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On primes, almost primes, and the Mobius function in short
intervals

Kaisa Matomaéki

Abstract. In this article, aimed at a general mathematical audience, we have three goals. First,
we give a brief account of the classical theory connecting primes, the Riemann zeta function,
and the Mobius function. Second, we discuss the state-of-art results concerning primes, almost
primes, and the Mobius function in short intervals. Third, we outline the most fundamental
concepts underlying the proofs of such results.

1. Introduction

Some of the most prominent topics in analytic number theory include the prime num-
bers, the Riemann zeta function, and the Md&bius function. In this article, aimed at a
general mathematical audience, we first introduce some classical results on the primes
and their relation to the Riemann zeta function in Section 2. Then we go on to dis-
cuss primes and almost primes in short intervals in Section 3, starting with classical
results and moving on to very recent works. In Section 4 we make a similar journey
with the Mobius function. Finally, in Section 5 we discuss the proof strategies, mostly
in rather general terms.

2. Primes and the Riemann zeta function

2.1. Primes

We write P = {2,3,5,7,11,13,17,. ..} for the set of primes, i.e., natural numbers > 1
that are only divisible by 1 and themselves. The letter p with or without subscripts
will always denote a prime.

One of the first theorems concerning primes is that of Euclid (ca. 300 BC), stating
that there are infinitely many prime numbers. This can be quickly proved in various
ways. The most classical way is to make a counter assumption that only p1, ..., px
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are primes. Then p; --- pr + 1 is either a new prime or divisible by a new prime
which is a contradiction.

By the fundamental theorem of arithmetic every natural number can be uniquely
written as a product of primes, e.g., 2021 = 43 - 47. In other words, primes are like
the building blocks of the natural numbers.

By Euclid’s theorem there are infinitely many primes, but we have much more
precise information. Hadamard and de la Valleé Poussin showed independently in the
end of the 19th century (see e.g. [12, Notes to Chapter 12]) that!

* dx X
#{peIP’:pfx}:(l—l—o(l)) — = (1+0(1)—.
» logx log x

This is called the prime number theorem (PNT) and it sort of asserts that the “proba-
bility” that an integer n is prime is about 1/ logn.

In light of this, it is convenient to normalize prime p by log p. More precisely,
we write A(n) for the von Mangoldt function
logp ifn = p*withk > 1;

0 otherwise.

An) = {

Now the PNT is equivalent to the fact that

Z A(n) = (14 o(1))x.

n<x

As for the o(1) error term in the PNT, the best result (see e.g. [12, Theorem 12.2])
currently is that

1 3/5
ZA(n) =x+0(xexp(—%)) (2.1)

for some absolute constant ¢ > 0.

2.2. The Riemann zeta function

Next we introduce some basic properties of the Riemann zeta function. For a refer-
ence to the results in this and the following subsection, and much more, see e.g. [12]
or [25].

"'We use, for f:R — C and g: R — R, the notation f(x) = O(g(x)) when there exists
a constant C > 0 such that | f(x)| < Cg(x) for all x and the notation f(x) = o(g(x)) when
limy 00 f(x)/g(x) = 0. For instance O(x'/2) denotes a quantity which is, for some constant
C > 0, at most Cx'/2 for all x and o(1) denotes a quantity tending to 0 when x — oo.



On primes, almost primes, and the Mobius function in short intervals 571

Write, for s > 1,

5(s) = Z ]_[( pl ---):H(l—%)_l. 2.2)

nEN peP pEP

The function {(s) can be analytically continued to the whole complex plane except
for a simple pole at s = 1 with residue 1. The function £ (s) is called the Riemann
zeta function and it satisfies the functional equation

¢(s) = 2°7* Lsin (%S)m — ¢ —s), 2.3)

where I"(s) is the gamma function.

The functional equation can be used to obtain some basic information about the
zeros of the Riemann zeta function. Notice first that on the right-hand side of the
functional equation (2.3) the function sin(rs/2) has a zero at each even integer. For
s = 0 the zero is cancelled by the pole of {(1 — s) whereas for positive even integers
the poles of I'(1 — s) cancel with the zeros. But for negative even integers there are
no poles and hence also £ (s) has a zero at each negative even integer —2, —4,—6, .. ..
These zeros are called the trivial zeros of £ (s).

The remaining zeros of {(s) are called non-trivial. From the Euler product (2.2)
one sees that there are no zeros with fs > 1 and thus, by the functional equation (2.3)
there are no non-trivial zeros with is < 0. Hence all the non-trivial zeros of the zeta
function must lie in the critical strip 0 < Hs < 1.

Writing N(T') for the number of non-trivial zeros with |Js| < T', the Riemann-
von Mangoldt formula states that

T T T
N(T)=— log 2w om + O(logT). (2.4)
The famous Riemann hypothesis (RH) asserts that all these non-trivial zeros actu-
ally lie on the critical line fts = 1/2. This has been numerically verified in [21] for
all zeros with |Js| < 3 - 10'2, Furthermore we know that the exists a constant ¢ > 0
such that, for any zero s = 8 + it of {(s) with [¢| > 10, one has

B<1- ‘ ; 2.5)

(log |t|)2/3(log log |t|)1/3

the complement of this region is called the Vinogradov—Korobov zero-free region.

2.3. The relation between primes and the Riemann zeta function

It turns out that the non-trivial zeros of the zeta function are closely related to the
prime numbers. The relation between von Mangoldt function and the zeros of the
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zeta function stem from a Dirichlet series identity; for is > 1, one has

S0 __d, a 1
£s) 0glls) = logH(l )

pEP
d 1o A
=Zd—log(1——) Zp =L Z (S). (2.6)
peP 5 peP “ n=1 n

This identity is one of the reasons why it is more convenient to study A(n) than the
characteristic function of the primes.
To utilize (2.6) to study primes in [1, x], one uses the contour integration formula

1 2+ioco s 0 ify < I;
— Las=0" "7 @.7)
270 Jojoo S 1 ify>1.
Combining these two observations we obtain (when x ¢ N)
2+ioco (x/n)s 1 2+io0 s/ x5
A =Y Ao [ ds=—5- [ ToTas
Z Z 2—ioo 2mi 2—ioo é'

n<x

Moving the integration to the left side of the line s = 1, one picks up a pole at
s = 1 with residue —x, so this gives the main term in the PNT. The zeros of the zeta
function are also poles of the integrand and one can derive, for any x > T > 2, the
explicit formula

ZA(n)zx— Z xpp1+0( log? x)

n<x 0
£ (p)=0
I3() =T

One can now use this and (2.4) to relate the error term in the PNT to the zero-free
region for the zeta function. In particular, one can show that

PNT ¢ Y A(n) = (1 +0(1))x  £(s) #0 when s = 1.

n<x

Furthermore, one obtains (2.1) using the zero-free region (2.5). Finally, it is possible
to show this way that

RH & Y A(n) =x+ O(x'/?*%) foralle >0, (2.8)

n<x

where the implied constant is allowed to depend on ¢.
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2.4. Dirichlet L-functions

The Riemann zeta function is the simplest member of a large family of L-functions
(for a lot of information about general L-functions, see [14, Chapter 5]). Let us intro-
duce here also Dirichlet L-functions, which are L-functions of degree 1 like {(s).

Let y: Z — C be a Dirichlet character of modulus ¢; i.e., a function that

(i)  is periodic with period g (i.e., x(a + q) = y(a) forall a € Z);

(ii)  is completely multiplicative (i.e., y(mn) = y(m)y(n) for all m,n € Z);

(iii) is such that y(r) = 0 whenever (r,q) # 1.

For every g € N, a trivial instance of Dirichlet character is the principal character
xo(n) = 1(;,4)=1. For modulus 4 the only non-principal character is y4 defined at
primes by

1 if p=1 (mod 4);
xa(p) =149 —-1 if p=3 (mod 4);
0 ifp=2.

For a Dirichlet character y, the corresponding Dirichlet L-function L(s, y) is

defined for Rs > 1 by
-1

L= ) _ I (1 IRt x(z;:) +) 11 (1 ~ X(f)) |
P P peP p

n
neN peP

The Dirichlet L-functions play an important role when studying prime numbers
in arithmetic progressions thanks to the orthogonality relation

1 ifm=1 (modgq);
> x(m>={

v(q) ¥ (mod q) 0 otherwise.

The Dirichlet L-functions have a very similar theory as the Riemann zeta function,
with a functional equation, the generalized RH, etc. The zero-free region for L(s, y)
is not as good as for ¢ (s). In particular, one has not been able to rule out the possibility
of a real exceptional character which has a real zero very close to s = 1.

3. Primes and almost primes in short intervals

3.1. Primes in short intervals

The PNT tells us about the behavior of primes in [1, x] but even the best known
quantitative result (2.1) is so weak that it does not imply that there exists € > 0 such
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that, for sufficiently large x, the interval (x, x + x!~¢] contains primes. However,
Hoheisel [10] showed such a statement already in 1930 and Huxley’s [11] PNT from
1972 gives, for any ¢ > 0,

Y A =(1+o0()H for H = x"/">*e. (3.1)

x<n<x+H

This is based on Huxley’s [11] zero-density estimate
N(0.T) = O(TE 90 (10g T)OD)  forall T > 2and o € [1/2,1], (3.2)

where N (o, T) is the number of zeros of the Riemann zeta function in the rectangle
NR(s) > 0, |J(s)| < T.Huxley’s result has resisted improvements, except that Heath-
Brown [9] has shown (3.2) for H > x7/12—o(1),

The so-called density hypothesis asserts that

N(o,T) = O(T*2°%¢) forall T >2ando € [1/2,1], (3.3)

and this would imply that (3.2) holds for H > x/2%¢ for any & > 0 (see e.g. [12,
Theorem 12.8]). Note that the density hypothesis is a consequence of the Lindelof
hypothesis (see e.g. [12, Section 1.9]) asserting that |{(1/2 + it)| < |t|® for every
e > 0.

If one does not require an asymptotic formula for the number of primes in a short
interval but contends with a lower bound of correct order of magnitude, then shorter
intervals can be reached. In particular, following the initial breakthrough of Iwaniec
and Jutila [13] and a succession of further improvements, Baker—-Harman—Pintz [1]
showed that, for large enough x and some ¢ > 0,

Y Am)z=eH for H = x%%, (3.4)

x<n<x+H

For shorter intervals one does not even know existence of primes. However,
assuming the RH one knows that, for large enough x, the interval (x, x + x!/2 log x]
always contains primes (see e.g. [12, Theorem 12.10]). This barely falls short of one
of the four famous problems of Landau, asserting that there is always a prime between
two consecutive squares, which would follow if one could show that (x, x + x1/2]
always contains primes.

Cramer made a probabilistic model based on “probability of n being prime is
1/logn”. Based on this, one expects that, for a large enough C, the interval (x, x +
C log? x] contains primes for all large x; for more precise conjectures, see [35,6]. Here
we see a large gap between what is known and what is expected.
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3.2. Primes in almost all short intervals

As even under the RH it is not known that (x, x + x!/2] always contains primes, it is
natural to ask what if one only requires that almost all intervals contain primes.
A variant of Huxley’s PNT says that, for almost all x € (X,2X],

> A =(1+o()H for H > x5,

x<n<x+H

see e.g. [7, Theorem 9.1]. This can be proved using a technique due to Selberg [23]
and Huxley’s zero-density estimate (3.2). Furthermore also this result has resisted
improvements.

Again if one only wants a lower bound for the number of primes, one can do
better. By a sieve method Jia [15] has shown that, for some & > 0,

> A(m)=eH for H > x"? (3.5)

x<n<x+H

Assuming the density hypothesis (3.3) (or the Lindel6f hypothesis) one can show
that, for every & > 0, almost all intervals (x, x + x°] contain asymptotically the
expected number of primes (see [12, Theorem 12.9]).

Based on probabilistic models, one expects that, for any # — oo with X — oo,
the interval (x, x + & log x] contains primes for almost all x € (X, 2X], so again
we are far from the expected truth. Heath-Brown [8] has established this conjecture
assuming both the RH and the pair correlation conjecture for zeros of {(s) which
concerns the distribution of the gaps between the imaginary parts of the zeros.

The author and Jori Merikoski [17] have worked on studying the distribution of
primes under the very unlikely assumption that there exist so-called exceptional char-
acters for which the corresponding L-function has a zero extremely close to s = 1.
If such an exceptional character existed, it would have some very interesting conse-
quences. Concerning primes in short intervals, as a corollary in our work we obtain
the following theorem.

Theorem 3.1 (Matomiki—Merikoski [17]). Let C > 2. Let y be a primitive quadratic
character modulo q > 2 and assume that L(s, y) has a real zero By such that

1
nlogq’

Bo=1

for some n > 10.
Let X € [¢q'%,¢

2X 2 L (log X
/ ( > A(n)—H) dy = OC(H X(T+exp(—C\/logr;))).

X y<n<y+H

7799/100

landlet2 < H < X'/3. Then
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This implies that as soon as

n—> 00, —— — 00, and qlo <x < qn99/100’
log X -

we get the asymptotic formula

H
Y= (1+0(1))@

y<p=<y+H

for almost all y € [X,2X].

Note that it is widely believed that such exceptional characters do not exist. But
at least our result allows one to assume they do not exist when attacking primes in
almost all short intervals.

3.3. Almost primes in short intervals

As discussed above, one expects that, for any 7 — oo with X — oo, the interval
(x, x + hlog x] contains primes for almost all x € (X, 2X]. This being far out of
reach, one can ask similar questions about almost-primes, i.e., P numbers that have
at most k prime factors or E; numbers that have exactly k prime factors.

Here P, numbers are easier to deal with since classical sieve methods can be
applied. For instance Wu [26] has shown that, for all sufficiently large x, the interval
(x — x101/232 x] contains P, numbers. This is significantly better than the cor-
responding result for the primes, where one could not cross the 1/2 barrier even
assuming the RH.

Due to the so-called parity barrier (see e.g. [2, Section 16.4]), classical sieves are
unable to distinguish between numbers having an even and an odd number of prime
factors. In particular, a sieve can be used to find P, numbers but, without additional
input, it is impossible to tell whether it found primes or E>-numbers.

However, E; numbers are still easier to deal with than the primes, thanks to
sums over them having a multilinear structure. Terdviinen has shown that for k > 2,
there exists a constant Cy, such that, for almost all x € (X, 2X], the interval (x, x +
(logg_, X)€* log X] contains an Ej-number, where log,, X is m times iterated log-
arithm. Furthermore, in Teridviinen’s result one can take C, = 2.51 and C3 = 6 + .

Let us turn into discussing Px numbers in almost all intervals. Following Fried-
lander [3,4], Friedlander and Iwaniec [2, Section 6.10] showed that as soon as 1 — 0o
with X — oo, the interval (x — hlog X, x] contains Pj9-numbers for almost all
x € (X/2, X]. Furthermore, they say that, using more advanced techniques, one could
obtain Pz numbers. The author improved this in a recent preprint [16].

Theorem 3.2 (Matomiki [16]). Let h — oo with X — oo. Then the interval
(x — hlog X, x] contains P> numbers for almost all x < X.
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4. The Mobius function

4.1. Introducing the Mébius function

Let u(n) denote the Mobius function

(=¥ ifn = py--- px with p; distinct;
p(n) = :
0 otherwise.

Now, for fs > 1,

s
peP p

so u(n) is closely related to A (n) whose generating Dirichlet series was —’/ £ (s).
In particular, using similar contour integration arguments as in Section 2.3 one
can show that

PNT < ((s) has no zeros with 9is = 1 & Z umn) = o(x)

n<x

RH ¢ Y pu(n) = O(x'/?*¢) forall e > 0,

n<x

where the implied constant may depend on &.

4.2. Mobius in short intervals

Until 2014 the story about the Md&bius function in short intervals was exactly the
same as for A(n). In particular, Motohashi [20] and Ramachandra [22] independently
adapted Huxley’s proof of [11] to show that

Z w(n) =o(H) for H > x7/12+e, 4.1)

x<n<x+H
Analogously it was known by [22] that, for almost all x € (X, 2X],

Z u(n) =o(H) for H > x'/6%e,

x<n<x+H

This almost-all interval result was significantly improved in the author’s work
with Radziwitt [18] showing the following theorem.

Theorem 4.1 (Matomaiki—Radziwitt [18]). Let H — oo with x — oo. Then, for
almost all x € (X, 2X], one has

> ) =o(H).

x<n<x+H
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Our result is more general and has led to numerous advancements, e.g., concern-
ing Chowla’s conjecture (see e.g. [24]). In the proof we crucially used the fact that
a typical n has prime factors from certain convenient intervals—something that is
certainly not true forn € P.

A natural question is whether one can improve also on (4.1) along similar lines.
Recently, the author and J. Terdviinen [19] obtained such a result.

Theorem 4.2 (Matomiki-Terdviinen [19]). One has

Z w(n) =o(H) for H> x%5%¢
x<n<x+H
Note that 7/12 = 0.5833.. . ., and that even under RH one cannot get beyond 1/2,
so we get significantly closer to this natural barrier.

5. Proof strategy

5.1. The general strategy

We have already discussed how contour integration can be used to relate questions
about primes and the M&bius function to questions about the Riemann zeta function.
However, there is another more flexible way to go which we will describe in this
section.

In this strategy for proving results on primes or the Mobius function there are two
steps: a combinatorial step and an analytic step. In the combinatorial step a combina-
torial identity or a sieve method is used to reduce the problem to that of estimating
so-called type I and type II sums. In the analytic step these type I and type II sums
are estimated.

This overall strategy works for various problems concerning primes, including
problems for which no other strategy is known. On the other hand, it can also be
used e.g. to reprove Huxley’s PNT (3.1) without appealing to zero density results; see
e.g. [7, Section 7.3].

5.2. The combinatorial step

When one is looking for an asymptotic formula for the number of primes in some in-
teresting set, the combinatorial step is often done using Vaughan’s identity or Heath-
Brown’s identity (see [14, Sections 13.3—13.4]). A special case of Vaughan’s identity
(see e.g. [14, Proposition 13.4]) implies that, for any («y,),

Do anhm) = Y apep(b)loge
X<n<2X X<be<2X
b<x1/3
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— D wwen®AO+ Y aapep(B)A).
X<abc<2X X<abc<2X
be<x1/3 b,e>Xx1/3
From this one can see that instead of ) "y _, <2x % A(n) it suffices to study type
I sums

Z Omndy, and Z Omnam logn 5.1
X<mn<2X X<mn<2X
m<X1/3 m<Xx1/3

with arbitrary bounded coefficients a,, and type II sums

§ Amndmbn

X<mn<2X
X1/3<m=x2/3
with arbitrary bounded coefficients a,, and b,,.
Heath-Brown’s identity is a more flexible variant of Vaughan’s identity in terms
of the different sums it produces, and it is of benefit to be able to deal e.g. with type

I, sums
Z Agmnay.

X<fmn<2X
m~M
n~N

5.3. The analytic step

In the analytic step one estimates the resulting type I and type II sums. In type I sums
(5.1) there is a smooth variable n and one often wants to bring the sum over z inside.
For instance if o = 1,,¢(x,x 4 x3/47, then

Z Cmnlm = Z am Z 1=x3/4 Z %+0(X1/3),

X<mn<2X m<X1/3 X/m<n§(X+X3/4)/m m<X1/3
m<Xx1/3

so that we get an asymptotic formula for such a type I sums.

In type II sums we have genuine bilinear structure and quite often one applies
Cauchy—Schwarz at some point, either to separate the variables or to dispose of some
of the coefficients.

For instance when working on problems concerning short intervals, one can use
Dirichlet polynomials through contour integration (2.7). One gets that

% Z ambn%% Z amby,

x<mn<x+H X<mn<2X

X/H X1/2
Y)Y .
/(logX)100 ((logX)IOO)

essentially if

Amby
Z (mn)1/2+it dt

mn~X
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Such mean values can be estimated through mean and large value results for
Dirichlet polynomials; see e.g. [7, Chapter 7].

5.4. Sieve methods

If one does not require an asymptotic formula, one can use a sieve method. The
most popular prime-detecting sieve is Harman’s sieve (for a comprehensive account,
see [7]) that has been used e.g. in proofs of (3.4) and (3.5).

For A C N and z > 2, write P(z) = [[,-, p and

S(Az)= Y L

(. PE=1
If now A C (X,2X] N N, then
ANP = S(A,2X"?).
Writing also A; = {n € A : d | n}, one has the Buchstab identity

S(A.z) =S(Aw)— Y S(Ay. p).

w<p<z

Harman’s sieve method consists of consecutive applications of Buchstab’s identity to
reach type I and type II sums. Some sums with a positive sign can be dropped if one
looks for a lower bound.

When one is looking for P numbers, one can use more classical sieve methods
that require only type I information. For instance in a lower bound sieve one replaces

the identity
san= Y 1=Y Y @
neh neAd|(n,P(2))
(n,P(z))=1
by an inequality

StA) =Y 1= > u(d)

A Ad|(n,P
(n,g(ez))=1 neAd|(n,P(z))

for an appropriate chosen sequence (™ (d) which is supported only on d < D. Now
one encounters a type I sum
Y H().

dnes
d|P(z)
d<D

Unfortunately, such a sieve can produce a non-trivial lower bound only when D > z2.
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5.5. Implementation of the strategy

In this subsection we briefly discuss the combinatorial and analytic steps in the proofs
of Theorems 3.1, 3.2, 4.1, and 4.2.

In the proof of Theorem 3.2 on P, numbers in almost all short intervals, the com-
binatorial tool used is Richert’s weighted sieve with S-sieve (for a comprehensive
account of these sieves, see [2, Chapters 25 and 11]). These sieves reduce the prob-
lem to understanding type I sums. As mentioned in Section 5.4, sieves using only
type I information as input are incapable of catching primes, but here our goal is P,
numbers. Then in the analytic step we reduce estimating the type I sums in almost all
intervals into estimating averages of Kloosterman sums which can be done by known
results.

Let us now turn to the proof of Theorem 4.1 on the Mobius function for almost
all intervals. The combinatorial step uses Ramaré’s identity in the form saying that,
for (P, Q] C (1, H], one has

p(pm) log P
> owm=— ) : + O(H ,
x<n<x+H x<pm§xé—H #{P <q= Q -4 | m} + 1p+m 10g Q
P<p=<

where the error term comes from those n that do not have a prime factor in the interval
(P, Q]. This combinatorial step leads to type II sums with one of the variables (i.e.,
p) being very small. In the analytic step we reduce estimating such sums to mean
square estimates for Dirichlet polynomials. In order to reach very short intervals, we
need to use an iterative argument, with several applications of Ramaré’s identity.

In the proof of Theorem 4.2 on the Mdobius function in all short intervals, in
the combinatorial step we use both Ramaré’s identity and Heath-Brown’s identity.
Ramaré’s identity allows us to extract a very small prime factor from the sum over
u(n) before using the Heath-Brown identity to split into type I, type II, and type
I/IT sums. In the analytic step we again use estimates on Dirichlet polynomials. This
method actually works in greater generality. For instance we obtain also the following
theorem.

Theorem 5.1 (Matomiki—Terdviinen [19]).

Z { = Hloglogx n O(Hlogloglogx)’ H > 055+,

log x log x
x<p1p2§x+H g g

Dj eP
The proof of Theorem 3.1 works somewhat differently though there are similar
steps. Thanks to the assumption on the existence of exceptional characters, the rel-
evant type II sums become quite easy to bound and then one just needs to obtain
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enough type I information to find primes. In the analytic step for the type I sums one
again reduces the problem to that of bounding Kloosterman sums.
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