in Theorem 4.6,

SFd

�
Tseitin.Gn/ ` 0

�
� n�..log n/=d2/:

Note that unlike Theorem 4.6, this bound is only quasi-polynomial. But it is good
enough to prove that Fd.n/ is not p-bounded when d.n/ D o.

p
log n/.

In conclusion of this section, let us briefly discuss one extension.

Definition 4.8 (bounded-depth Frege with modular gates, informal). Let m > 0 be a
fixed integer and MODm.x1; : : : ; xn/ the propositional connective with the intended
meaning MODm.x1; : : : ; xn/ D 1 iff mjx1 C � � � C xn. Let F.MODm/ be a Frege
system (p-equivalent to F) in the language ¹:; ^; _; MODmº. The proof system
Fd .MODm/ is its fragment in which the logical depth of all formulas is restricted
to d , where axioms schemes and inference rules are chosen in any reasonable way (in
particular, they should describe basic properties of the new connectives).

For some inspiration of what might be expected from this extension, we have to
look again into the circuit complexity. The corresponding complexity class is denoted
by ACC0Œm�, and it turns out that the story crucially depends on m.

When m is a prime power, exponential lower bounds for this class of circuits
have been known since [54,61]. In all other cases (say, when m D 6) this is one of the
most major and challenging open problems in circuit complexity: for all we know,
ACC0Œ6� may contain all of NP or, for that matter, EXPTIME. For details, see e.g.
[36, Chapter 12].

Accordingly, when m has at least two different prime divisors, Fd .MODm/ should
definitely be classified as “strong.” Somewhat embarrassingly, we have not been able
to adapt the proofs from [54, 61] (based on the so-called method of approximations)
to our context so far. The following is one of the main open problems in the area.

Problem 4.9. Prove that for any fixed d > 0 and any fixed prime m > 0 the system
Fd .MODm/ is not p-bounded.

The only known partial results towards this problem pertain to its much weaker
subsystems; we will now briefly mention one of them and another will appear in
Section 6.1.

Definition 4.10 (counting principles). Let m − n, and introduce propositional vari-
ables xe , where e 2

�
Œn�
m

�
, the family of all m-element subsets of Œn�

def
D ¹1; 2; : : : ; nº.

The counting principle Countnm is the unsatisfiable CNF consisting of the following
clauses:

� Nxe _ Nxf , for all e ¤ f such that e \ f ¤ ;;

�
W

e3i xe , for all i 2 Œn�.
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Intuitively, these clauses state that .xe j e 2
�

Œn�
m

�
/ defines a partition of Œn� into sets

of size m which may not exist since we assumed m − n. The proof system Fd C

Countm is obtained from Fd by adding to it all substitutional (de Morgan!) instances
of Countnm, for arbitrary n, that are of logical depth � d .

The principle Countnm is easily provable in Fd .MODm/, hence Fd C Countm is
indeed intermediate between Fd and Fd .MODm/ in the sense of Definition 1.7.

Theorem 4.11 ([11,18]). Let m; d; ` be fixed integers and assume that ` has a prime
factor which is not a prime factor of m. Then SFdCCountm.Countn` ` 0/ � exp.n�.1//.

Note, however, that this result holds for all m including, say, m D 6. This might
be not so good sign for attempts to adapt these methods for solving Problem 4.9.

5. Resolution

In our notation, resolution is simply F1. It obviously does not make much sense to
consider terms x

a1

i1
^ � � � ^ x

aw

iw
as lines in a proof, they can be always split into w

lines consisting of single literals. Hence resolution uses clauses only and, given the
importance of this proof system (that we will try to explain below), we prefer to
break up with our own tradition and formulate its inference rules (there are no default
axioms) very explicitly.

Definition 5.1 (resolution). Resoluton is the proof system operating with clauses,
denoted by R. It has the inference rules

C

C _ D
(weakening)

C _ x D _ Nx

C _ D
.resolution rule/:

A resolution proof is regular if, on any path in this proof, no variable x is resolved
more than once. We will denote this subsystem of resolution by RR.

Remark 5.2. Resolution, as well as most systems we will see in the rest of this arti-
cle, is too weak to speak of CNFs directly. It is therefore paramount (cf. Remark 1.2)
that from now on we strictly adopt the “refutational” perspective: all “proofs” will be
actually contradictions derived from a set of clauses.

Remark 5.3. The weakening rule is cosmetic and its removal does not change the
complexity SR.� ` 0/. Having this rule, however, is very convenient in many situa-
tions.

Resolution, as well as other proof systems that we will see below, is very relevant
to various scenarios with practical flavor. The paradigm is somewhat similar in all
these cases; let us spell it out for resolution in a few more details. Much more infor-
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mation on the topic, as well as all definitions missing in our description below, can be
found e.g. in the very recent survey [19].

There is a large community of practice-oriented researchers working on finding
feasible algorithms (which in this context means “actually implemented and deliver-
ing concrete results”) for solving “interesting” instances of SATISFIABILITY. These
programs are called SAT solvers. Now, what will happen if we feed a CNF � to a SAT
solver, it runs successfully and produces the correct answer?

When � is satisfiable, in most cases the solver will be able to justify its answer by
producing an actual satisfying assignment. But this case is not very inspiring for our
purposes.

More interesting is the case when � is unsatisfiable because if we understand the
code and believe in its correctness, then we also must accept the transcript of the
solver’s run as a proof of unsatisfiability of � . In mathematical terms, any practi-
cal scalable algorithm for solving SATISFIABILITY defines a propositional proof
system in terms of Definition 1.4.

It turns out that in many scenarios the proof systems automatically associated in
this way to algorithms are also mathematically elegant, and it is particularly visible in
the case of SAT solvers. Namely, the algorithmic technique that has been dominating
in that community for quite a while is called conflict-driven clause learning (CDCL).
Then, a transcript of a run of a CDCL solver can be identified with a resolution proof,
modulo a differing terminology. This connection is in fact so strong that it would not
be too much of an exaggeration to describe the operation of CDCL solvers in this
way: they search, in very ingenuous and specific ways, for resolution refutations of a
CNF � and declare it satisfiable if the search fails.

Thus, any lower bounds for the resolution proof system imply inherent limitations
on CDCL solvers that cannot be overcome by any amount of clever engineering.
They can also be used as a rough guidance of what to expect and what to avoid when
building CDCL solvers.

An extremely interesting question is whether there is a connection in the opposite
direction; that is, what algorithmic applications does the mere existence of a short
resolution proof entail?

When the word “algorithmic” is understood in its most theoretical sense (that is,
poly-time computable), this question is captured by the concept of “automatizability”
(or “automation”), and we have recently seen a major progress in this direction [8]
followed up in several other papers. Very loosely speaking, if P ¤ NP, then no effi-
cient algorithm will be able to find small resolution refutations in all cases when they
exist, ever.

Another meaningful interpretation is to consider only algorithms based on the
CDCL-architecture but allow them a limited amount of non-determinism in the
choices they make. It turns out that this question is very sensitive to the choice of
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the model and, in my view, it is far from being answered conclusively. Some partial
work in that direction is reported e.g. in [7, 12, 44]; once again, much more informa-
tion can be found in [19].

Let us now return to mathematics, and we begin with several early prominent
results.

Theorem 5.4 ([62]). SRR.Tseitin.Gridn;n/ ` 0/ � exp.�.n//, where Gridn;n is the
n � n grid graph.

Theorem 5.5 ([33]). SR.PHPnC1
n ` 0/ � exp.�.n//.

Theorem 5.6 ([22]). Let �n be a random 3-CNF with O.n/ clauses. Then with prob-
ability 1 � o.1/ we have SR.�n ` 0/ � exp.�.n//.

As we already mentioned several times, it is highly desirable to have reasonably
general methods for analyzing proof complexity, as opposed to those that are tailored
to individual benchmarks. In that respect, the following prominent width-size relation
clearly stands out.

Given a resolution refutation, its width is defined as the maximum width of its
clauses, and let w.�n ` 0/ be the minimum possible width of a resolution refutation
of �n. In other words, we are trying to refute �n using only narrow clauses as our
“lemmas,” disregarding the question of how many of them we use. Then the width-
size relation due to Ben–Sasson and Wigderson has the following neat and general
form.

Theorem 5.7 ([15]). For any sequence ¹�nº of unsatisfiable CNFs,

w.�n � 0/ � O
�p

n � log SR.�n ` 0/ C w0

�
;

where w0 is the width of �n itself.

Parsing this expression, when w0 is small (say, a constant) and w.�n ` 0/ � �.n/,
we get SR.�n ` 0/ � exp.�.n//. In words, linear lower bounds on width imply expo-
nential lower bounds on the resolution size.

And it turns out that width lower bounds are often much easier to prove. For
example, we have the following (cf. Definition 3.4).

Theorem 5.8 ([15]). For any sequence of bounded-degree graphs ¹Gnº with c.Gn/�

�.1/, w.Tseitin.Gn/`0/��.n/ (and hence by Theorem 5.7, SR.Tseitin.Gn/`0/�

exp.�.n//).

This recovers a stronger version of Theorem 4.6 for d D 1 but, again, the main
strength of Theorem 5.7 lies in its generality. Two more important points highlighted
by the width-size relation that have turned out very influential in proof complexity
(we will see some examples below) are as follows.
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(1) Diversity is good. Proof complexity measures more elaborated than the one
stipulated by Definition 1.5 are inspiring even if one is primarily interested in
size.

(2) Expansion is good as well. If a graph property imply hardness in the proof
complexity, the odds are that expansion will also do the job.

The width-size relation can be successfully applied to an impressive array of var-
ious contradictions �n, often after some massaging. But, as is the case with any good
method, it has its limitations. One notable principle it completely fails at is the pigeon-
hole principle with many (say, infinitely many) pigeons, which is the special case of
Problem 4.5 for d D 1. For that, another technique of pseudo-width was developed in
[49,53,58]. Unfortunately, this concept is a bit too technical to meaningfully address
here, so let us simply state the end result for PHP2.

Theorem 5.9. SR.PHP1
n ` 0/ � exp.�.n1=3//.

Remark 5.10. Surprisingly, the best known upper bound here is not the trivial
exp.O.n// but exp.O.n1=2// [20]. That would be nice to close the gap, particularly
since most likely this will require developing new methods.

Problem 5.11. Determine the smallest ˛ 2 Œ1=3; 1=2� for which SR.PHP1
n ` 0/ �

exp.n˛Co.1//.

Among other things, Theorem 5.9 implies resolution lower bounds for the state-
ment “NP does not have small size circuits” mentioned at the end of Section 2; see
again [59], as well as [52], for more details and the context. The former paper also
extends this to the proof system Res.O.1// operating with O.1/-CNFs but the proof
is very indirect and complicated. On the other hand, Problem 4.5 remains wide open
even for the system (say) Res.2/ intermediate between F1 and F2. Moreover, now the
upper bound of Theorem 4.4 no longer applies and we can state this conjecture in the
stronger form.

Problem 5.12. Prove (or disprove) that SRes.2/.PHP1
n ` 0/ � exp.n�.1//.

More applications of the pseudo-width method can be found in the recent paper
[28].

Are there prominent unsatisfiable CNFs that (in terms of their resolution com-
plexity) resist analysis by both the width-size and pseudo-width methods? Let me
conclude this section with my favorite example, the small clique problem.

2The last paper in the series [58] generalized the method to a much wider class of general
perfect matching principles including, among others, the counting principles from Defini-
tion 4.10.
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Definition 5.13. Let G be a k-partite graph, that is its vertices can be partitioned
into k blocks, V.G/ D V1 P[ � � � P[Vk (let us also assume that jV1j D � � � D jVkj) such
that there is no edge within each block. The CNF CliqueBlock.G; k/ is defined as the
following set of clauses in the variables .xv j v 2 V.G//:

�
W

v2Vi
xv (1 � i � k);

� Nxv ^ Nxw (.v; w/ is not an edge of G).

This CNF says that .xv j v 2 V.G// encodes a k-clique in G and when the clique
number !.G/ is at most .k � 1/, this is a contradiction.

The obvious brute-force resolution refutation has size at most nk , and the ques-
tion is whether we can do any better. Motivated by the framework of parameterized
(computational) complexity [29] and some research in circuit complexity, it is natural
to ask about the existence of resolution refutations of size f .k/ � nO.1/, where f .k/

is any function. Assuming that k is a fixed constant, the first term disappears and
the question is whether SR.CliqueBlock.G; k/ ` 0/ � nO.1/, where the degree of the
polynomial in the right-hand side must not depend on k.

The small clique problem is usually considered when G is the Erdös–Renyi ran-
dom graph, that is when every potential edge between v 2 Vi and w 2 Vj is included

i.i.d. with probability pkn > 0, n
def
D jVi j. Let us fix for definiteness

pkn
def
D n�C=.k�1/; (5.1)

where C > 2 is an arbitrary constant, and let Gk;n be the corresponding Erdös–Renyi
graph. The value (5.1) is a (weak) threshold value; it guarantees that the probability
of the event !.Gk;n/ D k is bounded away from both 0 and 1.

Theorem 5.14 ([6]). For k � n1=4 � �.1/, with probability 1 � o.1/ we have

SRR
�
CliqueBlock.Gk;n/ ` 0

�
� n�.k/:

Problem 5.15. Prove that for any fixed k > 0, SR.CliqueBlock.Gk;n/ ` 0/ � n2.

6. Algebraic and semi-algebraic proof systems

When you say 0 and 1, it is only mathematical logicians and computer scientists
whose first association would be FALSE and TRUE. For anyone else, these are dis-
tinguished elements of a ring with particular algebraic (or semi-algebraic if the ring
is ordered) properties. In this section, we will review, very briefly, a prominent family
of proof systems heavily adopting this latter point of view and entirely abstracting
from the logical interpretation of the statements they are proving. Besides [39, Chap-
ter 16], the foundational material for this section, as well as a taxonomy of these proof
systems, can be found in the early paper [32].
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The first thing to decide is how exactly we are going to translate logic to alge-
bra/geometry, and we should start with encoding clauses. There are essentially two
different ways of doing it, and this choice largely determines what kind of proof sys-
tems we are aiming at.

The first possibility is to encode clauses by polynomial equations over a ground
field F . This is done in a very straightforward way; for example, the clause C D

x1 _ Nx2 _ x3 is encoded as the equation .1 � x1/x2.1 � x3/ D 0.
For the second option we must assume that our ground field F is ordered, say

F D Q or F D R. In that case, we can encode clauses by linear inequalities. For
example, C D x1 _ Nx2 _ x3 will be translated as x1 C .1 � x2/ C x3 � 1 that can be
further simplified to x1 C x3 � x2, if desired.

In either case, the original CNF is unsatisfiable if and only if the algebraic/semi-
algebraic set defined by the corresponding system of polynomial equations/inequali-
ties over F does not have 0-1 solutions. This reformulation allows us to employ tools
from algebra/geometry, and we now treat the two cases separately.

6.1. Algebraic models

If we are allowed to use non-linear polynomials, the assumption that we are interested
only in 0-1 solutions can be hardwired into the framework by introducing the default
axioms x2

i � xi D 0. It turns out to be very handy, albeit not strictly necessary, to
factor out these relations at once and work in the F -algebra

ƒn
def
D F Œx1; : : : ; xn�=.x2

i � xi j 1 � i � n/:

This algebra was introduced to complexity theory (apparently) in [54, 61]; it consists
of all multi-linear polynomials and hence has linear dimension 2n. On the other hand,
it is isomorphic to the algebra of all functions ¹0; 1ºn ! F ; Hom.ƒn; F/ is the set of
all Boolean assignments to the variables x1; : : : ; xn etc.

Hilbert’s Nullstellensatz tells us that a polynomial system f1.x1; : : : ; xn/ D � � � D

fm.x1; : : : ; xn/ D 0 .fi 2 ƒn/ does not have 0-1 solutions if and only if there exist
Q1; Q2; : : : ; Qm 2 ƒn such that

f1Q1 C f2Q2 C � � � C fmQm D 1: (6.1)

Every such system of polynomials .Q1; : : : ; Qm/ 2 ƒn can thus be considered as a
proof of the statement that the algebraic set .f1D0; : : : ; fmD0/ does not contain 0-1
points. This proof system is called the Nullstellensatz proof system (over the field F ).

Remark 6.1. The question whether this system formally fits Definition 1.4 is slightly
non-trivial. It may depend on the way the polynomials are represented, on their coef-
ficients etc. We prefer not to dwell into these details as it has become much more
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customary (and it is way more clean mathematically, too) to measure the complexity
of the proof .Q1; : : : ; Qm/ by its degree defined as max1�i�m.deg.Qi / C deg.fi //.

By now, the Nullstellensatz proof system is fairly well understood. But since most
results proved for it have been eventually generalized (and sometimes strengthened)
to a stronger system that we will consider next, let us confine ourselves to just one
prominent example.

Theorem 6.2 ([10]). Every Nullstellensatz refutation of PHP1
n must have degree

�.
p

n/.

Remark 6.3. Both for this result and those below, Definition 2.1 should be slightly
adjusted. Namely, to avoid polynomials of prohibitively high degree, the pigeon ax-
ioms xi1 _ � � � _ xin should be translated as xi1 C � � � C xin � 1 D 0 (note that this
also implies that the funcionality axioms Nxij1

_ Nxij2
.j1 ¤ j2 2 Œn�/ are also implicitly

included).

The polynomial calculus (PC) is a dynamic version of this system in which we
attempt to prove that 1 is in the ideal .f1; : : : ; fm/ � ƒn by generating its elements
one by one instead of writing down a single expression like (6.1).

Definition 6.4. Polynomial calculus (over a ground field F ) is the algebraic proof
system whose lines are elements of ƒn. It has the following inference rules:

f D 0 g D 0

f̨ C ˇg D 0
I ˛; ˇ 2 F .addition rule/;

f D 0

fg D 0
.multiplication rule/:

The degree of a PC proof is the maximum degree of its lines.

Remark 6.5. The main source of non-triviality of this system stems from the fact that
at every step we completely expand the result as a sum of terms. When doing this,
cancelations may (and typically do) lead to a substantial decrease in degree. On the
other hand, there is a degree-size relation for the PC perfectly analogous to Theorem
5.7 (and actually proved earlier in [23]).

Remark 6.6. It is not very hard to see that every PC proof over Fp can be p-simulated
by F2.MODp/. Thus, polynomial calculus over a finite field can be reasonably viewed
as an “algebraic” component of F2.MODp/ while F2 is its logical part. The main
reason why Problem 4.9 appears to be so difficult is that the existing methods for
understanding these two parts seem to be totally disjoint from each other.

There has been a fair amount of work attempting to build actual SAT solvers based
upon algebraic principles, primarily the Gröbner basis algorithm. These solvers relate
to the PC in precisely the same way CDCL-based solvers are related to resolution, cf.
our discussion in Section 5. It would be fair to say that so far they have not been
competitive with CDCL solvers but there does not seem to exist any good theoretical
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explanation of this fact. So perhaps the true potential of algebraic SAT solvers is yet
to be revealed; we refer the reader to [19, Section 7.5.7] for more details.

As usual, we conclude with a few sample results. Historically the first lower
bound for the PC generalized and strengthened Theorem 6.2.

Theorem 6.7 ([56]). Every polynomial calculus refutation of PHP1
n must have de-

gree �.n/.

This also implies PC degree lower bounds for the statement “NP does not have
small size circuits” we already mentioned several times before.

The proof method of Theorem 6.7 is rather ad hoc, it is based on the so-called
“pigeon dance” specifically designed for the purpose. The next paper [17] introduced
a very nice and remarkably simple method of analyzing PC refutations from bino-
mial3 axioms. Here is one concrete application that strengthens Theorem 5.8.

Theorem 6.8 ([17]). For any sequence of bounded-degree graphs ¹Gnº with c.Gn/�

�.1/, every polynomial calculus refutation of Tseitin.Gn/ over any field of odd or
zero characteristic must have degree �.n/.

The extension to random 3-CNFs, with the same restriction on the ground field F ,
is not very difficult [14]. But the binomial method completely breaks down for
F D F2 which is one of the most interesting cases. Another method for proving PC
degree lower bounds over an arbitrary field based on a general hardness criterion
was proposed in [2]; see also [43] and the literature cited therein for more recent
developments.

Theorem 6.9 ([2, 14]). Let �n be a random 3-CNF with O.n/ clauses. Then any
polynomial calculus refutation of �n over an arbitrary field F must have degree �.n/.

Let us finally note that the degree-size relation mentioned above immediately
implies exponential size lower bounds for PC refutations in Theorems 6.8 and 6.9.

6.2. Semi-algebraic case

There are many prominent semi-algebraic proof systems: Sum-of-Squares, Cutting
Planes, Lovász–Schrijver, Sherali–Adams to name a few. We will only touch, very
briefly, on the first two; for a nicely organized exposition see [32]. Throughout this
section we assume that F D Q or F D R.

The Sum-of-Squares is also known under the name Positivestellensatz and is
closely related to the so-called Lassierre hierarchy. There are several slight variations
in its definition, we only present here (as many other authors do) the simplest version
in which the original axioms are given as polynomial equations, like in Section 6.1.

3In the Rademacher ¹˙1º framework.
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Definition 6.10. An SOS (or Positivestellensatz) refutation of a polynomial system
.f1 D � � � D fm D 0/ .fi 2 ƒn/ is a family of polynomials .Q1; : : : ; Qm; g1; : : : ; gt /

in ƒn such that

f1Q1 C � � � C fmQm C

tX
jD1

g2
j D �1: (6.2)

Its degree is defined as max.max1�i�m deg.fi / C deg.Qi /; 2 max1�j�t deg.gj //.

The corresponding algorithmic technique has in recent years become extremely
important in combinatorial optimization and approximation algorithms, largely due to
the fact that it has turned out unexpectedly powerful. We refer the reader to the expos-
itory paper [9] although a great deal of important work has been done since that. The
relation between combinatorial optimization and proof complexity follows the famil-
iar pattern, and in fact in this case it is even more transparent. But one important
difference is that unlike SAT solvers, algorithms in combinatorial optimization sel-
dom output the exact answer but only an optimistic approximation to it which in most
cases means relaxing the integrality constraints xi 2 ¹0; 1º to xi 2 Œ0; 1�. In any case,
the computation implies that one cannot beat the value of the goal function delivered
by this relaxation, and then after a straightforward application of the PSD duality, it
becomes an SOS proof in the sense of Definition 6.10. See again [9] for more details.

As for degree lower bounds, SOS is also relatively well understood although some
important problems still remain open. The first lower bound had been proven by Grig-
oriev [31] and largely forgotten until the realization of the algorithmic significance of
the SOS method came. This is the same binomial method we saw in Section 6.1,
wisely put to a different use.

Theorem 6.11 ([31]). Every SOS refutation of Tseitin.Gn/, where ¹Gnº is a sequence
of bounded-degree graphs with c.Gn/ � �.1/, must have degree �.n/.

More modern methods of handling SOS proofs are based upon the concept of a
pseudoexpectation which is essentially an object dual to the expression (6.2) (there-
fore, it exists if and only if the system (6.2) is not solvable in Qi ; gj of given degree).

The last system we discuss is Cutting Planes.

Definition 6.12. Cutting Planes is the proof system operating with affine inequalities,
denoted by PC. It has default axioms x � 0 and x � 1 for all variables x, as well as
the following inference rules:

f � 0 g � 0

f̨ C ˇg � 0
I ˛; ˇ � 0 .convex closure/;

f � a

f � dae
I f 2 ZŒx1; : : : ; xn� .cut rule/:
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To explain this terminology, it is convenient to adapt the dual, more geometric
point of view. Namely, if we allow to apply all possible convex closure rules at once,
then the set of constraints inferrable in this way will form a (convex) polyhedra. Its
dual will be a polytope P that is actually a sub-polytope of Œ0; 1�n (due to default
axioms). The task is to show that P \ ¹0; 1ºn D ;, that is that P does not contain any
integer points. In this language, applying the cut rule means cutting off a small piece
from this polytope (whence the name) guaranteed to not contain integer points.

From the algorithmic perspective, cutting planes correspond to the “geometric”
part of very prominent method in combinatorial optimization called Branch and Cut.
The full power of this method is captured by the proof system that, in the geometric
language above, operates with finite unions of polytopes. This system is currently out
of reach of the current methods although I would hesitate to classify it as “strong.”
A major development has been very recently reported on its subsystem Res.linR/ in
which all polytopes are confined to the form H \ Œ0; 1�n, H a hyperplane [47].

One proof complexity measure for cutting planes that has been extensively con-
sidered in the literature is their (Chvátal) rank (or depth). It is defined as follows: we
allow to apply in parallel not only all possible convex closure rules but cut rules as
well. Then the rank is simply the number of rounds that are necessary to arrive at
the empty polytope. This complexity measure is rather well understood due to a very
powerful technique called “protection lemmas,” see [36, Chapter 19] for an excellent
exposition.

As far as the size of cutting planes refutation is concerned, the situation is way
more intriguing and dynamic. The first lower bounds were proved by Pudlák [51]
using a prominent feasible interpolation method (or rather property). In the next the-
orem, Clique-Coloring.n; k/ is the principle that says that a graph on n vertices may
not simultaneously have a clique on k vertices and be k-colorable.

Theorem 6.13 ([51]). SCP.Clique-Coloring.n;
p

n// � exp.n�.1//.

Remarkably, the method of feasible interpolation is not combinatorial or direct,
instead it reduces a difficult problem in proof complexity to a difficult problem in
circuit complexity (lower bounds for monotone circuits) that we fortunately know
how to solve. As a by-side remark, let me mention that this kind of reductions is
very important and welcome for the proof complexity. Still, it is also natural to won-
der whether there are any “direct” methods (all other results in this article certainly
qualify) to handle cutting planes. On this frontier we have seen recent exciting devel-
opments that defy several pieces of “common wisdom.”

Firstly, it somehow makes sense to assume that random O.logn/-CNFs and O.1/-
CNFs should be “morally similar.” Nonetheless, the proof method of the following
theorem (a very clever use of feasible interpolation) seems to completely break apart
for O.1/-CNFs.
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Theorem 6.14 ([30, 35]). With probability 1 � o.1/, for a random ‚.log n/-CNF �n

with nO.1/ clauses we have SCP.�n ` 0/ � exp.n�.1//.

Even more striking and unexpected is the following recent result. In all our previ-
ous scenarios, random O.1/-CNFs and Tseitin tautologies for expanders went hand
in hand, and it was a general feeling that morally they should be sort of the same
(well, unless the characteristics of the field is 2). Given this feeling, the following
upper bound, very surprising in itself, also does not seem to generalize to random
O.1/-CNFs.

Theorem 6.15 ([26]). For any sequence ¹Gnº of bounded-degree graphs,

SCP
�

Tseitin.Gn/ ` 0
�
� nO.log n/:

All these developments make the following problem particularly exciting.

Problem 6.16. Is it true that for random O.1/-CNFs �n with O.n/ clauses,

SCP.�n ` 0/ � exp.n�.1// w.h.p.‹

It is expected that solving this in the affirmative would require development of
long-sought direct techniques, combinatorial or geometric, for analyzing the size
complexity of cutting planes. But then it also had been expected from the principles
featuring in the last two theorems.

7. In lieu of conclusion

There are several important topics in the modern proof complexity that, due to time
and space constraints, we have either skipped entirely or given them much less atten-
tion than they deserve. Let me conclude with a list of such topics, saying (literally) a
few words about each of them and providing some pointers to the literature.

Space complexity. Size complexity measures roughly correspond to the framework
in which a complete proof is written as a single piece made ready for submission or
verification. Space complexity deals with more dynamic, “classroom” scenario when
the proof is presented on a blackboard and lemmas that are no longer needed can be
erased to save space. See [45] for a nice exposition.

Feasible interpolation and automatizability. These were already mentioned in
Sections 5 and 6.1. The book [39] treats the subject extensively in Chapters 17 and 18.

Relations between various proof systems and complexity measures. We have
already seen some of those but, with the exception for Theorem 5.7, they were some-
what straightforward. There are, however, many other realtions, particularly involving
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space complexity measures, that are rather intricate and unexpected. The paper [46]
aims at providing a general picture using an appropriate notion of reduction.

Pseudo-random generators in proof complexity. This is an ongoing effort to adjust
to the needs of proof complexity the concept that is omnipresent in computational
complexity. It is largely motivated by studying (efficient) provability of the principle
“NP does not possess small circuits” we already mentioned several times. See (again)
[59, Section 1] or [39, Chapter 19.4] for more details.

Lifting techniques. This is a very recent general approach to lower bounds in circuit
complexity, communication complexity, and proof complexity remarkably uniting the
three themes. I am not aware of an expository source (this is very much work in
progress!) so let me instead refer to one of the latest papers in this direction [27].

Ideal proof system. This is an intriguing and bold attempt to stretch the Cook–
Reckhow framework (Definition 1.4) and bring it closer to the concept of PCPs
discussed earlier in Section 1. The paper [3] is one of the latest texts on the subject.
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