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From art and circuit design to geometry and combinatorics

Bojan Mohar

Abstract. These notes provide a detailed insight on the interplay between crossing numbers
of graphs and random geodesic drawings, and try to explain a relationship with the main fun-
damental open questions about crossing numbers of graphs. A very general class of geodesic
drawings on the sphere attaining the Hill bound is presented.

1. Introduction

Crossing number minimization in drawings of graphs on surfaces appears in diverse
applications across disciplines. It came into mathematical research through problems
in modern constructionist art. Crossing number problems have various applications
within engineering (e.g., design of large electrical circuits [17]) and in computer sci-
ence.

Later it became a useful concept in theoretical questions about graph drawing,
algorithm design, and robotics, and became an important notion in discrete and com-
putational geometry. The famous crossing lemma made a very surprising impact
within pure mathematics, after it was discovered that it gives greatly simplified proofs
for various (seemingly unrelated) hard geometric [32] and algebraic problems [29].
On the other hand, the rectilinear crossing number is related to the classical Sylvester
four-point problem, which gave motivation for developments of geometric probability
theory. We refer to [26,27] for a more complete overview of this area of mathematics.

These notes are related to the public talk at the 8th ECM in Portorož, Slovenia,
where the author presented some of the complex issues related to geodesic drawings
of graphs on surfaces and crossing minimization in such drawings, with a special
emphasis on random drawings.

The presentation herein includes historical remarks, it overviews the main fun-
damental open problems about crossing numbers of graphs, and through a general-
ization of Sylvester’s four-point problem gives special emphasis on random geodesic
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drawings of graphs on surfaces. When dealing with random geodesic drawings on the
sphere, we give a very general class of geodesic drawings attaining the conjectured
minimum crossing number.

2. Hill conjecture and Hill drawings

English painter Anthony Hill1 made an extraordinary conjecture in the 1950s that
remained unanswered until today despite serious attacks using powerful machinery in
trying to resolve his conjecture. Starting with a question underlying some of his paint-
ing projects, Hill tried to understand how to draw

�
n
2

�
connections between n objects

so that the painting would involve a minimum number of under or over-crossings.
This lead to the formal notion of the crossing number of a graph, which he intro-
duced in a mathematical paper jointly with Harary [13].

Given a graph G, one can consider its drawing in the plane (or in some other
surface), where vertices are represented as distinct points and edges are drawn as
rectifiable arcs joining the corresponding points. One may restrict attention to good
drawings, where we request that any two edges intersect in at most one point, which
is either their common endvertex or a (proper) crossing of two arcs, and no three
arcs have their pairwise crossings in the same point. The crossing number of a (good)
drawing D of a graph G is the number of crossings of pairs of edges in D, and the
crossing number of the graph G, denoted by cr.G/, is the minimum crossing number
taken over all good drawings of G in the plane.

Hill found a general drawing for any complete graph Kn of order n that involves
precisely

H.n/D
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n.n�2/2.n�4/; n is evenI
1

64
.n�1/2.n�3/2; n is odd

(2.1)

crossings. Based on these drawings and inability of producing any drawing with less
than H.n/ crossings, Hill conjectured the following.

Conjecture 2.1 (Hill, 1959). For any complete graph Kn of order n, we have

cr.Kn/ D
1

4

jn

2

kjn � 1

2

kjn � 2

2

kjn � 3

2

k
:

1Anthony Hill (1930–2020) was one of leading modern British painters. The following is
an abstract from his obituary in Guardian: “Anthony Hill, who has died aged 90, was a singular,
but not solitary, figure in the art world. An artist under two names, and a mathematician and
writer under more than one alias, he was a member of the constructionist group of geometrical
abstract artists that emerged in Britain in the mid-1950s, and was its leading theoretician.”
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Hill’s drawings of complete graphs are called cylindrical drawings because they
can be realized on a cylinder in such a way that all vertices lie (evenly split) on the
two circles forming the cylinder and no edge crosses those two circles. Soon after
these drawings were published in [13], Blažek and Koman [8] found another kind
of drawings of complete graphs involving precisely the same number of crossings.
Their drawings correspond to 2-page drawings in which the vertices are drawn on
the boundary of a unit disk in the plane and no edge crosses this boundary, so each
edge is drawn entirely inside the disk or entirely outside. It has been proved quite
recently that no cylindrical [2] and no 2-page drawing [1] of Kn has fewer than H.n/

crossings, thus giving the first real support to the conjecture of Hill.
We will say that a drawing D of the complete graph Kn is a Hill drawing if it has

precisely H.n/ crossings.
No other Hill drawings of complete graphs have been discovered until 2014 when

Ábrego et al. [3] described modifications of cylindrical drawings of K2n yielding Hill
drawings of K2nC1, K2nC2, and K2nC3 that are different in the sense that they are not
“shellable”. In Section 4.3, we describe a much more general class of Hill drawings
that include in particular all known examples of Hill drawings. These drawings have
not appeared previously in the mathematical literature.2

After 60+ years, Conjecture 2.1 is still widely open. It has been confirmed for
every n � 12 (with K11 and K12 confirmed in [23]), but it is still unresolved for
n D 13 and beyond. In fact, the weaker, asymptotic version of Conjecture 2.1 is also
open.

Conjecture 2.2 (Asymptotic Hill conjecture).

cr.Kn/ D
1

64
n4

�
1 � o.1/

�
D

3

8

�
n

4

��
1 � o.1/

�
:

Of course, the main problem is to show the lower bound – that there are no better
drawings than those with precisely H.n/ crossings. To that effect, there are several
exciting new results that were obtained through elaborate analysis of drawings and
use of semidefinite programming and Razborov’s flag algebra calculus [18, 25].

Theorem 2.3 (Balogh, Lidický, and Salazar [7]). For every sufficiently large n,

cr.Kn/ � 0:985 H.n/:

In the same paper [7], the authors also proved that the spherical geodesic crossing
number of Kn (see Section 4.3 for the definition) is asymptotically at least 0:996H.n/.

2After the author put a preprint of this construction on the arXiv [20] in 2018, he was
informed that almost the same construction was mentioned by Kyncl on mathoverflow [16].
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3. Turán’s brick factory problem

Turán’s brick factory problem asks for the minimum number of crossings in a drawing
of a complete bipartite graph Km;n. During World War II, Turán was forced to work
in a brick factory, pushing wagon loads of bricks from kilns to storage sites, and the
corresponding rail network with m kilns and n storage barracks was the same as a
special drawing of the complete bipartite graph Km;n. Crossings of rail tracks made
the transport challenging, and Turán, inspired by this situation, asked himself how the
rail network might be redesigned to minimize the number of crossings between the
railway tracks [33].

Paul Turán discussed his brick factory problem during 1950s in his talks, and
Zarankiewicz and Urbanik, who attended some of his presentations, independently
found drawings of complete bipartite graphs for which they claimed that they are
optimal [34, 35]. Unfortunately, proofs in both published papers were flawed. This
was discovered only a couple of years later, and the claimed minimum number of
crossings was turned into the following conjecture, which remains widely open even
today.

Conjecture 3.1. For any positive integers m and n, the crossing number cr.Km;n/ of
the complete bipartite graph with m C n vertices is equal to

Z.m; n/ D
1

4

jm

2

kjm � 1

2

kjn

2

kjn � 1

2

k
:

The conjecture has since been confirmed for the cases where one of the parame-
ters is at most 6 and also for K7;7 and K7;8, but it remains open even for such small
graphs as K7;9 and K9;9.3

4. Geodesic drawings

When we consider drawings of graphs in the plane, where each edge is drawn as
a straight-line segment, we come to the notion of the rectilinear crossing number
cr.G/. It turns out that for most small graphs the rectilinear crossing number is equal
to the usual crossing number. However, it was discovered early that cr.K8/ D 18 and
cr.K8/ D 19 and that this difference extends to larger graphs. However, it was open
for a long time how large can be the difference cr.Kn/� cr.Kn/. A breakthrough was
made in 2004 by Lovász, Vesztergombi, Wagner, and Welzl [19], who proved that the
normalized rectilinear crossing number of Kn is strictly greater than the correspond-
ing limit for the usual crossing number. Building on the work in [19], Ábrego, Cetina,

3The cases with even parameters were not mentioned since they would follow from odd
cases by known parity arguments; see, e.g. [27].
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Probability Shape Author
3=4 Cayley and Sylvester
1/2 DeMorgan
2/3 Triangle Wilson

> 1=2 Ingleby
5/8 (No name given)

1 � 35=.12�2/ Disk Woolhouse
25=36 Rectangle [10]

2.18 �
p

5 /=45 Regular pentagon [9]
683=972 Regular hexagon [14, p. 46]

Table 1. Answers to Sylvester’s question. The upper part of the table is taken from [24], where
the complementary probabilities for non-convex 4-gon are shown.

Fernández-Merchant, Leaños, and Salazar [5] improved the bounds from [19]. They
also found today’s best upper bounds [4]. Their results are summarized in the follow-
ing inequalities:

0:379972 <
277

729
� lim

n!1
cr.Kn/=

�
n

4

�
�

83247328

218791125
< 0:380488: (4.1)

Unlike for the Hill conjecture, we are lacking understanding of the rectilinear
crossing number and there is no good evidence about whether the lower or the upper
bound in (4.1) is closer to the normalized limit.

The rectilinear crossing number of complete graphs is tightly related to an old
problem in geometric probability that was originally proposed by Julius Sylvester in
1864, and which we will discuss next.

4.1. Sylvester’s four-point problem

In 1864, Sylvester asked [30] “what is the probability that four randomly chosen
points in the plane form a convex 4-gon?”. As it turned out, the problem was ill-posed
since by 1865, at least six solutions were received, all with different answers (see the
first six entries in Table 1). Depending on the method chosen to pick points from the
infinite plane, a number of different solutions are possible, and Sylvester concluded
[31] that his problem does not admit a determinate solution (see also [24]).

The reason for so many distinct answers was that it was not clear what “randomly
chosen points” in the plane would be. Sylvester himself changed the question a year
later [31]. The revised four-point problem asks for the probability q.R/ that four
points chosen at random in a bounded planar region R have a convex hull which is a
quadrilateral.
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Figure 1. Currently best bounds on the asymptotic values of normalized crossing numbers of
large complete graphs: 0:3695 � cr.Kn/=

�
n

4
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8

and 0:3799 � cr.Kn/=
�

n

4

�
� 0:3805.

Scheinerman and Wilf linked the Sylvester problem to the rectilinear crossing
number [28]. Let x�� be the limit of cr.Kn/=

�
n
4

�
as n !1, and let q.R/ be as defined

above. Scheinerman and Wilf proved that x�� D inf q.R/, where the infimum is taken
over all open planar sets R whose area is 1 (equivalently, over all unions of finitely
many disjoint circles). Let us recall that today’s best estimates for the rectilinear cross-
ing number of complete graphs given in (4.1) yield that 0:3799 < x�� < 0:3805; see
Figure 1.

Note that, in the plane, four points form a convex quadrilateral if and only if
the six line segments joining pairs of these points make a crossing. We will use this
interpretation in the sequel.

One can pose similar questions when considering randomly chosen points on any
surface. Suppose that S is a compact Riemannian surface and that � is a probability
measure4 on S. Then we define q.�/ as the probability that for four �-randomly
chosen points, two of the six geodesics joining pairs of these points cross each other.
Then q.�/ is called the geometric crossing probability of �.

The geometric crossing probabilities are related to the geodesic crossing number
of the complete graph on S, for which we consider all drawings of the graph in which
all edges are drawn as shortest geodesic segments on S. This is not hard to see and
we prove it as Lemma 4.1 below. But let us first discuss random drawings.

Let � be a probability measure on S.We say that � is geodesically non-degenerate
if the probability that two �-random points x; y are distinct and that they are joined
with a unique geodesic is equal to 1, and the probability that a third random point lies
on this geodesic is 0. If this is the case, then, with probability 1, n randomly selected
points define a unique good geodesic drawing of Kn. Such a drawing will be referred
to as a �-random drawing.

Lemma 4.1. Let x��.S/ be the limit of crS.Kn/=
�

n
4

�
(where n tends to infinity) and let

q.�/ be as defined above. Then x��.S/ D inf q.�/, where the infimum is taken over
all geodesically non-degenerate probability, measures �. The same holds when the
infimum is taken over all uniform probability measures whose support is the union of
finitely many disjoint disks on S.

4The measure � has to fulfill some simple non-degeneracy conditions, which will be dis-
cussed later.
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Proof. Every �-random drawing Dn of Kn gives an upper bound on the geodesic
crossing number of Kn in S. For any four points a; b; c; d 2 S, let Qabcd be equal
to 1 if two of the geodesics between points a; b; c; d in S cross each other. Note that
E.Qabcd / D q.�/ if a, b, c, d are chosen at random with respect to �, and that

cr.Dn/ D
X²

Qabcd j ¹a; b; c; dº 2

�
V

4

�³
:

By linearity of expectations, we have

E.cr.Dn// D E
�X

Qabcd

�
D

X
E.Qabcd / D

�
n

4

�
q.�/:

This implies that x��.S/ � q.�/ for every �.
To establish equality, let ı > 0 and consider an optimal geodesic drawing D of

Kn in S, such that cr.D/=
�

n
4

�
� x�� < ı. Let x1; : : : ; xn 2 S be the vertices of D. There

are " > 0 and balls B1; : : : ; Bn centered at these vertices, each of area ", such that for
any choice of points x0

i 2 Bi (1 � i � n), the geodesic drawing on these points has
exactly the same crossings as D.

Let �n be the uniform measure on B1 [ � � � [ Bn. We claim that q.�n/ is close
to cr.D/=

�
n
4

�
. Let us consider four �n-random points. With probability at least 1 �

O.1=n/, the four points are in distinct balls Bi1 , Bi2 , Bi3 , Bi4 and the four indices
i1, i2, i3, i4 are chosen uniformly at random from Œn�. Thus, the probability that the
geodesics on these four points induces a crossing is at most .1�O.1=n//�1 cr.D/=

�
n
4

�
.

This shows that

q.�n/ �
�
1 C o.1/

�
cr.D/=

�
n

4

�
�

�
1 C o.1/

�
.x��

C ı/:

By letting ı ! 0 and n ! 1, we conclude that

x��
� inf

�
q.�/ � lim

n!1
q.�n/ � x��:

This completes the proof.

4.2. Sylvester’s problem on the sphere

Moon [22] proved that the expected number of crossings in random drawings of Kn

on the unit sphere in R3 is asymptotically the same as the conjectured crossing num-
ber of Kn. His result can be expressed as follows.

Theorem 4.2 (Moon [22]). Let � be the uniform probability distribution on the unit
sphere S2 in R3. Then q.�/ D 3=8.
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Guy, Jenkyns, and Schaer [12] considered the crossing number of Kn on the flat
torus (obtained from the unit square by identifying opposite sides). Their computation
shows the following.

Theorem 4.3 (Guy, Jenkyns, and Schaer [12]). Let T be the flat torus obtained from
a rectangle in the plane by identifying opposite sides. Let � be the uniform probability
distribution on T . Then q.�/ D 5=18.

As noted in [12], the Sylvester crossing probability is the same for every rectangle
model of the flat torus. However, they neglected the possibility of other parallelogram
representations of the flat torus. Interestingly, they give smaller crossing probabilities.

Theorem 4.4 (Elkies [11]). Let T˛ be the flat torus obtained from a rhombus with
side length 1 and angle ˛ .0 < ˛ � �=2/ by identifying opposite sides. If �˛ is the
uniform distribution on T˛ , then

q.�˛/ �
22

81
:

The smallest value occurs at ˛ D �=3, where q.��=3/ D 22
81

.

In [15], Koman bounded the crossing number of Kn in the projective plane:

41

273

�
n

4

�
� crN1

.Kn/ �
39

128

�
n � 1

4

�
; (4.2)

where the left inequality holds only when n � 11.
Below we give an improvement of Koman’s upper bound by using the model of

the projective plane as the surface endowed with constant curvature 1 and considering
random drawings.

Let P 2 be the projective plane obtained from the unit sphere S2 by identifying
all antipodal pairs of points. This defines the projective plane as a surface of constant
curvature 1. Its total area is one half of the area of the unit sphere, A.P 2/ D 2� . The
geodesics in P 2 are the great semicircles, each of which has length equal to � .

Theorem 4.5. The uniform distribution � on P 2 has crossing probability q.�/ D

3��2. Consequently,

crP2.Kn/ � 3��2

�
n

4

�
:

Proof. Let us consider two random points in P 2 and let ` denote the length of the
geodesic joining them. We claim that E.`/ D 1. To see this, we may assume that
the first point is the North pole of S2. Then ` D ˛, where 0 � ˛ � �=2 is the angle
between the lines through the origin in R3 and the two points. Now,

E.`/ D

“
S

˛ dS D

Z 2�

0

Z �=2

0

˛ sin ˛ d˛ ds D 2�

Z �=2

0

˛ sin ˛ d˛ D 1:
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Next, we consider the conditional probability of a crossing of two random seg-
ments S1, S2, conditioned on their lengths `1 and `2. The two great semicircles
containing S1 and S2 cross each other at a point p. The segments are positioned
randomly on these two segments, so the probability that they both contain p (which
is the only way they would cross) is equal to .`1=�/ � .`2=�/. Thus the conditional
probability of the event X that S1 and S2 cross is

PrŒX j `1; `2� D
`1

�
�

`2

�
:

Since `1 and `2 are independent and E.`1/ D E.`2/ D 1, we get

E.X/ D ��2 E.`1`2/ D ��2 E.`1/ E.`2/ D ��2:

Finally, we have that q.�/ D 3 E.X/ D 3��2.

Elkies [11] realized that 3��2 < 39=128 and concluded that the bound of The-
orem 4.5 asymptotically beats Koman’s upper bound (4.2). In comparison with the
Hill conjecture, it was conjectured in [11] that the bound of the theorem is best pos-
sible. However, Arroyo, McQuillan, Richter, Salazar, and Sullivan [6] recently found
better drawings of complete graphs in the projective plane. Their drawings can also
be approximated with random drawings, but the probability measure is not uniform.

Theorem 4.6 ([6]). crP2.Kn/ < 0:3024
�

n
4

�
.

Note that 0:3024 < 3��2 � 0:304.

4.3. Antipodal drawings on the sphere

Let S2 be the unit sphere in R3. For any two points p;q 2 S2, consider the great circle
through p and q (the great circle is unique unless q is antipodal to p in which case
there are many). The shorter of the two segments on this circle from p to q is called
a geodesic arc (or just a geodesic). Any geodesic arc joining two antipodal points in
S2 is a half of a great circle and will be referred to as a half-circle.

A geodesic drawing of a graph G on S2 is a drawing in which all edges are
drawn as geodesic arcs. We define the geodesic crossing number of the graph G on
the sphere as the minimum number of crossings of edges of G in a geodesic drawing
of the graph, and denote it by crS2.G/.

A set P of points in S2 is in general position if no three points in P lie on a
common great circle in the sphere.

Let k � 3 be a positive integer and let n D 2k. The graph Mn obtained from the
complete graph Kn by removing edges of a perfect matching in Kn is isomorphic to
the complete k-partite graph K2;2;:::;2 with k parts of size 2 each. The edge-set of this
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graph consists of
�

k
2

�
4-cycles, each of which joins two parts of size 2 and is called a

basic 4-cycle in Mn.
We will consider some special drawings of Mn. Let P be a set of k points in

general position in S2. Let � be obtained from P by adding, for each p 2 P , its
antipodal point Np into � . The geodesic drawing of Mn on these points, where each
antipodal pair represents a pair of nonadjacent vertices in Mn, is said to be an antipo-
dal geodesic drawing of Mn. We will denote by Dn.P / the antipodal drawing of Mn

determined by P .

Lemma 4.7 ([20]). For every k � 3, every antipodal drawing Dn.P / of Mn has
precisely 1

4
k.k � 1/.k � 2/.k � 3/ crossings, and by adding any geodesic half-circle

between a pair of antipodal points p; Np .p 2 P /, we obtain precisely 1
2
.k � 1/.k � 2/

additional crossings.

Proof. Note that every pair of points p; q 2 P together with their antipodes Np, Nq

determines a great circle Qpq that consists of four edges forming the basic 4-cycle
between ¹p; Npº and ¹q; Nqº. Any two such great circles Qpq and Qrs cross twice and
make two crossings if ¹p; qº \ ¹r; sº D ;. If j¹p; qº \ ¹r; sºj D 1, then they do not
cross. Thus, the edges in each Qpq participate in precisely 2

�
k�2

2

�
D .k � 2/.k � 3/

crossings. By summing up these numbers over all
�

k
2

�
possibilities for the pair ¹p; qº,

we count each crossing twice, so

cr.Dn/ D
1

2

�
k

2

�
.k � 2/.k � 3/ D

1

4
k.k � 1/.k � 2/.k � 3/:

By adding any great circle through two antipodal points p; Np, p 2 P , we separate
k � 1 of the points in P [ xP from their antipodal pairs. There are precisely .k �

1/.k � 2/ edges joining them. Because of the antipodal symmetry of the drawing Dn,
precisely half of these edges cross each half-circle. Thus, each half-circle is crossed
1
2
.k � 1/.k � 2/ many times.

We say that a set P of points in S2 has strength s if there is a choice of half-circles
joining each point in P with its antipodal point Np such that these half-circles cross
each other s times.

Corollary 4.8 ([20]). If a set P of k points in general position on S2 has strength
s, then the drawing Dn.P / can be extended to a geodesic drawing of the complete
graph Kn with H.n/ C s crossings.

Proof. We extend the drawing Dn by adding half-circles joining the antipodal pairs
p, Np for p 2 P 0 so that these half-circles make s crossings among each other. By
Lemma 4.7, the number of crossings is 1

4
k.k � 1/.k � 2/.k � 3/ C 1

2
.k � 1/.k �

2/jP j C s, which is equal to H.n/ C s.
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It is easy to see that there are many sets of strength 0. They give rise to antipodal
Hill drawings.

Corollary 4.9. Let P � S2 be a set of k points in general position in S2, whose
strength is 0. Then the geodesic drawing Dn.P / .n D 2k/ can be extended to a Hill
drawing of Kn. This drawing has the following additional properties:

(a) the drawing is antipodally symmetric except for the drawing of the half-
circles joining antipodal pairs;

(b) for every vertex v of Kn, the edges incident with v participate in precisely
1

16
.n � 2/2.n � 4/ crossings;

(c) by deleting any point from P [ xP , we obtain a drawing of Kn�1 with pre-
cisely H.n � 1/ crossings;

(d) by adding any new point (in general position with respect to P ) and adding
geodesics from that point to P [ xP , we obtain a geodesic drawing of KnC1

with precisely H.n C 1/ crossings.

Proof. Statements (a)–(c) are easy observations and their proof is left for the reader.
To prove (d), let QDP [¹qº, where q is the added point. Consider the corresponding
drawing of KnC2 for yQ. Note that Q may no longer have strength 0, but since P has
strength 0, there is a drawing where the only half-circle intersecting other half-circles
is the half-circle joining q and Nq. All these added crossings disappear after removing
Nq, and thus by (b), the extended drawing of KnC1 has H.n C 2/ � 1

16
n2.n � 2/ D

H.n C 1/ crossings.

The last corollary implies that crS2.Kn/ � H.n/ for every positive integer n.
This result is surprising in two ways. Firstly, it is known that the rectilinear crossing
number (geodesic version in the Euclidean plane) of complete graphs is strictly larger
than the usual crossing number. So, assuming the Hill conjecture, it is surprising that
the geodesic crossing number in the sphere is not different. Secondly, the abundance
of obtained Hill drawings is also quite unexpected.

4.4. Moon’s result revisited

A probability measure � on the sphere S2 is non-degenerate if �.C / D 0 for each
great circle C . This is equivalent to saying that the probability that n �-random points
on the sphere lie in general position is equal to 1 (with probability 1, they are all dis-
tinct and no three are on the same great circle). Further, we say that � is antipodally
symmetric if for any �-measurable set A � S2, its antipodal set xA has the same mea-
sure, �. xA/ D �.A/.

As mentioned before (see Theorem 4.2), Moon proved that random geodesic
drawings of complete graphs on the sphere have asymptotically about the same num-
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ber of crossings as the conjectured best drawings. Corollary 4.8 gives a simple expla-
nation of this phenomenon. Indeed, in a forthcoming work [21] the following result
with several interesting consequences is derived.

Theorem 4.10 (Mohar and Wesolek [21]). Let � be a non-degenerate antipodally
symmetric probability distribution on the unit sphere S2. Then a �-random set of n

points on S2 joined by geodesics gives rise to a drawing Dn of the complete graph
Kn such that cr.Dn/=H.n/ D 1 C o.1/ asymptotically almost surely.
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