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Graph and hypergraph colouring via nibble methods: A survey

Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and
Deryk Osthus

Abstract. This paper provides a survey of methods, results, and open problems on graph and
hypergraph colourings, with a particular emphasis on semi-random “nibble” methods. We also
give a detailed sketch of some aspects of the recent proof of the Erdős–Faber–Lovász conjec-
ture.

1. Introduction

The theory of graph and hypergraph colouring is fundamental to combinatorics, with
numerous applications to other areas of combinatorics and beyond. It has also given
rise to the introduction and development of techniques that have had a major impact
far beyond the settings for which they were initially developed. In this paper, we
survey results, open problems, and methods in the area, with a focus on one such
technique called the “Rödl nibble” or the “semi-random method.” We also provide
a detailed outline of some ideas involved in the authors’ recent proof of the Erdős–
Faber–Lovász conjecture [96], with the Rödl nibble playing an important role.

1.1. Background

A hypergraph H is a pair H D .V; E/, where V is a set of elements called ver-
tices and E � 2V is a set of subsets of V called edges. For convenience, we often
identify a hypergraph H with its edge set and use V.H / to denote its vertex set. A
proper edge-colouring of a hypergraph H is an assignment of colours to the edges
of H such that no two edges of the same colour share a vertex, and a proper vertex-
colouring (often simply called a proper colouring) of H is an assignment of colours
to the vertices of H such that no edge contains vertices all of the same colour. The
chromatic index of H , denoted by �0.H /, is the minimum number of colours used by
a proper edge-colouring of H , and the chromatic number, denoted by �.H /, is the
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minimum number of colours used by a proper vertex-colouring of H . A hypergraph
H is k-uniform if every edge e 2 H satisfies jej D k, and a graph is a 2-uniform
hypergraph. A matching M � H in a hypergraph H is a set of disjoint edges, and an
independent set I � V.H / in H is a set of vertices that contains no edge of H (as a
subset). The maximum size of an independent set in H , denoted by ˛.H /, is called
the independence number of H .

Bounding the chromatic index of a graph or hypergraph is closely related to the
problem of finding large matchings (note that the colour classes of a proper edge-
colouring form a matching). Matching theory is a classical subject in the study of
graphs and is well developed, dating back to the work of König [111], Egerváry
[47], and Hall [75] in the 1930s. Tutte’s theorem [140] provides a characterization
of graphs that contain a perfect matching, and Edmonds’ [46] “blossom algorithm”
finds a maximum matching in a graph in polynomial time. In contrast, there is no
polynomial-time algorithm known to compute the independence number or chromatic
number of a graph, or the size of a largest matching in a k-uniform hypergraph for
k � 3. Indeed, these problems were all among Karp’s [100] original twenty-one NP-
complete problems. It is also NP-complete to compute the chromatic index �0.G/

of a graph G [76]. However, every graph G trivially satisfies �0.G/ � �.G/, where
�.G/ WD maxv2V.G/ dG.v/ and dG.v/ WD j¹e 2 E.G/ W e 3 vºj, and Vizing’s theorem
[142] implies that �0.G/ � �.G/ C 1 (�.G/ is called the maximum degree of G,
dG.v/ is the degree of v in G, and these definitions, as well as the lower bound,
extend naturally to hypergraphs). More generally, it is natural to seek similar bounds
for hypergraphs.

Consequently, there is a rich literature and active research on proving bounds on
the chromatic index and chromatic number of hypergraphs. As we will describe in
this survey, the “Rödl nibble” method has played a major role in the growth of this
field. Though this survey is mainly concerned with hypergraphs (rather than graphs),
several results and colouring problems for hypergraphs arise naturally from the graph
case, so we also provide the relevant context on the latter. Similarly, we provide back-
ground on the study of matchings and independent sets in graphs and hypergraphs.
Some of the earlier developments in the area are described in the surveys of Füredi
[63] and Kahn [86,90]. Some aspects are also covered in the book of Molloy and Reed
[121] on graph colouring with the probabilistic method. For some recent surveys on
perfect matchings in hypergraphs, see [104, 113, 126, 146].

1.2. The Rödl nibble

In its basic form, the Rödl nibble is a probabilistic approach for constructing a com-
binatorial substructure, such as a matching or independent set, within some host
structure (such as a hypergraph) which exhibits some weak quasirandom properties.
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The substructure is built bit by bit by iterating a step called a “nibble,” in which ele-
ments of the host structure are selected randomly. This approach enabled Rödl [125]
to prove the conjecture of Erdős and Hanani [50] on the existence of approximate
combinatorial designs (see Theorem 2.1) in 1985.

Preceding Rödl’s [125] work, Ajtai, Komlós, and Szemerédi [5] showed in 1981
that a similar approach produces large independent sets in graphs with bounded aver-
age degree and no triangles (i.e., three pairwise adjacent vertices). Ultimately, the
work of Rödl [125] and of Ajtai, Komlós, and Szemerédi [5] led to numerous impor-
tant developments in the theory of hypergraph colouring. Frankl and Rödl [58] and
Pippenger (unpublished) showed that Rödl’s “nibble” method produces nearly perfect
matchings in hypergraphs under much more general conditions than those considered
in [125]. In particular, every regular uniform hypergraph with comparatively small
codegree has a nearly perfect matching; Pippenger and Spencer [122], coining the
term “nibble,” generalized this further in 1989 by showing that D-regular hyper-
graphs have chromatic index tending to D as D ! 1, as long as the codegree is
o.D/. (Here a hypergraph H is D-regular if all of its vertices have degree D and
regular if it is D-regular for some D, and the codegree of H is the maximum of the
codegrees of all the pairs of distinct vertices of H , where the codegree of distinct
vertices u; v 2 V.H / is j¹e 2 H W e � ¹u; vººj.) The Pippenger–Spencer theorem
was further generalized to list edge-colourings by Kahn [87] in 1996. Meanwhile,
the Ajtai–Komlós–Szemerédi theorem [5] was generalized in 1982 by Ajtai, Komlós,
Pintz, Spencer, and Szemerédi [3], who showed that the bound also holds for uniform
hypergraphs, and also by Johansson [82] in 1996, who proved a bound on the chro-
matic number of triangle-free graphs of bounded maximum degree. In 2013, Frieze
and Mubayi [60] showed that both of these results have a common generalization in
the setting of vertex-colouring hypergraphs.

These two threads of research, of edge-colouring and of vertex-colouring with the
“nibble” method, have developed somewhat in parallel, sometimes intertwining. They
also both converge in the authors’ [96] recent resolution of the Erdős–Faber–Lovász
conjecture. Indeed, in [96], we apply generalizations of the Pippenger–Spencer theo-
rem [122] as well as results inspired by Johansson’s theorem [82] on vertex-colouring
“locally sparse” graphs.

1.3. Organization of the paper

This paper is organized as follows. In Section 2, we survey results on hypergraph
matchings and edge-colouring hypergraphs, and in Section 3, we survey results on
independent sets and vertex-colourings of graphs and hypergraphs. In Section 4,
we present the history of the Erdős–Faber–Lovász conjecture, and in Section 5 we
describe ideas involved in its recent proof [96].
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1.4. Basic definitions and notation

We say a vertex v 2 V.H / is covered by a matching M if there is an edge e 2 M

such that e 3 v, and we say a set X � V.H / is covered by M if every vertex in X is
covered by M . A matching M in H is perfect if it covers V.H /. The maximum size
of a matching in H , denoted by �.H /, is called the matching number of H . Note that
in a proper edge-colouring, each colour is assigned to the edges of a matching, and in
a proper vertex-colouring, each colour is assigned to the vertices of an independent
set.

We usually denote a graph by G, with vertex set V.G/ and edge set E.G/. The
line graph of a hypergraph H , denoted by L.H /, is the graph G WD L.H / where
V.G/ is the edge set of H , and e; f 2 V.G/ are adjacent in G if e \ f ¤ ¿. For
an edge e 2 H , we write NH .e/ for short instead of NL.H/.e/ to denote the neigh-
bourhood of e in the line graph of H . Note that the matchings in H are in one-to-one
correspondence with the independent sets of L.H / and that �0.H / D �.L.H //.

The fractional chromatic number of a hypergraph H , denoted by �f .H /, is the
smallest k 2 R for which there exists a probability distribution on the independent
sets of H satisfying P Œv 2 I � � 1=k for every v 2 V.H / if I is drawn according
to the distribution, and the fractional chromatic index of H is defined as �0

f
.H / D

�f .L.H //. The list chromatic number of a hypergraph H , denoted by �`.H /, is
the minimum k 2 N such that the following holds: if C is an assignment of “lists
of colours” C.v/ � N for each v 2 V.H / satisfying jC.v/j � k for all v 2 V.H /,
then H has a proper vertex-colouring � such that �.v/ 2 C.v/ for every v 2 V.H /.
The list chromatic index of H is defined as �0

`
.H / D �`.L.H //. It is well known

that every hypergraph H satisfies jV.H /j=˛.H / � �f .H / � �.H / � �`.H / and
jH j=�.H / � �0

f
.H / � �0.H / � �0

`
.H /.

Some authors define a hypergraph to be a pair H D .V; E/ where E is a multi-set
of subsets of V ; in this survey, we refer to such an object as a multi-hypergraph, and
if every e 2 H has size two, then H is a multigraph.

For n2N, we write Œn� WD ¹k 2N W 1� k � nº. We write c D a˙ b if a� b � c �

a C b. In Sections 4 and 5, we use the “�” notation in proofs. Whenever we write
a hierarchy of constants, they have to be chosen from right to left. More precisely,
if we claim that a result holds whenever 0 < a � b � 1, then this means that there
exists a non-decreasing function f W .0; 1� 7! .0; 1� such that the result holds for
all 0 < a; b � 1 with a � f .b/. We will not calculate these functions explicitly.
Hierarchies with more constants are defined in a similar way. We use “log” to denote
the natural logarithm, which is relevant in Section 3.

Our graph theory notation is standard, but one may refer to [96, Section 3] for a
comprehensive list of the notation we use.
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2. Matchings and edge-colouring

2.1. Early results

A partial Steiner system with parameters .t; k; n/ is a k-uniform n-vertex hyper-
graph such that every set of t vertices is contained in at most one edge, and a (full)
Steiner system with parameters .t; k; n/ is a k-uniform n-vertex hypergraph such that
every set of t vertices is contained in precisely one edge. Note that a Steiner system
with parameters .t; k; n/ has

�
n
t

�ı�
k
t

�
edges, which implies that

�
k
t

�ˇ̌�
n
t

�
. The so-called

existence conjecture for designs asserts that, apart from finitely many exceptions, this
and a few other trivial divisibility conditions are sufficient to ensure the existence of a
Steiner system with parameters .t; k; n/. In 1963, Erdős and Hanani [50] asked for an
approximate version of this conjecture, which was confirmed by Rödl [125] in 1985,
initiating the use of the celebrated “nibble” method, as follows.

Theorem 2.1 (Rödl [125]). For every k > t � 1 and " > 0, there exists n0 such
that the following holds. For every n � n0, there exists a partial Steiner system with
parameters .t; k; n/ and at least .1 � "/

�
n
t

�ı�
k
t

�
edges.

The existence conjecture was proved by Keevash [103] in 2014, by combining a
generalization of Theorem 2.1 (briefly discussed in Section 2.3), with an “absorption”
technique called “randomized algebraic construction.” Glock, Kühn, Lo, and Osthus
[66] provided a purely combinatorial proof, using “iterative absorption” instead of
the algebraic approach of Keevash.

A partial Steiner system H with parameters .t; k; n/ corresponds to a matching
M WD ¹

�
e
t

�
W e 2 Hº in the

�
k
t

�
-uniform auxiliary hypergraph with vertex set

�
V.H/

t

�
and edge set ¹

�
X
t

�
W X 2

�
V.H/

k

�
º. In particular, a Steiner system with parameters

.t; k; n/ exists if and only if the hypergraph H�
t;k;n

with vertex set
�

Œn�
t

�
and edge

set ¹
�

X
t

�
W X 2

�
Œn�
k

�
º has a perfect matching, and Theorem 2.1 is equivalent to the

statement that H�
t;k;n

contains a matching covering all but a vanishing proportion of
its vertices as n !1. This result holds much more generally for hypergraphs satisfy-
ing mild pseudorandomness conditions involving the degrees and codegrees. Indeed,
Frankl and Rödl [58] proved that if H is an N -vertex, D-regular hypergraph with
codegree at most D=.log N /4, then H has a matching covering all but o.N / ver-
tices as N !1. Since H�

t;k;n
is
�

n�t
k�t

�
-regular and has codegree at most

�
n�t�1
k�t�1

�
, this

result generalizes Theorem 2.1. Pippenger generalized this result further, by relaxing
the codegree condition, as follows. (Pippenger’s result was not published, but a proof
is given, e.g., in [63, Theorem 8.4].)

Theorem 2.2 (Pippenger). For every k; " > 0, there exists ı > 0 such that the fol-
lowing holds. If H is an n-vertex k-uniform D-regular hypergraph with codegree at
most ıD, then there is a matching in H covering all but at most "n vertices.
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As mentioned in Section 1.2, Theorem 2.2 is proved with the nibble method,
which we now sketch in more detail. Each step of the nibble process produces a
matching in a nearly Di -regular subhypergraph Hi � H (beginning with H1 WD H

and D1 WD D), as follows. First, select a set of edges Xi � Hi randomly, where each
edge e 2 Hi is included in Xi independently with probability "0=Di where "0 > 0

is a small constant depending on k and ". Then, let Ni � Xi be the matching con-
sisting of the edges of Xi that are disjoint from the rest. Crucially, each vertex is in
an edge of Xi with probability close to 1 � e�"0 , and moreover, the codegree condi-
tion ensures that two distinct vertices are in an edge of Xi somewhat independently.
This fact implies that the hypergraph HiC1 obtained by removing every vertex in an
edge of Xi is nearly DiC1-regular, where DiC1 WD e�"0.k�1/Di , which in turn allows
the nibble process to continue. Each edge e 2 H is in Xi with probability roughly
."0=Di /e

�"0k.i�1/ D ."0=D/e�"0.i�1/ (indeed, e is in Hi with probability roughly
e�"0k.i�1/, and conditioning on this, is selected in Xi with probability "0=Di ). Each
edge in Xi is then kept in Ni with probability roughly e�"0k . Thus, after t steps of
the nibble, each edge e 2 H is contained in M WD

St
iD1 Ni with probability close

to
Pt

iD1."0=D/e�"0.i�1/e�"0k D ˛=D, where ˛ WD "0e�"0k.1 � e�"0t /=.1 � e�"0/. In
particular, M is a matching and the expected number of uncovered vertices is essen-
tially at most .1 � ˛/n � "n (if "0 and t�1 are small enough). Kahn [89] and Kahn
and Kayll [93] proved generalizations of Theorem 2.2 where the regularity and code-
gree conditions are replaced with the existence of a fractional matching satisfying a
certain “local sparsity” condition, which can be used to guide the nibble process.

It is natural to wonder if the “random greedy algorithm” (which would select
Xi to consist of a single edge chosen uniformly at random from Hi in the process
above) also produces a nearly perfect matching under the conditions of Theorem 2.2.
Indeed, this result was obtained independently by Spencer [138] and by Rödl and
Thoma [127]. To prove this, Spencer [138] considered a branching process, and Rödl
and Thoma [127] showed that the random greedy algorithm produces a matching with
a similar distribution as the nibble process. Note that these results immediately yield a
(randomized) polynomial-time Monte Carlo algorithm for finding the matching guar-
anteed by Theorem 2.2. The proof of Theorem 2.2 given in [122] also yields such an
algorithm. Rödl and Thoma also asked if there is an NC-algorithm (and in particular,
a deterministic, polynomial-time algorithm) for finding such a matching, and Grable
[70] answered their question in the affirmative.

In 1989, Pippenger and Spencer [122] generalized Theorem 2.2 to edge-colou-
ring, as follows.

Theorem 2.3 (Pippenger and Spencer [122]). For every k; " > 0, there exists ı > 0

such that the following holds. If H is a k-uniform D-regular hypergraph of codegree
at most ıD, then �0.H / � .1 C "/D.
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Since every hypergraph H satisfies �.H / � jH j=�0.H / and moreover jH j D

DjV.H /j=k if H is D-regular and k-uniform, Theorem 2.3 implies Theorem 2.2.
In fact, in Pippenger and Spencer’s [122] proof of Theorem 2.3, they used the argu-
ment described above to select nearly perfect matchings randomly with the nibble
process, which ultimately form most of the colour classes. Roughly, they show that
after selecting D such matchings—in groups of size o.D/, selected iteratively in a
“semi-random” way (which could also be considered a nibble process)—the remain-
ing hypergraph has small maximum degree and can thus be properly edge-coloured
with at most "D colours in a “greedy” fashion.

Pippenger and Spencer [122] actually proved the slightly stronger version of
Theorem 2.3 that applies if every vertex of H has degree .1 ˙ ı/D, rather than pre-
cisely D. Kahn [84] observed that Theorem 2.3 holds more generally for k-bounded
hypergraphs of maximum degree at most D, by showing that such hypergraphs can
be “embedded” in a nearly D-regular k-uniform hypergraph with the same or larger
chromatic index (a hypergraph H is k-bounded if every e 2 H satisfies jej � k).
This sequence of results culminated in Kahn’s [87] generalization of the Pippenger–
Spencer theorem to list colouring, as follows.

Theorem 2.4 (Kahn [87]). For every k; " > 0, there exists ı > 0 such that the fol-
lowing holds. If H is a k-bounded hypergraph of maximum degree at most D and
codegree at most ıD, then �0

`
.H / � .1 C "/D.

The so-called “List Edge Colouring conjecture”—first posed by Vizing in 1975
and asked by many others since (see, e.g., [81])—asserts that every graph G satisfies
�0

`
.G/ D �0.G/, and Theorem 2.4 for k D 2 confirms this conjecture asymptotically.

Kahn’s proof of Theorem 2.4 is also based on a nibble argument but is notably dif-
ferent from Pippenger and Spencer’s [122] proof of Theorem 2.3. In particular, rather
than selecting colour classes one by one, in each step of the nibble, edges are assigned
a colour randomly from their lists, so the colour classes are constructed in parallel.

For linear hypergraphs (i.e., hypergraphs of codegree one), Molloy and Postle
[119, Theorem 10] recently generalized Theorem 2.4 to the setting of “correspon-
dence colouring” (also known as DP-colouring), and Bonamy, Delcourt, Lang, and
Postle [21, Theorem 7] generalized this result further by proving a “local version.”

Several results also strengthen Theorems 2.2–2.4 by improving the asymptotic
error terms. This is the focus of Section 2.2. We conclude this subsection by dis-
cussing two open problems from the late 1990s. Both of these are conjectured to hold
for multi-hypergraphs. In fact, Theorems 2.2–2.4 also hold for multi-hypergraphs (but
the codegree conditions also bound the number of copies of each edge).

Conjecture 2.5 (Kahn [87]). For every k;" > 0, there exists K such that the following
holds. If H is a k-bounded multi-hypergraph, then �0

`
.H /� max¹.1C "/�0

f
.H /;Kº.
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Even the weaker version of this conjecture, with the list chromatic index replaced
by the chromatic index, is wide open. Only the case k D 2 is known. For 2-bounded
hypergraphs (i.e., graphs with edge-multiplicity 1), the conjecture follows from Viz-
ing’s theorem [142] for the chromatic index and from Theorem 2.4 for the list chro-
matic index. As shown by Seymour [131] using Edmonds’ Matching Polytope theo-
rem [45], every multigraph G satisfies �0

f
.G/ D max¹�.G/; �.G/º, where

�.G/ WD max

´
2
ˇ̌
E.H/

ˇ̌ˇ̌
V.H/

ˇ̌
� 1

W H � G;
ˇ̌
V.H/

ˇ̌
� 3 and is odd

µ
:

Kahn [88] proved that every multigraph G satisfies �0.G/ � .1 C o.1//�f .G/ and
in [91] extended this result to list colouring, thus confirming Conjecture 2.5 in full
for the case k D 2. For the ordinary chromatic index, even more is now known in
this case. In the 1970s, Goldberg [69] and Seymour [131] independently conjectured
that every multigraph G satisfies �0.G/ � max¹�.G/ C 1; d�.G/eº. Thus, Kahn’s
result [88] confirmed the Goldberg–Seymour conjecture asymptotically. Recently, a
full proof (which does not rely on probabilistic arguments) of the Goldberg–Seymour
conjecture was obtained by Chen, Jing, and Zang [31].

The next conjecture was posed by Alon and Kim [9]. A hypergraph H is called
t -simple if every two distinct edges of H have at most t vertices in common; in
particular, a hypergraph is 1-simple if and only if it is linear.

Conjecture 2.6 (Alon and Kim [9]). For every k � t � 1 and " > 0, there exists
D0 such that the following holds. For every D � D0, if H is a k-uniform, t -simple
multi-hypergraph with maximum degree at most D, then

�0.H / � .t � 1 C 1=t C "/D:

The conjecture is true for k D 2 by Vizing’s theorem [142] for t D 1 and by a
result of Shannon [133] for t D 2. For k > t D 1, the conjecture follows from Theo-
rem 2.3 (together with the observation of Kahn in [87] mentioned above). Kahn (see
[9]) conjectured that the t -simple condition in Conjecture 2.6 can be relaxed to requir-
ing that the “.t C 1/-codegrees” are small (i.e., every set of t C 1 vertices is contained
in at most ıD edges, for some ı > 0), which if true, would generalize Theorem 2.3.
The remaining cases are still open. The case k D t (without the “C"” in the bound)
was proved by Füredi, Kahn, and Seymour [64] for the fractional chromatic index.

Alon and Kim [9] showed that Conjecture 2.6 holds for intersecting hypergraphs
(i.e., hypergraphs with matching number one), and they gave a construction to show
that if Conjecture 2.6 is true, then it would be asymptotically tight for every k � t

for which there exists a projective plane of order t � 1. We sketch their construction
here. Let D be a large integer divisible by t , let m WD t2 � t C 1, and fix a projective
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plane P of order t � 1 with m lines `1; `2; : : : ; `m on a set of m points. For each
of the lines `i , let Fi be a collection of D=t sets of size k containing `i , so that all
the mD=t sets ¹A n `i W 1 � i � m and A 2 Fiº are pairwise disjoint and disjoint
from P . Let H be the k-uniform hypergraph whose edge set is

S
i Fi . Then clearly

H is intersecting, k-uniform, and t -simple; its maximum degree is at most D; and it
has mD=t D .t � 1 C 1=t/D edges. Thus, �0.H / � .t � 1 C 1=t/D.

2.2. Asymptotic improvements

Let H be a k-uniform, D-regular hypergraph on n vertices. Recall that Pippenger’s
theorem (Theorem 2.2) shows that if the codegree of H is o.D/, then there is a
matching in H covering all but at most o.n/ vertices. However, his proof does not
supply an explicit estimate for the error term o.n/. Also recall that Theorems 2.3 and
2.4 imply that if the codegree of H is o.D/, then the chromatic index of H is D C

o.D/. Sharpening these error terms is useful for many applications, and considerable
progress has been made towards this end with improved analysis and variations of the
nibble method, with more powerful concentration inequalities. In this subsection, we
will discuss many such results.

Grable [71] proved that if the codegree is at most D1�ı in Theorem 2.2, then
there is a matching covering all but at most n.D= log n/�ı=.2k�1Co.1// vertices. In
1997, Alon, Kim, and Spencer [10] improved this bound for linear hypergraphs by
showing the following.

Theorem 2.7 (Alon, Kim, and Spencer [10]). Let k � 3. Let H be a k-uniform D-
regular n-vertex linear hypergraph. Then H has a matching containing all but at
most O.nD� 1

k�1 logck D/ vertices, where ck D 0 for k > 3 and c3 D 3=2.

Based on computer simulations (see, e.g., [13]), Alon, Kim, and Spencer conjec-
tured that the simple random greedy algorithm outlined in the previous subsection
should also produce a matching containing all but at most O.nD� 1

k�1 logO.1/ D/

vertices. The results of Spencer [138] and of Rödl and Thoma [127] mentioned after
Theorem 2.2 only show that the random greedy algorithm produces a matching cov-
ering all but o.n/ vertices. This error term was sharpened by Wormald [145] and
Bennett and Bohman [15] but the conjecture is still open.

Kostochka and Rödl [112] extended Theorem 2.7 to hypergraphs with small code-
grees C (i.e., satisfying C � D1� for some  > 0). In 2000, Vu [143] further
extended the result of Kostochka and Rödl [112] by removing the assumption C <

D1� on the codegree. More precisely, he showed that every k-uniform D-regular
n-vertex hypergraph with codegree at most C contains a matching covering all but
at most O.n.D=C /�

1
k�1 logc D/ vertices for some constant c > 0. He also obtained

stronger bounds if one makes additional assumptions on the “t-codegrees” for t > 2.
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Very recently, Kang, Kühn, Methuku, and Osthus [99] improved Theorem 2.7 and
the results of Kostochka and Rödl [112] and of Vu [143] for hypergraphs with small
codegree. In the case when H is linear, they showed the following.

Theorem 2.8 (Kang, Kühn, Methuku, and Osthus [99]). For every k > 3, � 2 .0; 1/,
and �< k�3

.k�1/.k3�2k2�kC4/
, there exists n0 such that the following holds for all n�n0

and D � exp.log� n/.
If H is a k-uniform D-regular linear hypergraph on n vertices, then H contains

a matching covering all but at most nD� 1
k�1

�� vertices.

Their approach consists of showing that the Rödl nibble process not only con-
structs a large matching but it also produces many well-distributed “augmenting stars”
which can then be used to significantly augment the matching constructed by the Rödl
nibble process.

Below we discuss results concerning improvements on the chromatic index of
hypergraphs. In 2000, Molloy and Reed [120] sharpened the error term in Theo-
rem 2.4. For linear hypergraphs their result can be stated as follows.

Theorem 2.9 (Molloy and Reed [120]). If H is a k-uniform linear hypergraph with
maximum degree at most D, then �0

`
.H / � D C O.D1�1=k log4 D/.

For graphs, this result improves a result of Häggkvist and Janssen [74] and pro-
vides the best-known general bound for the List Edge Colouring conjecture. Molloy
and Reed [120] actually proved a more general result showing that every k-uniform
hypergraph H with maximum degree at most D and codegree at most C has list
chromatic index at most D C O.D.D=C /�1=k.log D=C /4/, which also gave the
best-known bound on the ordinary chromatic index �0.H /. Very recently, Kang,
Kühn, Methuku, and Osthus [99] showed that this bound on the chromatic index can
be improved further. For linear hypergraphs their result can be stated as follows.

Theorem 2.10 (Kang, Kühn, Methuku, and Osthus [99]). For every k � 3, � 2 .0;1/,
and � < k�2

k.k3Ck2�2kC2/
, there exists n0 such that the following holds for all n � n0

and D � exp.log� n/.
If H is a k-uniform linear hypergraph on n vertices with maximum degree at

most D, then �0.H / � D C D1�1=k�� .

Theorems 2.8–2.10 are unlikely to be best possible. The best lower bounds we
know come from the following construction, in which every matching leaves �.n=D/

vertices uncovered. Consider an m-vertex k-uniform D-regular linear hypergraph
H such that m D O.D/ and m � 1 is divisible by k (e.g., using a Steiner system
S.2; k; m/), so the union of n=m disjoint copies of H yields an n-vertex k-uniform
D-regular hypergraph with at least �.n=D/ vertices uncovered by any matching.
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If we know more about the hypergraph H , then the bound given in Theorem 2.8
can be improved further. For example, if H is a Steiner triple system (i.e., a Steiner
system with parameters .2;3;n/), then H is .n�1/=2-regular and linear, and Brouwer
[25] conjectured the following in 1981.

Conjecture 2.11 (Brouwer [25]). Every Steiner triple system with n vertices has a
matching of size at least n�4

3
.

Recently, combining the nibble method with the robust expansion properties of
edge-coloured pseudorandom graphs, Keevash, Pokrovskiy, Sudakov, and Yepremyan
[105] showed that every Steiner triple system has a matching covering all but at most
O.log n= log log n/ vertices.

A related problem is a famous conjecture of Ryser, Brualdi, and Stein [26, 129,
139] which states that every n � n Latin square has a transversal of order n � 1

and moreover, if n is odd, then it has a full transversal. The best-known bound for
this problem was given in [105] where the authors showed that every n � n Latin
square contains a transversal of order n � O.log n= log log n/. The problem of find-
ing large transversals in Latin squares can be rephrased as a problem about finding
large matchings in hypergraphs. Indeed, we can construct a 3-uniform hypergraph
HL on 3n vertices from an n � n Latin square L as follows. The vertex set of HL is
V.HL/ D R [ C [ S where R, C , and S are the rows, columns, and symbols of L.
For every entry of L we add an edge to HL—if the .i; j /-th entry of L contains a
symbol s, then we add the edge ¹i; j; sº to HL. Clearly, HL is n-regular and 3-partite,
and a matching in H corresponds to a transversal in L. Thus, the Ryser–Brualdi–
Stein conjecture can be regarded as the “partite-version” of Brouwer’s conjecture.

Similarly, it is interesting to determine the maximum chromatic index of an n-
vertex Steiner triple system (or an n � n Latin square). Meszka, Nedela, and Rosa
[116] conjectured the following in 2006.

Conjecture 2.12 (Meszka, Nedela, and Rosa [116]). If H is a Steiner triple system
with n > 7 vertices, then �0.H / � .n � 1/=2 C 3 and moreover, if n � 3 .mod 6/,
then �0.H / � .n � 1/=2 C 2.

Since an n-vertex Steiner triple system is .n � 1/=2-regular, it is obvious that
�0.H / � .n � 1/=2, and equality holds if and only if H can be decomposed into
perfect matchings. Hence, if n � 1 .mod 6/, then �0.H / � .n C 1/=2. In fact, there
are constructions of Steiner triple systems with n vertices which show that Conjec-
ture 2.12, if true, is tight [28, 115, 123, 141]. Similarly, for Latin squares the follow-
ing conjecture was posed independently by Cavenagh and Kuhl [29] in 2015 and
Besharati, Goddyn, Mahmoodian, and Mortezaeefar [18] in 2016.
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Conjecture 2.13. Let L be an n � n Latin square. If HL is the corresponding 3-
uniform 3-partite hypergraph, then �0.HL/ � n C 2 and moreover, if n is odd, then
�0.HL/ � n C 1.

Note that Conjecture 2.12 implies Conjecture 2.11, and Conjecture 2.13 implies
the Ryser–Brualdi–Stein conjecture. Theorem 2.8 implies that every n-vertex Steiner
triple system has chromatic index at most n=2 C O.n2=3�1=100/ and every hyper-
graph corresponding to an n � n Latin square has chromatic index at most n C

O.n2=3�1=100/; currently these bounds are the best known.

2.3. Pseudorandom hypergraph matchings

Let H be a k-uniform D-regular hypergraph on n vertices, and let M � H be a ran-
dom matching generated by the nibble process, such that M covers all but at most "n

vertices of H (with high probability), where " 2 .0; 1/. A heuristic argument suggests
that each vertex of H is left uncovered by M roughly independently with probability
". In many applications (including our proof in [96]), it is useful to find a nearly per-
fect matching guaranteed by Theorem 2.2 with additional “pseudorandom” properties
that are compatible with this heuristic. In this subsection, we discuss some results
that provide nearly perfect pseudorandom hypergraph matchings and some of their
applications. In particular, we show how a “pseudorandom version” of Pippenger’s
theorem (Theorem 2.2) is in fact equivalent to the Pippenger–Spencer theorem (The-
orem 2.3).

The first pseudorandom hypergraph matching result of this sort was proved by
Alon and Yuster [14] in 2005. With a slightly stronger assumption regarding code-
grees, Ehard, Glock, and Joos [48] recently proved a stronger and more flexible
version. The following is an immediate corollary of [48, Theorem 1.2].

Theorem 2.14 (Ehard, Glock, and Joos [48]). For every k � 2 and ı 2 .0; 1/, there
exists D0 such that the following holds for all D � D0 and " WD ı=.50k2/. Sup-
pose that H is a k-uniform hypergraph and F is a collection of subsets of V.H /

such that jF j � exp.D"2
/ and

P
v2S dH .v/ � kD1Cı for every S 2 F . If H has

maximum degree at most D, codegree at most D1�ı , and e.H / � exp.D"2
/, then

there exists a matching M of H such that every S 2 F satisfies jS \ V.M /j D

.1 ˙ D�"/
P

v2S dH .v/=D.

Note that if H is D-regular in Theorem 2.14 and V.H / 2 F , then M covers
all but at most nD�" vertices of H . Moreover, for every S 2 F , at most jS jD�"

vertices are uncovered by M , as we would expect if each vertex was uncovered
with probability D�". Ehard, Glock, and Joos [48] actually proved a stronger ver-
sion of Theorem 2.14 involving weight functions on the edges of H of the form
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! W H ! R�0. The “pseudorandomness” heuristic suggests that every edge is in M

with probability 1=D, and thus the expected total weight of edges in M should beP
e2H !.e/=D.

Hypergraph matching results, particularly ones with pseudorandomness guaran-
tees, are widely applicable in combinatorics and beyond. We give some examples
here. Ford, Green, Konyagin, Maynard, and Tao [57] proved a pseudorandom gener-
alization of Theorem 2.2 (stated for coverings rather than matchings and which allows
for non-uniform hypergraphs). They used it to improve bounds on gaps between
prime numbers. As we saw in Section 2.2, in [99, 105], pseudorandom properties of
hypergraph matchings can be “bootstrapped” to produce a larger matching. Further-
more, in some applications of the “absorption method,” such as [34, 55, 66, 67, 103],
a matching in an auxiliary hypergraph is used to construct a nearly spanning struc-
ture which is complemented by an “absorbing structure,” so that the pseudorandom
properties can be exploited for “absorption,” which results in a spanning structure.
Hypergraph matchings with pseudorandomness properties can also be used to con-
struct approximate decompositions (see, e.g., [65, 66, 103, 107]) or edge-colourings.
Indeed, in the proof of the Erdős–Faber–Lovász conjecture, we use Theorem 2.14 to
obtain a partial edge-colouring of a linear hypergraph in which each colour class has
pseudorandom properties that enable some of the uncovered vertices to be absorbed
(see Section 5.1 for more details). As an illustration of this approach, we show how
Theorem 2.14 implies a version of the Pippenger–Spencer theorem. First we need the
following definition and observation.

Definition 2.15. For every hypergraph H and t 2 N, we define the t -wise incidence
hypergraph H� WD inct .H / to be the hypergraph with

� vertex set H [ .Œt � � V.H // and

� edge set ¹¹eº [ .¹iº � e/ W e 2 H ; i 2 Œt �º.

That is, for every e D¹v1; : : : ;vkº 2H , we include t edges in the t -wise incidence
hypergraph H� WD inct .H /, where each such edge is of the form ¹e; .i;v1/; : : : ; .i;vk/º

for some i 2 Œt �.

Observation 2.16. Let H be a hypergraph, and let H� WD inct .H / be the t -wise
incidence hypergraph. The following holds.

(a) If H is k-uniform, then H� is .k C 1/-uniform.

(b) The codegree of H� is at most the codegree of H .

(c) For every v 2 V.H / and i 2 Œt �, dH�..i; v// D dH .v/, and for every e 2 H ,
dH�.e/ D t .
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(d) A set M � H� is a matching if and only if M1; : : : ; Mt , where Mi WD ¹e 2

H W 9f 2 M; f � ¹iº � eº are pairwise edge-disjoint matchings in H . In
particular, the chromatic index of H is at most t if and only if H� contains
a matching covering H .

Using Observation 2.16, we can show that, under a slightly stronger codegree
condition, Theorem 2.14 implies Theorem 2.3 (i.e., that the chromatic index of a D-
regular hypergraph of small codegree tends to D), as follows. Let k � 2, ı 2 .0; 1/,
and " WD ı=.50.k C 1/2/, and suppose that H is a k-uniform, n-vertex, D-regular
hypergraph, with codegree at most D1�ı , such that D � log"�2

n. By Observa-
tion 2.16 (a)–(c), H� WD incD.H / is a .k C 1/-uniform, D-regular hypergraph with
codegree at most D1�ı , and e.H�/ D D � e.H / D D2n=k � exp.D"2

/. Let F WD

¹ŒD� � ¹vº W v 2 V.H /º, and note that F is a collection of subsets of V.H�/ such
that jF j � n � exp.D"2

/ and every S 2 F satisfies
P

v2S dH�.v/ D D2. Thus, if
D is sufficiently large, then, by Theorem 2.14, there exists a matching M in H�

such that jS \ V.M /j � .1 � D�"/jS j for every S 2 F . By Observation 2.16 (d),
M1; : : : ;MD , where Mi WD ¹e 2H W 9f 2M; f � ¹iº � eº are pairwise edge-disjoint
matchings, and moreover, by the construction of F , every v 2 V.H / is covered by
all but D1�" of these matchings. In particular, �0.H 0/ � D and �.H n H 0/ � D1�",
where H 0 WD

SD
iD1 Mi . Hence, �0.H n H 0/ � k.�.H n H 0/ � 1/ C 1 � kD1�", so

�0.H / � �0.H 0/ C �0.H n H 0/ � D C kD1�" D D C o.D/, as desired.
Theorem 2.14 is actually proved via a generalization of Theorem 2.9 (which

implies Theorem 2.3). Thus, the above argument is based on “circular logic,” but it
demonstrates that in the setting of Theorem 2.2, the existence of nearly perfect pseu-
dorandom hypergraph matchings is in some sense equivalent to the existence of a
nearly optimal proper edge-colouring (the above comments about the proof of Theo-
rem 2.14 also apply to the result of Alon and Yuster [14] on pseudorandom matchings,
which is proved via Theorem 2.3). Moreover, Kahn’s [87] proof of Theorem 2.4 (in
the case when all lists are the same) more closely resembles the approach described
here, wherein a nibble process is used to construct a matching in the incidence hyper-
graph, than it does Pippenger and Spencer’s [122] proof of Theorem 2.3.

Note that one could also prove Theorem 2.14 “more directly” by a more careful
analysis of the proof of Theorem 2.2—the reason being essentially that the matchings
chosen in each step of the nibble intersect the sets in F as one would expect a random
set would. This intuition is made rigorous in [99], where Theorem 2.10 is derived
from [99, Theorem 7.1], a pseudorandom version of Theorem 2.8. Moreover, the
approach of finding an edge-colouring via Theorem 2.14 and Observation 2.16 is
very versatile and was used, e.g., in [96, 99] (see Section 5.1).
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3. Independent sets and vertex-colouring

3.1. Independence number

Prior to Rödl’s [125] proof of the Erdős–Hanani conjecture [50], in 1981, Ajtai, Kom-
lós, and Szemerédi [5] employed a similar semi-random approach to show that every
triangle-free graph has a large independent set.

Theorem 3.1 (Ajtai, Komlós, and Szemerédi [4, 5]). There exists an absolute con-
stant c > 0 such that the following holds. If G is an n-vertex triangle-free graph of
average degree at most d , then

˛.G/ � c
� n

d

�
log d:

This result has spawned intensive research over the last four decades. Theorem 3.1
and a hypergraph analogue of it due to Komlós, Pintz, Spencer, and Szemerédi [110]
have surprising applications to number theory and geometry, respectively. Improving
and generalizing Theorem 3.1 is also a problem of major importance within combina-
torics, in part due to connections to Ramsey theory and to the study of random graphs
and algorithms.

In [5], Ajtai, Komlós, and Szemerédi used Theorem 3.1 to construct an infinite
Sidon sequence (i.e., a sequence of positive integers in which the pairwise sums are
all distinct) with “high density;” in particular, for every n, the sequence contains
�..n log n/1=3/ integers less than n. Erdős conjectured that for every " > 0, there
exists an infinite Sidon sequence containing �.n1=2�"/ integers less than n, and this
problem is still open. The best-known result is due to Rusza [128], who proved the
weaker version with 1=2 replaced with

p
2 � 1 in the exponent, and Cilleruelo [33]

provided an explicit construction of such a sequence.
A new proof of Theorem 3.1 was given in [4] by Ajtai, Komlós, and Szemerédi

(written by Spencer), which uses the Cauchy–Schwarz inequality to build the inde-
pendent set deterministically, rather than with a random nibble process. Theorem 3.1
is used in [4] to prove the Ramsey number bound R.3;k/ D O.k2= log k/. (The Ram-
sey number R.`; k/ is the smallest n such that every red-blue edge-colouring of the
n-vertex complete graph contains either a red copy of K` or a blue copy of Kk .)
The matching lower bound R.3; k/ D �.k2= log k/ was later established by Kim
[109], also using a semi-random approach. Theorem 3.1 was improved by Shearer
[134, 135], who showed that the constant c can be replaced with 1 � o.1/ in The-
orem 3.1, as conjectured by Ajtai, Komlós, and Szemerédi [5]. Although Shearer’s
proof is more similar to the Cauchy–Schwartz approach of [4] than the random nib-
ble approach of [5], his proof implies that the random greedy algorithm produces an
independent set with expected size at least .1 � o.1//.n=d/ log d in every n-vertex
triangle-free graph of average degree d .
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Improving the value of the leading constant in Theorem 3.1, or determining if 1�

o.1/ is best possible, is an interesting open problem. Bollobás [20] proved that there
are n-vertex d -regular triangle-free graphs with ˛.G/� 2.n=d/ logd (by considering
random d -regular graphs), so Shearer’s bound [134] is within a factor of about at most
two of best possible. Shearer’s result also implies that R.3; k/ � .1 C o.1//k2= log k,
which is still the best-known upper bound, and any further improvement to the value
of c in Theorem 3.1 would improve this bound on the Ramsey number as well and be
a major breakthrough. Fiz Pontiveros, Griffiths, and Morris [56] and independently
Bohman and Keevash [19] showed that R.3;k/ � .1=4� o.1//k2= logk, so Shearer’s
bound on R.3; k/ is also within a factor of about at most four of best possible.

Theorem 3.1 holds more generally for k-uniform hypergraphs, where k � 2, as
follows. An `-cycle in a k-uniform hypergraph is a set of ` edges spanned by at most
`.k � 1/ vertices, which does not contain an `0-cycle for `0 < `, and the girth of
a k-uniform hypergraph is the length of its shortest cycle (or infinity if there is no
cycle). In 1982, Komlós, Pintz, Spencer, and Szemerédi [110] proved an analogue of
Theorem 3.1 for 3-uniform hypergraphs of girth at least five and used this result to
disprove Heilbronn’s conjecture on the Heilbronn triangle problem, which asks for the
minimum area of a triangle formed by any three points out of a set of n points placed
in the unit disk. Heilbronn conjectured that this area is at most O.n�2/ for any set
of n points, but Komlós, Pintz, Spencer, and Szemerédi [110] used their hypergraph
analogue of Theorem 3.1 to construct a set of n points in which the minimum area of
a triangle with its vertices among those points is at least �.n�2 log n/. Ajtai, Komlós,
Pintz, Spencer, and Szemerédi [3] later generalized the result of [110] by showing
that every k-uniform hypergraph on n vertices with girth at least five and average
degree at most d contains an independent set of size at least �.n.log d=d/1=.k�1//.
Duke, Lefmann, and Rödl [44] strengthened this result by showing that for k � 3, this
bound holds for hypergraphs of girth at least three (that is, for linear hypergraphs),
confirming a conjecture of Spencer [137] in a strong sense. Note that for k D 2, this
bound matches the one in Theorem 3.1. Notably, the proofs in [110] and [3] use a
random nibble approach like in [5]. The proof in [44] proceeds by a reduction to the
case of hypergraphs of girth at least 5, whence the result follows from the result in [3].

Ajtai, Erdős, Komlós, and Szemerédi [2] suggested that Theorem 3.1 may still
hold for Kr -free graphs for any fixed r (and it may even hold more generally for
vertex-colouring—see Conjecture 3.3), and they proved the weaker result that Kr -
free graphs on n vertices of average degree at most d have an independent set of size
at least �..n=d/ log log d/. Later, a breakthrough of Shearer [136] in 1995 improved
this bound to �..n=d/ log d= log log d/, which, up to the leading constant factor,
is still the best known. Alon [6] proved that Theorem 3.1 holds more generally for
graphs where the neighbourhood of every vertex has bounded chromatic number.
These results of Shearer [136] and of Alon [6] actually bound the average size of
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an independent set. In this vein, Davies, Jenssen, Perkins, and Roberts [40] recently
proved that the average size of an independent set in a triangle-free graph of max-
imum degree at most � is at least .1 � o.1//.n=�/ log �, which also generalizes
Theorem 3.1 and even matches the earlier bound of Shearer [134] for the special case
of regular graphs.

3.2. Chromatic number

Nearly all of the results bounding the independence number mentioned in the previ-
ous subsection can be generalized to bounds on the chromatic number. In 1995, Kim
[108] proved that every graph of girth at least five and maximum degree at most � has
(list) chromatic number at most .1 C o.1//�= log �. Independently, Johansson [82]
proved that every triangle-free graph of maximum degree at most � has chromatic
number at most O.�= log �/, which generalizes Theorem 3.1. In 2019, Molloy [118]
simultaneously generalized both Kim’s [108] and Johansson’s [82] result by improv-
ing the leading constant in Johansson’s result to match that of Kim, as follows.

Theorem 3.2 (Molloy [118]). For every " > 0, there exists �0 such that the following
holds for every � � �0. If G is a triangle-free graph of maximum degree at most �,
then

�`.G/ � .1 C "/
�

log �
:

Theorem 3.2 also matches Shearer’s bound [134] for regular graphs. Improving
the leading constant in Theorem 3.2, or determining if it is best possible, is another
major open problem. By the same argument as in the previous subsection, the bound
in Theorem 3.2 is within a factor of at most two of best possible. In fact, Frieze and
Łuczak [61] proved that random �-regular graphs have chromatic number .1=2 ˙

o.1//�= log � with high probability, and it is an open problem whether there is a
polynomial-time algorithm which almost surely finds a proper vertex-colouring of
such a graph with at most .1 � "/�= log � colours for some " > 0 (see [118]). Since
random regular graphs of bounded degree have O.1/ cycles with high probability,
the affirmative would follow if there exists such an algorithm for colouring triangle-
free graphs of maximum degree at most � (again, see [118]). A related longstanding
open problem of Karp [101] is whether there exists a polynomial-time algorithm for
finding an independent set of size within a factor two of best possible in a binomial
random graph.

The proofs of Kim [108] and Johansson [82] use a nibble approach inspired by
Kahn’s [87] proof of Theorem 2.4, in which a small random selection of vertices are
assigned a colour randomly in each step of the nibble. Johansson [82] never pub-
lished his proof, but Molloy and Reed [121, Chapters 12 and 13] provided simpler
proofs of the results of both Kim [108] and Johansson [82]. Molloy’s [118] proof
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of Theorem 3.2, which uses the “entropy compression” method, is even simpler, and
Bernshteyn [17] simplified this proof further by showing that the “Lopsided Local
Lemma” can be used instead of “entropy compression.” However, Bernshteyn’s proof
is non-constructive, and Molloy’s “entropy compression” argument provides an effi-
cient randomized algorithm for finding a proper colouring using .1 C o.1//�= log �

colours, matching the “algorithmic barrier” for colouring random graphs described
above. Molloy’s proof has inspired further algorithmic results such as in [1, 41].

All of these proofs rely on a “coupon collector”-type approach. Roughly speak-
ing, this means that a useful heuristic is to consider a random colouring, where each
vertex v 2 V.G/ is assigned a colour uniformly at random from a set of colours C .
If G is triangle-free, then GŒN.v/� is an independent set for every v 2 V.G/ and is
thus properly coloured. Moreover, the well-known solution to the coupon collector’s
problem implies that if d.v/ � .1 � o.1//jC j log jC j, then there is a colour in C

not assigned to a neighbour of v, which we could potentially use to “recolour” v. In
particular, if G has maximum degree � and jC j � .1 C o.1//�= log �, then with
non-zero probability, for every vertex v 2 V.G/, less than jC j colours are assigned to
a vertex in N.v/. This is of course not sufficient to prove Theorem 3.2 but is a useful
intuition for the bound.

It is also believed that at the expense of a worse leading constant, Theorem 3.2
holds for Kr -free graphs for every fixed r , as follows.

Conjecture 3.3. For every r 2 N, there exists a constant cr such that the follow-
ing holds. If G is a Kr -free graph with maximum degree at most �, then �`.G/ �

cr�= log �.

The resulting bound on the independence number is already a major open prob-
lem proposed earlier by Ajtai, Erdős, Komlós, and Szemerédi [2] (as mentioned in
Section 3.1) and is still open even for r D 4, and the resulting bound on the chromatic
number was conjectured by Alon, Krivelevich, and Sudakov [12]. In this direction,
Johansson [83] proved that for every fixed r , every Kr -free graph of maximum degree
at most � has list chromatic number O.� log log �= log �/, which generalizes the
result of Shearer [136] mentioned at the end of Section 3.1. Johansson also proved
that for every fixed r , if G is a graph of maximum degree at most � that satisfies
�.GŒN.v/�/ � r for every v 2 V.G/, then �`.G/ D O.�= log �/, generalizing the
result of Alon [6] mentioned at the end of Section 3.1. These results of Johansson
were also not published, but Molloy [118] gave a new proof of the former, and the
latter was proved (using the approach of Bernshteyn [17]) by Bonamy, Kelly, Nelson,
and Postle [22]. Alon, Krivelevich, and Sudakov [12] generalized Johansson’s result
to “locally sparse graphs” by proving the following: if G is a graph of maximum
degree at most � such that the neighbourhood of any vertex spans at most �2=f

edges, then �.G/ D O.�= log
p

f / for f � �2 C 1, and Vu [144] generalized this
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result to list colouring. Davies, Kang, Pirot, and Sereni [42] improved this result by
showing that it holds with a leading constant of 1C o.1/ as f !1, thus generalizing
Theorem 3.2.

Theorem 3.4 (Davies, Kang, Pirot, and Sereni [42]). For every " > 0, there exists �0

such that the following holds for every � � �0. If G is a graph of maximum degree
at most � such that the neighbourhood of any vertex spans at most �2=f edges for
f � �2 C 1, then

�`.G/ � .1 C "/
�

log
p

f
:

We note that the aforementioned results of Kim [108], Johansson [82, 83], and
Vu [144] all use the nibble method. Davies, Kang, Pirot, and Sereni [42] provided a
generalization of all of these results (and also Theorem 3.4) by introducing the “local
occupancy method.” This method reduces these colouring problems to optimization
problems involving relevant local properties of the “hard-core model,” which is a
family of probability distributions over the independent sets of a graph with origins in
statistical physics. Their approach builds on the work of Molloy [118] and Bernshteyn
[17] and subsequent work in [22, 38], and the approach used to prove the results of
[6, 40, 136] bounding the average size of independent sets mentioned in the previous
subsection and also of [39] may be viewed as a precursor to these methods. The main
result of Davies, Kang, Pirot, and Sereni [42] is proved using the Lopsided Local
Lemma as in Bernshteyn’s [17] proof of Theorem 3.2. It can also be proved using
entropy compression as in the original proof of Theorem 3.2 of Molloy [118], and
indeed, Davies, Kang, Pirot, and Sereni [41] used this approach to obtain additional
algorithmic coloring results.

All of the results mentioned so far in this subsection provide a bound of o.�/ on
the chromatic number of graphs of maximum degree � under a “local sparsity” condi-
tion. Trivially, every graph G satisfies �.G/ � �.G/ C 1, and Brooks [24] famously
showed that equality holds if and only if G is a complete graph or an odd cycle (when
G is connected). With a considerably relaxed “local sparsity” condition, we can still
bound the chromatic number away from �, as in the following result.

Theorem 3.5 (Molloy and Reed [121]). For every � > 0, there exists �0 such that
the following holds for every � � �0. If G is a graph of maximum degree at most �

and every v 2 V.G/ satisfies jE.GŒN.v/�/j � .1 � �/
�

�
2

�
, then �.G/ � .1 � �=e6/�.

This result was improved by Bruhn and Joos [27] and by Bonamy, Perrett, and
Postle [23]. Recently, Hurley, de Joannis de Verclos, and Kang [78] improved it fur-
ther by proving the bound �.G/ � .1 � �=2 C �3=2=6 C o.1//�, which gives the
correct dependence on � as � ! 0. Determining the best possible bound in The-
orem 3.5 for larger � is an interesting problem; any further improvements would
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also improve the best-known bound for Reed’s !, �, � conjecture [124] and for the
Erdős–Nešetřil conjecture [51]. We also use Theorem 3.5 in our proof of the Erdős–
Faber–Lovász conjecture (see Section 5.2), but we do not need the improvements of
[23, 27, 78]. The following related problem was posed by Vu [144] in 2002.

Conjecture 3.6 (Vu [144]). For every �; " > 0, there exists �0 such that the following
holds for every � � �0. If G is a graph of maximum degree at most � and every two
distinct vertices have at most �� common neighbours in G, then �`.G/ � .� C "/�.

This conjecture is still open if we replace �`.G/ by �.G/, and even the much
weaker conjecture, that G satisfies ˛.G/ � .1=� � "/.n=�/, is still open. The results
of [78] give nontrivial bounds when � is close to one. If true, Conjecture 3.6 with � D

1=k implies Theorem 2.4 for linear hypergraphs, as follows. Let H be a k-bounded
linear hypergraph with maximum degree at most D. It is clear that �.L.H // � kD,
and every two distinct vertices in L.H / have at most max¹k2; .D � 2/C .k � 1/2º �

�k.D C k2/ common neighbours. Letting � WD k.D C k2/, Conjecture 3.6 would
imply �0.H / D �.L.H // � .� C "/� D D C o.D/ when k is fixed as D ! 1.
Recently, Kelly, Kühn, and Osthus [106] confirmed a special case of Conjecture 3.6
that also recovers this application to Theorem 2.4.

Our final problem on vertex-colouring graphs is the following conjecture of Alon
and Krivelevich [11] from 1998 on the list chromatic number of bipartite graphs.

Conjecture 3.7 (Alon and Krivelevich [11]). There exists K such that the following
holds. If G is a bipartite graph of maximum degree at most �, then �`.G/ � K log �.

The best-known bound for this conjecture is provided by Theorem 3.2; however,
this bound can also be proved more directly with the “coupon collector” argument
described earlier. Alon, Cambie, and Kang [8] used this argument to prove a stronger
result for list colouring bipartite graphs when each vertex in one of the parts has
a list of available colours of the conjectured size. Alon and Krivelevich [11] also
suggested that the stronger bound �`.G/ � .1 C o.1// log2 � may also hold, which
would be best possible for complete bipartite graphs. In fact, Saxton and Thomason
[130] proved that every graph of minimum degree at least d has list chromatic number
at least .1 � o.1// log2 d , improving an earlier result of Alon [7].

3.3. Hypergraph colourings

Theorem 3.1 cannot only be generalized to vertex-colouring in the graphic setting but
also for hypergraphs. In 2013, Frieze and Mubayi [60] proved the following result,
which generalizes both Johansson’s theorem [82] and Theorem 3.1.

Theorem 3.8 (Frieze and Mubayi [60]). For every k � 2 there exists c; �0 > 0 such
that the following holds for every � � �0. If H is a k-uniform hypergraph with
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maximum degree at most � and girth at least four, then

�.H / � c

�
�

log �

� 1
k�1

:

To prove this result, Frieze and Mubayi [60] analyzed a nibble procedure inspired
by the proof of Johansson [82]. Molloy [117] conjectured that for k D 3 the result
holds for c D

p
2 C o.1/, as this value is suggested by the “coupon collector” heuris-

tic described in Section 3.2, and he asked more broadly if it can also be proved with
either the “entropy compression” or the “local occupancy” approach. Iliopoulos [79]
showed that the bound �`.H / � .1 C o.1//.k � 1/.�= log �/1=.k�1/ holds in Theo-
rem 3.8 if H has girth at least five.

For k � 3, Frieze and Mubayi [60] “bootstrapped” Theorem 3.8 to show that it
actually holds for linear hypergraphs (that is, hypergraphs of girth at least three), by
applying it with a distinct set of colours to vertex-disjoint induced subgraphs of girth
at least four whose vertices partition V.H /. This latter result generalizes the bound
of Duke, Lefmann, and Rödl [44] on the independence number mentioned in Sec-
tion 3.1 to vertex-colouring. Cooper and Mubayi [35] also generalized Theorem 3.8
for k D 3 by showing that the girth hypothesis can be replaced with the condition
that H has no triangle, where a triangle is a set of three edges e, f , and g such
that there exist vertices u, v, and w satisfying ¹u; vº � e, ¹v; wº � f , ¹u; wº � g,
and ¹u; v; wº \ e \ f \ g D ¿. Cooper and Mubayi [36] later showed that both of
these results hold under more general “local sparsity” conditions similar to that of
Theorem 3.4 for graphs. Frieze and Mubayi [59, 60] conjectured a generalization of
Conjecture 3.3 for k-uniform hypergraphs; however, Cooper and Mubayi [37] dis-
proved this conjecture for all k � 3.

4. The Erdős–Faber–Lovász conjecture

In this section, we introduce and provide background for the Erdős–Faber–Lovász
conjecture, which we abbreviate to the EFL conjecture. Earlier developments related
to the EFL conjecture are also detailed in the surveys of Kahn [86, 90] and of Kayll
[102]. The EFL conjecture states the following (recall that a hypergraph is linear if it
has codegree one):

(EFL1) Every n-vertex linear hypergraph has chromatic index at most n.

Erdős often wrote that this was one of his “three favourite combinatorial prob-
lems” (see, e.g., [90]). Erdős, Faber, and Lovász famously formulated this conjecture
at a tea party in 1972. The simplicity and elegance of the EFL conjecture initially led
them to believe it would be easily solved (see, e.g., the discussion in [32, 49]). How-
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Projective plane Degenerate plane K2tC1

Figure 1. Extremal examples for the Erdős–Faber–Lovász conjecture.

ever, as the difficulty became apparent Erdős offered successively increasing rewards
for a proof of the conjecture, which eventually reached $500.

The following three infinite families of hypergraphs are extremal for this conjec-
ture (see Figure 1):

� finite projective planes of order k (known to exist when k is a prime power),
which are .k C 1/-uniform, linear, intersecting hypergraphs on n vertices with n

edges where n WD k2 C k C 1;

� degenerate planes, also called “Near Pencils,” which are linear, intersecting hyper-
graphs on n vertices with n edges for any n 2 N consisting of one edge of size
n � 1 and n � 1 edges of size two; and

� complete graphs on n vertices where n 2 N is odd (as well as some “local” mod-
ifications of these).

The vastly different structure of these extremal examples contributes to the difficulty
of the EFL conjecture. Note in particular that the first two examples have edges of
unbounded size as n ! 1, whereas complete graphs are 2-uniform. Let us note that
we can (and will) assume without loss of generality that hypergraphs have no edges of
size one in the EFL conjecture, since any proper edge-colouring of the edges of size at
least two in an n-vertex linear hypergraph H with at most n colours can be extended
to the remaining size-one edges of H (again with at most n colours). Without this
assumption, the hypergraph obtained from an n-vertex star by adding the edge of size
one containing the center vertex is also an extremal example.

4.1. Equivalent formulations

Part of the beauty of this conjecture lies in the fact that it can be equivalently stated
in several simple, yet seemingly unconnected, ways. The following are all in fact
equivalent to the EFL conjecture:

(EFL2) If H is a linear hypergraph with n edges, each of size at most n, then the
vertices of H can be coloured with at most n colours such that no edge
contains two vertices of the same colour.
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Figure 2. The hypergraph dual (left) of the 5-vertex hypergraph in the center, and the line graph
(right).

(EFL3) If A1; : : : ; An are sets of size n such that every pair of them shares at
most one element, then the elements of

Sn
iD1 Ai can be coloured with n

colours so that all colours appear in each Ai .

(EFL4) If G1; : : : ; Gn are complete graphs, each on at most n vertices, such that
jV.Gi /\V.Gj /j � 1 for every 1� i ¤ j � n, then the chromatic number
of

Sn
iD1 Gi is at most n.

We show that the EFL conjecture is equivalent to (EFL2)–(EFL4) by showing the
following implications: (EFL1))(EFL2))(EFL3))(EFL4))(EFL1).

For the first implication, we need to introduce the notion of hypergraph duality.
The dual of a hypergraph H is the hypergraph H� with vertex set H and edge set
¹¹e 3 v W e 2 Hº W v 2 V.H /º (see Figure 2 for an example). Clearly, the dual of H� is
isomorphic to H itself. Note that H is linear if and only if H� is linear. Now suppose
that H is a linear hypergraph with n edges, each of size at most n. We may assume
without loss of generality that every vertex of H has degree at least two. Since H has
n edges and is linear, H� has n vertices and is also linear, so (EFL1) implies that there
is proper edge-colouring of H� using at most n colours. By assigning each vertex of
H the colour of the corresponding edge of H�, we obtain the desired colouring,
proving (EFL2).

To show that (EFL2))(EFL3), let H be the hypergraph with vertex set
Sn

iD1 Ai

and edge set ¹Ai W i 2 Œn�º. Since A1; : : : ;An have size n and every pair of them shares
at most one element, H is linear with n edges, each of size n. By (EFL2), the vertices
of H can be coloured with at most n colours such that no edge contains two vertices
of the same colour. Since every edge has size n, every edge contains a vertex of every
colour, so this colouring satisfies (EFL3). To prove (EFL3))(EFL4), first note that
by possibly adding new vertices to each Gi , we may assume without loss of generality
that jV.Gi /j D n for each i 2 Œn�. Letting Ai D V.Gi / for each i 2 Œn�, (EFL3) implies
there is a colouring of

Sn
iD1 Ai with n colours so that all colours appear in each Ai . In

particular, if u; v 2 Ai , then u and v are assigned different colours, so this colouring
is also a proper vertex-colouring of

Sn
iD1 Gi , proving (EFL4).

Finally, to prove that the EFL conjecture follows from (EFL4), let H be a linear
hypergraph on n vertices, and for each v 2 V.H /, let Gv be the complete graph with
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vertex set ¹e 3 v W e 2 Hº. Since H is linear, each Gv for v 2 V.H / has at most
n vertices, and jV.Gu/ \ V.Gv/j � 1 for distinct u; v 2 V.H /. Since

S
v2V.H/ Gv

is in fact the line graph of H (see Figure 2), we have �0.H / D �.
S

v2V.H/ Gv/, so
(EFL4))(EFL1), as desired.

An interpretation of (EFL4) in terms of a scheduling problem was given by Had-
dad and Tardif [73].

4.2. Results

Recently, we confirmed the EFL conjecture for all but finitely many hypergraphs.

Theorem 4.1 (Kang, Kelly, Kühn, Methuku, and Osthus [96]). For every sufficiently
large n, every n-vertex linear hypergraph has chromatic index at most n.

The proof of Theorem 4.1 can be turned into a randomized polynomial-time algo-
rithm. The necessary modifications are discussed in detail in [98]. We also proved the
following “stability result,” predicted by Kahn [86].

Theorem 4.2 (Kang, Kelly, Kühn, Methuku, and Osthus [96]). For every ı > 0, there
exist n0; � > 0 such that the following holds for every n � n0. If H is an n-vertex
linear hypergraph such that

(i) H has maximum degree at most .1 � ı/n and

(ii) the number of edges of size .1 ˙ ı/
p

n in H is at most .1 � ı/n,

then the chromatic index of H is at most .1 � �/n.

The hypothesis (i) in Theorem 4.2 ensures that H does not too closely resemble
the degenerate plane or the complete graph, while (ii) ensures that H does not too
closely resemble a projective plane, since projective planes on n vertices have n edges
of size roughly

p
n.

Let us overview previous progress leading up to these results. Predating the EFL
conjecture, in 1948 de Bruijn and Erdős [43] showed that every intersecting n-vertex
linear hypergraph has at most n edges. Equivalently, the line graph of an n-vertex
linear hypergraph contains no clique of size greater than n. Seymour [132] proved that
every n-vertex linear hypergraph H contains a matching of size at least jH j=n, which
implies the de Bruijn–Erdős theorem, as an intersecting hypergraph has matching
number one. Kahn and Seymour [94] strengthened this result by proving that every
n-vertex linear hypergraph has fractional chromatic index at most n. (Recall that every
hypergraph H satisfies �0

f
.H / � �0.H /, so all of these results are relaxations of the

EFL conjecture.) Chang and Lawler [30] proved that every n-vertex linear hypergraph
has chromatic index at most d3n=2 � 2e.

Interestingly, results from both Section 2 and Section 3 have the following imme-
diate applications to the EFL conjecture, which are illustrative to note.
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(4.1) For every "; k > 0, there exists n0 such that the following holds for every
n � n0. If H is a k-bounded, n-vertex, linear hypergraph, then �0.H / �

n C "n and moreover, if every e 2 H satisfies jej � 3, then �0.H / � n.

(4.2) For every " > 0, there exist ı;n0 > 0 such that the following holds for every
n� n0 and k WD ı

p
n. If H is a k-uniform, n-vertex, linear hypergraph, then

�0.H / � "n.

(4.3) For every " > 0, there exist ı; n0 > 0 such that the following holds for
every n � n0 and k WD .1 � ı/

p
n. If H is a k-uniform, n-vertex, linear

hypergraph, then �0.H / � .1 � "/n.

To prove (4.1), it suffices to note that since H is linear, it has maximum degree at
most n=.mine2H jej � 1/ (assuming H has no size-one edges), whence (4.1) fol-
lows immediately from Theorem 2.4. To prove (4.2) and (4.3), it suffices to note that
since H is linear, the line graph L WD L.H / has maximum degree at most k.n � k/=

.k � 1/ � .1C 2=k/n and every pair of adjacent vertices in L has at most .k � 1/2 C

n=k common neighbours. Hence, (4.2) follows immediately from Theorem 3.4, and
(4.3) follows immediately from Theorem 3.5.

In 1992, a breakthrough by Kahn [84] confirmed the EFL conjecture asymptoti-
cally, by showing that every n-vertex linear hypergraph has chromatic index at most
n C o.n/. Note that this result strengthens the first part of (4.1) by showing that
the k-boundedness assumption is not necessary. Kahn’s argument in [84] relies on
a “restricted” list colouring result which strengthens the Pippenger–Spencer theorem
(Theorem 2.3) but is still weaker than Theorem 2.4, and thus can be viewed as a “step-
ping stone” towards Theorem 2.4. Moreover, Kahn’s argument from [84], combined
with Theorem 2.4 that he proved later in [87], can be adapted to prove that every n-
vertex linear hypergraph has list chromatic index at most n C o.n/, which we explain
further in Section 4.4. The second part of (4.1) was strengthened in 2019 by Faber and
Harris [54], who proved that for some absolute constant c, the EFL conjecture holds
if every edge has size at least three and at most c

p
n. In fact, the main result of [54]

also implies (4.2). Their argument relies on Theorem 2.4 and the result of Vu [144]
mentioned before Theorem 3.4. That the works [12,144] have applications to the EFL
conjecture was first observed by Faber [52], namely to prove a result similar to (4.2).

Nevertheless, none of the results prior to Theorem 4.1 confirmed the conjecture
for any nontrivial class of hypergraphs containing one of the extremal families. In
particular, the case of k-bounded (or even 3-bounded) hypergraphs was still open
(and was highlighted as a challenging problem by Kahn [86]). Similarly, the case of
hypergraphs in which all edges have size !.1/ was also still open. Both of these cases
turned out to be significant stepping stones towards the proof of Theorem 4.1, and
their proofs contain several of the main ideas. To highlight these ideas, we provide a
detailed sketch of the following two results in Section 5.
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Theorem 4.3. There exists n0 > 0 such that the following holds. If H is an n-vertex
linear hypergraph such that every e 2 H satisfies jej 2 ¹2; 3º and n > n0, then
�0.H / � n C 1.

Theorem 4.4. For every ı > 0, there exist n0; r; � > 0 such that the following holds.
If H is an n-vertex linear hypergraph where n > n0 and every e 2 H satisfies jej > r ,
then �0.H / � n. Moreover, if �0.H / > .1� �/n, then j¹e 2 H W jej D .1˙ ı/

p
nºj �

.1 � ı/n.

Notice that in Theorem 4.3, the bound on the chromatic index is one larger than
in the EFL conjecture. In Section 5.1, we prove Theorem 4.3 and briefly explain the
additional ideas required to prove the stronger bound of the EFL conjecture in this
case. The proof of Theorem 4.3 can also be adapted with little additional effort to
prove the same result for k-bounded hypergraphs, for any fixed k. We focus on the
case of 3-bounded hypergraphs as it is slightly cleaner yet complex enough to capture
many of the important ideas.

Note also that Theorem 4.4 implies Theorem 4.2 in the case when all edges of H

are sufficiently large. This “stability result” is needed to combine the arguments of
Theorems 4.3 and 4.4 to obtain Theorem 4.1. Roughly, we apply (a stronger version
of) Theorem 4.4 first to the “large” edges of H , and then we apply the arguments of
Theorem 4.3 to find a proper edge-colouring of the “small” edges of H that is com-
patible with the colouring of the “large” edges. If Theorem 4.4 only requires .1� �/n

colours, then only minor adaptations to the arguments of Theorem 4.3 are required,
which we briefly describe in Section 5.2 after proving Theorem 4.4. If Theorem 4.4
only guarantees a proper edge-colouring of the large edges of H with n colours, then
additional ideas are required, for which we refer the interested reader to [96] (which
in particular contains a sketch of the overall argument).

4.3. Open problems

We now discuss some open problems related to the EFL conjecture. First, it would
be interesting to characterize when equality holds in Theorem 4.1. As mentioned,
finite projective planes, degenerate planes, and complete graphs on an odd number
of vertices are extremal examples. In fact, any n-vertex hypergraph with more than
.n � 1/2=2 size-two edges has chromatic index at least n when n is odd, and any
hypergraph H obtained from Kn by replacing a complete subgraph with a single edge
e is linear and has chromatic index n if jV.H / n ej is odd (note that the degenerate
plane is obtained in this way). These may include all of the extremal examples.

Berge [16] and Füredi [62] independently posed the following beautiful conjec-
ture.
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Conjecture 4.5 (Berge [16], Füredi [62]). If H is a linear hypergraph with vertex set
V , then �0.H / � maxv2V j

S
e3v ej.

If true, Conjecture 4.5 implies the EFL conjecture, since every linear hypergraph
H satisfies maxv2V.H/ j

S
e3v ej � n. Note also that if GH is the graph obtained from

H by replacing each edge e 2 H with a complete graph on the vertices of e (some-
times called the shadow of H ), then j

S
e3v ej D �.GH / C 1. In particular, if H is

2-uniform, then GH D H , so Conjecture 4.5, if true, also implies Vizing’s theorem.
The fractional relaxation of Conjecture 4.5 is still open. The following related con-
jecture was posed by Füredi, Kahn, and Seymour [64]: if H is a multi-hypergraph
with vertex set V , then �0

f
.H / � maxv2V

P
e3v.jej � 1 C 1=jej/. This conjecture

may even hold for the chromatic index, which, if true, would generalize Shannon’s
theorem [133] and imply Conjecture 2.6 in the case k D t .

It is also natural to ask whether the EFL conjecture holds more generally for list
colouring. Faber [53] conjectured that it does, as follows.

Conjecture 4.6 (The “List” EFL conjecture [53]). Every n-vertex linear hypergraph
has list chromatic index at most n.

Conjecture 4.6 was recently confirmed by the authors [97] for the special case
of hypergraphs of maximum degree at most n � o.n/, and their result also implies
that in this case projective planes are the only extremal examples. The main result in
[97] also solves a conjecture of Erdős on the chromatic index of hypergraphs of small
codegree.

A related problem to Conjecture 4.6 is an algebraic strengthening of the EFL con-
jecture involving the Combinatorial Nullstellensatz, posed by Janzer and Nagy [80].

As mentioned, the arguments of Kahn [84, 87] can be adapted to prove that the
List EFL conjecture holds asymptotically. Kahn’s proof in [84] also implies that
Conjecture 4.5 holds asymptotically. In fact, assuming the sizes of the lists are poly-
logarithmic in n, it is easy to show that the argument can be adapted to work for list
colouring, as follows.

Theorem 4.7. For every " > 0, there exists n0 such that the following holds for every
n; D � n0. If H is an n-vertex linear hypergraph such that j

S
e3v ej � D for every

v 2V.H /, then �0.H /� .1C "/D. Moreover, if D � log2 n, then �0
`
.H /� .1C "/D.

For completeness, we prove Theorem 4.7 in Section 4.4. It would be interesting
to prove that the bound on the list chromatic index in Theorem 4.7 holds without the
assumption D � log2 n.

The next open problem is the following special case of a conjecture of Larman.
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Conjecture 4.8 (“Restricted” Larman’s conjecture). If H is an n-vertex intersecting
hypergraph, then there exists a decomposition of H into F1; : : : ; Fn � H such that
jF \ F 0j � 2 for every F; F 0 2 Fi and i 2 Œn�.

The full version of Larman’s conjecture was a combinatorial relaxation of Bor-
suk’s conjecture from 1933, which states that every set of diameter at most one in Rd

can be partitioned into at most d C 1 sets of diameter strictly less than one. How-
ever, in 1993, Kahn and Kalai [92] disproved Larman’s conjecture (and thus in turn
Borsuk’s conjecture). Nevertheless, they asked whether the special case of Larman’s
conjecture presented in Conjecture 4.8 still holds (see also [95]), in part because of
its resemblance to the EFL conjecture.

Finally, we note that Alon, Saks, and Seymour (see Kahn [85]) conjectured the
following “bipartite version” of (EFL4): if a graph G can be decomposed into k

edge-disjoint bipartite graphs, then the chromatic number of G is at most k C 1.
This conjecture was a generalization of the Graham–Pollak theorem [72] on edge
decompositions of complete graphs into bipartite graphs, which has applications to
communication complexity. However, it was disproved by Huang and Sudakov [77]
in a strong form, i.e., the conjectured bound on the chromatic number is far from
being true.

4.4. Asymptotic list colouring version of the Berge–Füredi conjecture

In this subsection, we prove Theorem 4.7. We only prove the bound on the list chro-
matic index when D � log2 n, as the proof of the general bound on the chromatic
index will be evident from the argument we provide here. Our proof closely follows
the approach of [84], but with a simple additional trick, and using Theorem 2.4 instead
of [84, Theorem 1.3].

Proof of Theorem 4.7. Let

1=n0 � 1=r0 � 1=r1 �  � " � 1;

let n � n0, let D � log2 n, and let H be an n-vertex linear hypergraph such that
j
S

e3v ej � D for every v 2 V.H /. It suffices to show that if C is an assignment of
lists C.e/ to every e 2 H , such that every e 2 H satisfies jC.e/j � .1 C "/D, then
H has a proper edge-colouring � such that �.e/ 2 C.e/ for every e 2 H . We assume
without loss of generality that jC.e/j D .1 C "/D ˙ 1.

Let � be a linear ordering of the edges of H satisfying e � f if jej > jf j, and
decompose H into the following spanning subhypergraphs:

� Hsml WD ¹e 2 H W jej � r1º,

� Hmed WD ¹e 2 H W r1 < jej � r0º, and

� Hlrg WD ¹e 2 H W jej > r0º.



Graph and hypergraph colouring via nibble methods 799

Since H is linear,

(4.4) every e 2 Hlrg satisfies j¹f 2 NH .e/ W f � eºj � jej.D � jej/=.jej � 1/ �

.1 C "=3/D,

(4.5) �.Hmed/�D=r1 (and thus, by Theorem 2.4, �0
`
.Hmed/� 2D=r1 � D=2),

and

(4.6) every e 2 Hsml satisfies jNH .e/ \ Hlrgj � r1D=r0 � "D=4.

Now we show there exists a set R �
S

e2H C.e/ such that

every e 2 H satisfies
ˇ̌
R \ C.e/

ˇ̌
D .1 ˙ 1=2/

ˇ̌
C.e/

ˇ̌
: (4.7)

Include every colour in R randomly and independently with probability  . By a stan-
dard application of the Chernoff bound, every e 2 H satisfiesˇ̌

R \ C.e/
ˇ̌
D .1 ˙ 1=2/

ˇ̌
C.e/

ˇ̌
with probability at least 1 � 2 exp.� jC.e/j=12/ � 1 � 2 exp.� log2 n=12/. Thus
by the Union Bound, (4.7) holds with high probability, and hence there indeed exists
such a set R.

Fix R satisfying (4.7), and for every e 2 H , let C 0.e/ WD C.e/ n R and R.e/ WD

C.e/ \ R. By (4.7),

(4.8) every e 2 Hlrg [ Hsml satisfies jC 0.e/j � .1 C "=2/D, and

(4.9) every e 2 Hmed satisfies jR.e/j � D=2.

Therefore, by (4.4) and (4.8), there exists a proper edge-colouring �lrg of Hlrg such
that �lrg.e/ 2 C 0.e/ for every e 2 Hlrg, and by (4.5) and (4.9), there exists a proper
edge-colouring �med of Hmed such that �med.e/ 2 R.e/ for every e 2 Hmed. Now for
each e 2 Hsml, let C 00.e/ WD C 0.e/ n ¹�lrg.f / W f 2 NH .e/\Hlrgº. By (4.6) and (4.8),
jC 00.e/j � .1 C "=4/D for every e 2 Hsml. Therefore, by Theorem 2.4, there exists a
proper edge-colouring �sml of Hsml such that �sml.e/ 2 C 00.e/ for every e 2 Hsml. By
combining �lrg, �med, and �sml, we obtain the desired colouring.

5. Proving the Erdős–Faber–Lovász conjecture
In this section, we give detailed sketches of the proofs of Theorems 4.3 and 4.4, the
special cases of the proof of the EFL conjecture in [96] discussed in Section 4.2.

5.1. Using n C 1 colours when edge-sizes are bounded

We begin with Theorem 4.3, which we restate for the readers’ convenience.

Theorem 4.3. There exists n0 > 0 such that the following holds. If H is an n-vertex
linear hypergraph such that every e 2 H satisfies jej 2 ¹2; 3º and n > n0, then
�0.H / � n C 1.
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Low degree: more flexibility High degree: more graph-like

Figure 3. Two partial edge-colourings using 4 colours (when n D 9, say). The uncoloured
edges form a graph of maximum degree at most 4 and can be coloured with at most 5 colours
by Vizing’s theorem.

In this subsection, we fix constants satisfying the hierarchy

0 < 1=n0 � � � � �  � " � 1; (5.1)

we let n � n0, and we let H be an n-vertex linear hypergraph such that every e 2 H

satisfies jej 2 ¹2; 3º. We assume without loss of generality that every pair of vertices
of H is contained in an edge, since otherwise we can add a size-two edge to H to
obtain an n-vertex linear hypergraph with chromatic index greater than or equal to
�0.H /. Let G be the graph with V.G/ WD V.H / and E.G/ WD ¹e 2 H W jej D 2º, and
let U WD ¹u 2 V.H / W dG.u/ � .1 � "/nº. Since every pair of vertices is contained in
precisely one edge, we have

n � 1 D 2
�
dH .v/ � dG.v/

�
C dG.v/

D 2dH .v/ � dG.v/ for every vertex v 2 V.H /: (5.2)

Our strategy to prove Theorem 4.3 is to reduce it to Vizing’s theorem. In order
to do that, it suffices to partially colour H with k < n colours (for some suitable
k � n=2) such that every edge of H nE.G/ is coloured and the remaining uncoloured
edges of G form a graph of maximum degree at most n � k (see Figure 3 and
Lemma 5.9). Roughly speaking, each colour class of this partial colouring will be
obtained by first constructing a large matching via the Rödl nibble and then extend-
ing it to cover (essentially) all of U . The latter step is of course necessary in order
to obtain an (uncoloured) leftover graph of small maximum degree. (It is also suffi-
cient since U consists of precisely those v 2 V.H / with dH .v/ � n.) On the other
hand, while this is the reason we need to pay special attention to the vertices in U , the
definition of U also means that we have many (graph) edges at our disposal, which
allow us to carry out the extension step mentioned above. To make this precise, we
introduce the following important definition.

Definition 5.1 (Perfect and nearly perfect coverage). Let M be a set of edge-disjoint
matchings in H , and let S � U .

� We say that M has perfect coverage of U if each M 2 M covers U .
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� We say that M has nearly perfect coverage of U with defects in S if

(i) each u 2 U is covered by at least jMj � 1 matchings in M and

(ii) each M2M covers all but at most one vertex in U , and U nV.M/�S .

More precisely, using k WD dn=2e C d1=3ne colours, we will partially colour H

such that

� every edge of H n E.G/ is coloured,

� at least dG.v/=2� 2�n edges of G containing v are coloured for every v 2 V.G/,
and

� the colour classes have nearly perfect coverage of U (with defects in U ).

As we will show, these conditions ensure that the partial colouring can be extended
via Vizing’s theorem to all of H using at most n C 1 total colours.

The first step of the proof is to randomly construct a “reservoir” consisting of
edges of G (which will be used for the extension step), as in the following lemma.

Lemma 5.2 (Reservoir lemma). There exists R � E.G/ satisfying the following:

(R1) (Typicality) every v 2 V.H / satisfiesˇ̌
NR.v/ \ U

ˇ̌
D

ˇ̌
NG.v/ \ U

ˇ̌
=2 ˙ �n;ˇ̌

NR.v/ n U
ˇ̌
D

ˇ̌
NG.v/ n U

ˇ̌
=2 ˙ �nI

(R2) (Upper regularity) for every pair of disjoint sets S; T � V.H / with
jS j; jT j � �n, we haveˇ̌

EG.S; T / \ R
ˇ̌
� .1=2 C �/jS jjT j:

This lemma can be proved with a straightforward application of the Chernoff
Bound and the Union Bound, by considering the set R to be chosen randomly, where
each edge of G is included independently and with probability 1=2, so we omit the
details. For the remainder of the subsection, we fix R satisfying Lemma 5.2.

By (R1), every vertex v 2 V.H / satisfies dHnR.v/ D dH .v/ � dG.v/=2 ˙ 2�n.
Hence, by (5.2),

every vertex v 2 V.H / satisfies dHnR.v/ D
n � 1

2
˙ 2�n: (5.3)

Note that by (5.3), the Pippenger–Spencer theorem already implies �0.H n R/ �

.1=2 C 1=3/n, but we need to prove the stronger result that there is a set of pairwise
edge-disjoint matchings M D ¹M1; : : : ; Mkº such that M1 [ � � � [ Mk � H n R and
M has nearly perfect coverage of U (with defects in U ).
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5.1.1. Absorption. To obtain these matchings with nearly perfect coverage of U ,
we combine the nibble method with an absorption strategy. We first find matchings in
H nR covering almost all of U using Theorem 2.14, and then for each such matching,
we find a vertex-disjoint matching in R covering (all but at most one of) the remaining
vertices of U . We extend the first matching by adding the matching in R, and in this
way we “absorb” the uncovered vertices of U . It will be convenient to work with the
following definitions, which will apply to the matchings produced by Theorem 2.14.

Definition 5.3 (Pseudorandom matchings). For a family F of subsets of V.H /, a
matching M in H is .; �/-pseudorandom with respect to F if every S 2 F satisfies
jS n V.M /j D  jS j ˙ �n.

Definition 5.4 (Absorbable matchings). Let R0 � R, let S � U , and let M be a
matching in H n R. We say .M; R0; S/ is absorbable if

(AB1) jS j � min¹jU j; n=5º,

(AB2) �.R n R0/ � n, and

(AB3) either jV.M /j �
p

n, or M is .; �/-pseudorandom with respect to
F .R0/ [ ¹U; Sº, where

F .R0/ WD
®
NR0.u/ \ U W u 2 U

¯
[
®
NR0.u/ n U W u 2 U

¯
:

If the former holds in (AB3), we say that .M; R0; S/ is absorbable by the smallness
of M , and if the latter holds, we say that .M; R0; S/ is absorbable by the pseudoran-
domness of M .

In the proof of Theorem 4.3, we apply our absorption argument successively
to each matching constructed by the nibble. Hence, in each step we will consider
absorbable tuples .M; R0; S/ where M was obtained via a nibble process, R0 consists
of reservoir edges not used in previous absorption steps, and S consists of vertices of
U that are not the “defect” from any of the previous absorption steps. Now we can
state our main absorption lemma, but first we note the following proposition, which
is used in its proof.

Proposition 5.5. Let 0 < 1=m0 � ˛ � 1, and let m � m0 be even. If H is an m-
vertex graph such that

(i) every v 2 V.H/ satisfies dH .v/ � 3m=8 and

(ii) every pair of disjoint sets S; T � V.H/ with jS j; jT j � ˛m satisfies
eH .S; T / � .1=2 C ˛/jS jjT j,

then H has a perfect matching.

To prove Proposition 5.5, one can consider a random equitable partition of V.H/

and apply Hall’s theorem.
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Lemma 5.6 (Absorption lemma). Let R0 � R, let S � U , and let N WD ¹N1; : : : ;Nkº

be a set of pairwise edge-disjoint matchings in H n R. If either

(i) k � �n and, for every i 2 Œk�, .Ni ; R0; S/ is absorbable by the pseudoran-
domness of Ni or

(ii) k � d1=3ne and, for every i 2 Œk�, .Ni ; R0; S/ is absorbable by the small-
ness of Ni ,

then there is a set of pairwise edge-disjoint matchings M WD ¹M1; : : : ; Mkº in H

such that

� Mi � Ni and Mi n Ni � R0 for all i 2 Œk�, and

� M has nearly perfect coverage of U with defects in S , and moreover, if jU j <

3n=4, then M has perfect coverage of U .

Proof. Let F WD F .R0/ [ ¹U; Sº, and for each i 2 Œk�, let Ui WD U n V.Ni /. In both
cases, the proof proceeds roughly as follows. If jU j < n=100, then one-by-one for
each i 2 Œk�, we can greedily find a matching N abs

i of edges in R0, with precisely one
end in Ui and the other end not in V.Ni /, edge-disjoint from those previously chosen,
that covers Ui . Letting Mi WD Ni [ N abs

i for each i 2 Œk�, ¹M1; : : : ; Mkº has perfect
coverage of U , as desired. If jU j � n=100, then one-by-one for each i 2 Œk�, using
Proposition 5.5, we can find a matching N abs

i of edges in R0, with both ends in Ui ,
edge-disjoint from those previously chosen, that contain all but at most one vertex
of Ui . Moreover, we ensure that the vertices in each Ui not covered by N abs

i are
distinct, and if jU j < 3n=4, we can also augment each N abs

i with an edge of R0 that
has an end in V.H / n .U [ V.Ni / [ V.N abs

i // to cover U . Hence, ¹M1; : : : ; Mkº

has nearly perfect coverage of U with defects in S and perfect coverage of U if
jU j < 3n=4, where Mi WD Ni [ N abs

i for each i 2 Œk�, as desired. We only provide
a formal proof of the case when (i) holds and jU j � n=100, as this case is the most
challenging.

For each i 2 Œk�, let Gi be the graph with V.Gi / WD Ui and E.Gi / WD ¹e 2 R0 W

e � Uiº. Since Ni is .; �/-pseudorandom with respect to F 3 U , we have

jUi j D  jU j ˙ �n and, in particular, jUi j � n=200: (5.4)

We claim that for each i 2 Œk� there exists ui 2 Ui and a matching N abs
i in Gi

such that the following holds. The vertices u1; : : : ; uk are distinct, the matchings
N abs

1 ; : : : ; N abs
k

are pairwise edge-disjoint, and N abs
i covers every vertex of Ui n ¹uiº

for each i 2 Œk�. Moreover, if jU j < 3n=4, then N abs
i covers every vertex of Ui for

each i 2 Œk�, and otherwise ui 2 S .
To that end, we choose distinct ui 2 Ui for each i 2 Œk�, as follows.

� If jU j � 3n=4, then by (R1) and (AB2), every u 2 Ui satisfies jNR0.u/ n U j �

.1=4 � "/n=2 � �n � n � n=10. By (AB3), since Ni is .; �/-pseudorandom
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with respect to F � F .R0/ for each i 2 Œk�, this inequality implies that every
u 2 Ui satisfies jNGi

.u/ n U j � n=20. Since k � �n and � �  , by (5.4), we
can choose ui 2Ui one-by-one such that there is a matching ¹uivi W i 2 Œk�º where
vi 2 NGi

.ui / n U for each i 2 Œk�.

� Otherwise, (AB1) implies jS j � n, and since Ni is .; �/-pseudorandom with
respect to F 3 S , by (AB3), we have jS n V.Ni /j �  jS j � �n � 2n=2 > �n

for each i 2 Œk�. So we can choose ui 2 Ui \ S D S n V.Ni / one-by-one such
that they are distinct, as required.

Now let U 0
i WD Ui n ¹uiº if jUi j is odd. Otherwise, let U 0

i WD Ui . By the choice
of the vertices u1; : : : ; uk , it suffices to find pairwise edge-disjoint perfect matchings
N 0abs

i in Gi ŒU
0
i � for each i 2 Œk�. Indeed if jU j � 3n=4 and jUi j is odd, then N abs

i WD

N 0abs
i [ ¹uiviº satisfies the claim, and otherwise N abs

i WD N 0abs
i satisfies the claim.

We find these matchings one-by-one using Proposition 5.5. To this end, we as-
sume that for some ` � k, we have found such matchings N 0abs

i for i 2 Œ` � 1�, and
we show that there exists such a matching N 0abs

` , which proves the claim. Let G0
`
WD

G`ŒU 0
`
� n

S
i2Œ`�1� N 0abs

i . Since jU j � n=100, by (R1) and (AB2), every u2U satisfiesˇ̌
NR0.u/ \ U

ˇ̌
�

ˇ̌
NR.u/ \ U

ˇ̌
� n �

�
jU j � "n

�
=2 � 2n � 49jU j=100: (5.5)

Note that N` is .;�/-pseudorandom with respect to F �F .R0/[ ¹U º by (AB3).
Together with (5.5), this implies that every u 2 U 0

`
satisfies dG`ŒU 0

`
�.u/ �  jNR0.u/ \

U j � �n � 1 � 48 jU j=100. Since ` � k � �n, we have

dG0
`
.u/ � dG`ŒU 0

i
�.u/ � �n � 47 jU j=100: (5.6)

By (5.4), we also have

jU 0
`j ˙ 1 D jU`j D  jU j ˙ �n and, in particular, jU 0

`j � 5 jU j=4: (5.7)

Combining (5.6) and (5.7), we have dG0
`
.u/ � 3jU 0

`
j=8 for every u 2 U 0

`
. So by (R2)

and (5.7), we can apply Proposition 5.5 to G0
`
, with 200�= as ˛, to obtain a perfect

matching N 0abs
` in G0

`
, as desired.

Therefore we have pairwise edge-disjoint matchings N abs
i in Gi , as claimed,

which by construction are edge-disjoint from N1; : : : ; Nk . For each i 2 Œk�, let Mi WD

Ni [ N abs
i and let M D ¹M1; : : : ; Mkº. Now Mi � Ni and Mi n Ni � R for each

i 2 Œk�, and M has nearly perfect coverage of U with defects in S , as desired. More-
over, if jU j < 3n=4, then M has perfect coverage of U , as desired.

5.1.2. Finding absorbable matchings. Lemma 5.6 allows us to apply absorption
for up to �n “pseudorandom” matchings at a time. We construct these collections of
matchings in the following lemma using Theorem 2.14 and the strategy described in
Section 2.3.
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Lemma 5.7 (Nibble lemma). Let D 2 Œn1=2; n�, and let H 0 � H be a spanning
subhypergraph such that for every w 2 V.H 0/ we have dH 0.w/ D .1 ˙

p
�/D. If

FV and FE are families of subsets in V.H 0/ and E.H 0/, respectively, such that
jFV j; jFE j � nlog n, then there exist pairwise edge-disjoint matchings N1; : : : ; ND in
H 0 such that

(N1) Ni is .; �/-pseudorandom with respect to FV for every i 2 ŒD�, and

(N2) jF n
SD

iD1 Ni j �  jF j C � max.jF j; D/ for each F 2 FE .

Proof (sketch). First we embed H 0 into a 3-uniform linear hypergraph H 00 with
O.n4/ vertices, in which every vertex has degree .1 ˙

p
�/D. We then let H� WD

incD.H 00/ be the D-wise incidence hypergraph of H 00 (recall Definition 2.15). By
Observation 2.16 (a)–(c), H� is 4-uniform, linear, and every vertex of H� has degree
.1 ˙

p
�/D. Thus, we can apply Theorem 2.14 to H� with ı D 1=4 and an appro-

priately chosen F , determined by FV and FE , to obtain a matching M in H� such
that every S 2 F satisfies jS n V.M /j � � max¹jS j; Dº=2. Next, we “sparsify” M ,
by randomly and independently removing each edge with probability  , to obtain a
new matching N . For each i 2 ŒD�, we let Ni WD ¹e 2 H W 9f 2 N; f � ¹iº � eº.
By Observation 2.16 (d), the matchings N1; : : : ; ND are pairwise edge-disjoint, and
the pseudorandomness property of M guaranteed by Theorem 2.14 ensures that (N1)
and (N2) are satisfied.

We will use Lemmas 5.7 and 5.6 to construct dn=2e pairwise edge-disjoint match-
ings with nearly perfect coverage of U such that the remaining edges of H n R

comprise a subhypergraph of small maximum degree. We apply the following lemma
to this subhypergraph to decompose it into matchings which are absorbable by “small-
ness.”

Lemma 5.8 (Leftover colouring lemma). If H 0 � H n R is a spanning subhyper-
graph such that �.H 0/ � n, then there exist pairwise edge-disjoint matchings
N1; : : : ; Nk where k � d1=3ne such that

(L1) jV.Ni /j �
p

n for every i 2 Œk�, and

(L2) H 0 D
Sk

iD1 Ni .

Proof. Let D WD dne. For every e 2 H , since jej � 3, we have
P

v2e dH 0.v/ � 3D.
Thus, �0.H / � 3D C 1, so there exist pairwise edge-disjoint matchings M1; : : : ;

M3DC1 such that
S3DC1

iD1 Mi D H 0. Let ` WD d�1=2e C 1. For each i 2 Œ3D C 1�,
there exist pairwise edge-disjoint matchings Ni;1; : : : ;Ni;` such that

S`
jD1 Ni;j D Mi

and jV.Ni;j /j �
p

n for each j 2 Œ`�. By reindexing,
S3DC1

iD1 ¹Ni;1; : : : ; Ni;`º is the
desired set of matchings, since .3D C 1/` � 1=3n.
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5.1.3. Proof of Theorem 4.3. By combining Lemmas 5.6, 5.7, and 5.8, we prove the
following lemma, which effectively reduces Theorem 4.3 to Vizing’s theorem.

Lemma 5.9 (Main colouring lemma). There exists H 0 � H and a proper edge-
colouring of H 0 using dn=2e C d1=3ne colours such that

� H 0 � H n R and

� the colour classes have nearly perfect coverage of U .

Moreover, H n H 0 is a graph and satisfies �.H n H 0/ � n � dn=2e � d1=3ne.

Proof. The proof proceeds in two steps.

Step 1. Using Lemmas 5.7 and 5.6, find a set M of dn=2e pairwise edge-disjoint
matchings M1; : : : ; Mdn=2e such that the following holds:

(M1) M has nearly perfect coverage of U , and moreover, if jU j < 3n=4, then M

has perfect coverage of U ,

(M2) �.H n .R [
Sdn=2e

iD1 Mi // � n, and

(M3) �.R \
Sdn=2e

iD1 Mi / � n.

First we partition H n R into K WD d1=�e pairwise edge-disjoint hypergraphs
H1; : : : ;HK such that

SK
iD1 Hi DH nR, and every vertex has degree .1=2˙3�/n=K

in Hi for each i 2 ŒK�. (To show that the desired partition exists, consider a partition
chosen uniformly at random which, by (5.3), will satisfy the vertex degree condition
with high probability.) We iteratively apply alternating applications of Lemmas 5.7
and 5.6 to each Hi .

Now, for each i 2 ŒK�, we choose ni to be either bdn=2e=Kc or ddn=2e=Ke

such that
PK

jD1 nj D dn=2e, and we partition the set Œdn=2e� into K disjoint parts
I1; : : : ; IK such that jIi j D ni . Note that ni � �n and every vertex in Hi has degree
.1 ˙ 7�/ni for every i 2 ŒK�.

For j 2 ŒK� [ ¹0º, let us define the following inductive properties, where Mk WD

¹Mc W c 2 Ikº is a set of matchings in H for each k 2 Œj �.

(M1j ) For every k 2 Œj �, Mc � Hk [ R for every c 2 Ik and, moreover, the
matchings in

Sj

kD1
Mk are pairwise edge-disjoint.

(M2j ) For every w 2 V.H /,ˇ̌̌̌
ER.w/ \

[
k2Œj �

[
M2Mk

M

ˇ̌̌̌
� . C 3�/

X
k2Œj �

nk;

ˇ̌̌̌
ESj

kD1
Hk

.w/ n
[

k2Œj �

[
M2Mk

M

ˇ̌̌̌
� . C 3�/

X
k2Œj �

nk :
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(M3j ) If jU j < 3n=4, then
Sj

kD1
Mk has perfect coverage of U . Otherwise,Sj

kD1
Mk has nearly perfect coverage of U with defects in U .

Using induction on j , we will show that there exist sets of matchings M1; : : : ;

MK satisfying (M1j )–(M3j ) for j D K. Note that (M1j )–(M3j ) trivially hold for
j D 0. Let i 2 ŒK�, and suppose that M1; : : : ; Mi�1 satisfy (M1j )–(M3j ) for j D

i � 1. Our goal is to find a collection Mi of ni pairwise edge-disjoint matchings in
H satisfying (M1j )–(M3j ) for j D i .

Let Ri WD R n
Si�1

kD1

S
M2Mk

M , let Si WD U n
Si�1

kD1

S
M2Mk

.U n V.M //, and
let W WD F .Ri /[ ¹U;Siº, where F .Ri / WD ¹NRi

.u/\U W u 2 U º [ ¹NRi
.u/ nU W

u 2 U º.
Now we apply Lemma 5.7 with Hi , W , ¹EHi

.w/ W w 2 V.H /º, and ni playing
the roles of H 0, FV , FE , and D, respectively to obtain a set Ni WD ¹Nc W c 2 Iiº of
ni pairwise edge-disjoint matchings in Hi such that the following hold.

(N’1) For every c 2 Ii , Nc is .; �/-pseudorandom with respect to W .

(N’2) For every w 2 V.H /, dHin
S

c2Ii
Nc

.w/ � . C 2�/ni .

Now we show that for every c 2 Ii , .Nc ; Ri ; Si / is absorbable by pseudorandom-
ness of Nc , as follows.

� By (M3j ) for j D i � 1, if jU j < 3n=4, then Si D U , and otherwise jSi j �

jU j �
Pi�1

kD1 nk � n=4 � 1, so (AB1) holds.

� By (M2j ) for j D i � 1, since . C 3�/dn=2e � n, (AB2) holds.

� By (N’1), Nc is .; �/-pseudorandom with respect to W so (AB3) holds, as
required.

Therefore we can apply Lemma 5.6 to obtain a set Mi WD ¹Mc W c 2 Iiº of ni

pairwise edge-disjoint matchings in H such that the following hold.

� For every c 2 Ii , Mc � Nc , and Mc n Nc � Ri , and consequently (M1j ) holds
for j D i .

� By (N’2), for every w 2 V.H /, jEHi
.w/ n

S
c2Ii

Mcj � . C 2�/ni . Moreover,
again by (N’2), all but at most ni � .dHi

.w/ � dHin
S

c2Ii
Nc

.w// � . C 3�/ni

of the matchings in Ni cover w, so jERi
.w/ \

S
c2Ii

Mcj � . C 3�/ni . Hence,
(M2j ) holds for j D i .

� If jU j < 3n=4, then Mi has perfect coverage of U , and, otherwise, Mi has nearly
perfect coverage of U with defects in Si � U . Hence, (M3j ) holds for j D i .

Therefore, by induction, there exist sets of matchings M1; : : : ; MK such that for
every i 2 ŒK�, Mi satisfies (M1j )–(M3j ) for j D i , as claimed. Now M WD

SK
iD1 Mi

satisfies (M1)–(M3). Indeed, by (M1j ) and (M3j ) for j D K, M satisfies (M1), and
by (M2j ) for j D K, M satisfies (M2) and (M3), since . C 3�/dn=2e � n.
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Step 2. Using Lemmas 5.8 and 5.6, find a set M0 of d1=3ne pairwise edge-disjoint
matchings M 0

1; : : : ; M 0

d1=3ne
such that the following holds:

(M’1)
S

M2M M \
S

M 02M0 M 0 D ¿,

(M’2) M [ M0 has nearly perfect coverage of U , and

(M’3) H n R �
S

M2M M [
S

M 02M0 M 0.

By (M2) and Lemma 5.8 applied with H n .R [
S

M2M M/ playing the role
of H 0, there exists a set N 0 WD ¹N 0

1; : : : ;N 0

d1=3ne
º of pairwise edge-disjoint matchings

such that

(L’1) jV.N 0
i /j �

p
n for every i 2 Œd1=3ne� and

(L’2) H n .R [
S

M2M M/ D
Sd1=3ne

iD1 N 0
i .

Now we show that for every i 2 d1=3ne, .N 0
i ; R0; S 0/ is absorbable by smallness of

N 0
i , where R0 WD R n

S
M2M M and S 0 WD U n

S
M2M.U n V.M //. Indeed,

� by (M1), if jU j<3n=4, then S 0DU , and otherwise jS 0j�jU j� dn=2e�n=4� 1,
so (AB1) holds,

� by (M3), �.R n R0/ D �.R \
S

M2M M/ � n, so (AB2) holds, and

� by (L’1), (AB3) holds.

Therefore we can apply Lemma 5.6 to obtain a set M0 WD ¹M 0
1; : : : ; M 0

d1=3ne
º of

pairwise edge-disjoint matchings in H such that the following hold:

� for every i 2 Œd1=3ne�, M 0
i � N 0

i and M 0
i n N 0

i � R0, and

� M0 has nearly perfect coverage of U with defects in S 0

Therefore, by the choice of R0, M0 satisfies (M’1), by the choice of S 0, M0 satisfies
(M’2), and by (L’2), M0 satisfies (M’3), as desired.

Now let H 0 WD
S

M2M M [
S

M 02M0 M 0, assign colour c to each edge in Mc

for every c 2 Œdn=2e�, and assign colour c D dn=2e C i to each edge in M 0
i for

every i 2 Œd1=3ne�. By (M’1), we have a proper edge-colouring of H 0 using at
most dn=2e C d1=3ne colours, as required. By (M’3), H 0 � H n R, as desired,
and by (M’2), the colour classes M [ M0 of H 0 have nearly perfect coverage of
U , as desired. Since H 0 � H n R, it follows that H n H 0 � R is a graph. Since
M [ M0 has nearly perfect coverage of U , every vertex w 2 U satisfies dHnH 0.w/ �

.n � 1/ � .dn=2e C d1=3ne � 1/ D n � dn=2e � d1=3ne, and by (R1), every vertex
w 2 V.H / n U satisfies dHnH 0.w/ � .1 � "/n=2 C 2�n � n � dn=2e � d1=3ne.
Hence, �.H n H 0/ � n � dn=2e � d1=3ne, as desired.

Now we can immediately deduce Theorem 4.3.

Proof of Theorem 4.3. By Lemma 5.9, there exists H 0 � H such that �0.H 0/ �

dn=2e C d1=3ne and H n H 0 is a graph with �.H n H 0/ � n � dn=2e � d1=3ne.
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By Vizing’s theorem, �0.H n H 0/ � �.H n H 0/ C 1 � n � dn=2e � d1=3ne C 1.
Therefore

�0.H / � �0.H 0/ C �0.H n H 0/ � n C 1;

as desired.

We conclude this subsection by briefly discussing how Theorem 4.3 can be im-
proved to show that �0.H / � n. First, we note that the same argument combined with
Vizing’s theorem proves �0.H / � n if at least one of the following holds:

(a) the colour classes of H 0 in Lemma 5.9 have perfect coverage of U or

(b) every v 2 U which is a “defect vertex” of some colour class of H 0 in Lemma
5.9 satisfies dG.v/ < n � 1.

Indeed, in either case, �.H n H 0/ � n � k � 1 for k D dn=2e C d1=3ne, and since
�0.H 0/ � k, we have �0.H / � �0.H 0/ C �0.H n H 0/ � k C .n � k � 1 C 1/ D n,
as desired.

Recall that Lemma 5.6 actually guarantees (a) if jU j < 3n=4. In fact, this argu-
ment even works as long as jU j � .1 � 10"/n. Moreover, the proof of Lemma 5.9
also guarantees (b) if j¹v 2 U W dG.v/ < n � 1ºj � .1=2 C 21=3/n. In particu-
lar, with only minor modifications to the proof of Lemma 5.9, we can prove either
(a) or (b) unless U consists of nearly all of the vertices of H and nearly half of
the vertices of H have degree n � 1. Note that this means that H resembles the
complete graph, one of the extremal examples for the EFL conjecture. In this case,
additional ideas are needed to prove that �0.H n H 0/ D �.H n H 0/, which then
ensures that �0.H / � �0.H 0/C �0.H nH 0/ � k C .n� k/ D n, as desired. To obtain
this improved bound on �0.H n H 0/, we modify the above approach to ensure that
H n H 0 is quasirandom and then apply an edge-colouring result of Glock, Kühn, and
Osthus [68]. (This edge-colouring result in turn is deduced from the theorem of Kühn
and Osthus [114] that dense even-regular robustly expanding graphs have a Hamilton
decomposition. This deduction is based on the fact that a �-regular graph of even
order with a Hamilton decomposition has chromatic index �.)

5.2. Proving the EFL conjecture when all edges are large
This subsection is devoted to the proof of Theorem 4.4, which we restate here.

Theorem 4.4. For every ı > 0, there exist n0; r; � > 0 such that the following holds.
If H is an n-vertex linear hypergraph where n > n0 and every e 2 H satisfies jej > r ,
then �0.H / � n. Moreover, if �0.H / > .1� �/n, then j¹e 2 H W jej D .1˙ ı/

p
nºj �

.1 � ı/n.

If � is a linear ordering of the edges of a hypergraph H , for each e 2H , we define
N�

H
.e/ WD ¹f 2 NH .e/ W f � eº and d�

H
.e/ WD jN�

H
.e/j. We omit the subscript H

when it is clear from the context. For each e2H , we also let H�e WD ¹f 2H W f �eº.
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For every n-vertex hypergraph H and W � H , the normalized volume of W is
volH .W / WD

P
e2W

�
jej
2

�ı�
n
2

�
. If H is linear, then volH .W /2 Œ0;1� for every W �H .

As in (4.4), if H is an n-vertex linear hypergraph such that jej> r for every e 2H ,
then every e 2H satisfies d�

H
.e/� .1C 2=r/n if � is size-monotone-decreasing (i.e.,

satisfying e � f if jej > jf j). In the following key lemma, we showed that we can
either obtain an improved bound on d�

H
.e/ (by modifying the ordering if necessary)

or find a highly structured set W � H . In particular, the edges of W have similar size,
and W has large volume. The fact that the edges have similar size will allow us to
colour W efficiently via Theorem 3.5, unless W closely resembles a projective plane.

Lemma 5.10 (Reordering lemma [96]). Let 0 < 1=r � �; 1=K where � < 1, K � 1,
and 1 � � � 7�1=4=K > 0. If H is an n-vertex linear hypergraph where every e 2 H

satisfies jej � r , then there exists a linear ordering � of the edges of H such that at
least one of the following holds.

(5.10:a) Every e 2 H satisfies d�.e/ � .1 � �/n.

(5.10:b) There is a set W � H such that

(W1) maxe2W jej � .1 C 3�1=4K4/ mine2W jej and

(W2) volH .W / � .1���7�1=4=K/2

1C3�1=4K4 .

Moreover, if e� is the last edge of W , then

(O1) for all f 2 H such that e� � f and f ¤ e�, we have d�.f / �

.1 � �/n and

(O2) for all e; f 2 H such that f � e � e�, we have jf j � jej.

We do not provide a proof of Lemma 5.10, but we briefly sketch the idea. Begin-
ning with a size-monotone-decreasing ordering �, we “reorder” � as follows. Let e�

be the last edge of H that does not satisfy (5.10:a). If there exists f 2 N�.e�/ such
that jNH .f /\H�e� j � .1� �/n� 1, then let �0 be the ordering obtained from � by
moving f to be the successor of e�. If � satisfies (O1) and (O2), then �0 does as well,
and, moreover, jH�0e� j < jH�e� j. Thus, by iterating this argument, we may assume
that there is no such f 2 N�.e�/. Moreover, since we started with a size-monotone-
decreasing ordering, we may also assume that e� satisfies (O1) and (O2). Now a
double-counting argument shows that W WD ¹f 2 H�e� W jf j � .1 C 3�1=4K/je�jº

satisfies (W2).
By applying Lemma 5.10 twice, we obtain the following.

Lemma 5.11. Let 0 < 1=r � � � 1. Let H be an n-vertex linear hypergraph such
that every e 2 H satisfies jej > r . If �0.H / > .1 � �/n, then there exists a partition
of H into three spanning subhypergraphs, H1, W , and H2 such that

(P1) maxe2W jej � .1 C 4�1=4/ mine2W jej,
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(P2) volH .W / � 1 � 4�1=5, and

(P3) jej � maxf 2W jf j for all e 2 H2,

and a linear ordering � of the edges of H such that

(FD1) every e 2H1 satisfies d�

H
.e/�.1�2�/n and f �e for every f 2H2 [W ,

and

(FD2) d�

H
.e/ � n=2000 for all e 2 H2.

Proof. We apply Lemma 5.10 twice and combine the resulting orderings to obtain the
desired ordering � of H . First, we apply Lemma 5.10 to H with 2� and 1 playing the
roles of � and K, respectively, to obtain an ordering �1. If �1 satisfies (5.10:a), then
�0.H / < .1� �/n, and so we assume that (5.10:b) holds. Let W be the set W obtained
from (5.10:b), let e� be the last edge of W in �1, and let H1 WD H n H�1e� . Let f �

be the edge of W which comes first in �1, and let H2 WD H n ¹e 2 H W f � �1 eº. By
the choices of � and K, and since � � 1, we have maxe2W jej � .1C 4�1=4/je�j and
volH .W / � .1 � �1=5/3 � 1 � 4�1=5, and so W satisfies (P1) and (P2), as desired.
Also by (O2) of (5.10:b), we may assume without loss of generality that every e 2 H

satisfying f � �1 e �1 e� is in W , and so H is partitioned into H1, W , and H2, as
required, and H2 satisfies (P3), as desired.

Now we reapply Lemma 5.10 to H2 and show that the resulting ordering sat-
isfies (FD1) and (FD2), as follows. Apply Lemma 5.10 with H2, 1 � 1=2000, and
20002 playing the roles of H , � , and K, respectively, to obtain an ordering �2.
Since W \ H2 D ¿, we have volH .W /C volH .H2/� 1. Thus, �2 satisfies (5.10:a),
because (5.10:b) would imply that there is a set W 0 � H2 disjoint from W with
volH .W 0/ > 4�1=5, contradicting (P2). Combine �1 and �2 to obtain an ordering �

of H where

� if f 2 H1 [ W , then e � f for every e 2 H�1f , and

� if f 2 H2, then e � f for every e 2 H
�2f
2 .

Since H1 and �1 satisfy (O1) of (5.10:b) with � D 2� , (FD1) holds, and since H2

and �2 satisfy (5.10:a) with � D 1 � 1=2000, (FD2) holds, as desired.

To prove Theorem 4.4, we apply Lemma 5.11 and consider two cases depending
on the size of the edges in W . In either case, by (FD1), it suffices to show that �0.H2 [

W / � n. When the edges in W have size close to or larger than
p

n, we apply the
following lemma to colour H2 [ W . As its proof covers the case when H is close
to a projective plane, the argument is quite delicate and we refer the reader to [96,
Lemma 5.1] for a proof.

Lemma 5.12. Let 0 < 1=n0 � ı � 1, and let n � n0. If H is an n-vertex linear
hypergraph where every e 2 H satisfies jej � .1 � ı/

p
n, then �0.H / � n.
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When the edges in W have size bounded away from
p

n, we apply the following
lemma [96, Corollary 6.5], which we prove using Theorem 3.5, to colour W .

Lemma 5.13. Let 0 < 1=n0, 1=r � ˛ � � < 1, let n � n0, and suppose that r �

.1 � �/
p

n. If H is an n-vertex linear hypergraph such that every e 2 H satisfies
jej 2 Œr; .1 C ˛/r�, then �0.H / � .1 � �=500/n.

Proof. Let � WD .1C ˛/r.n� r/=.r � 1/, and let L WD L.H /. For every edge e 2 H ,
there are at most .1 C ˛/r.n � r/ pairs of vertices ¹u; vº of H where u … e and
v 2 e. Thus, since H is linear and every edge has size at least r , we have �.L/ � �.
Similarly, if e; f 2 H share a vertex, thenˇ̌

NL.e/ \ NL.f /
ˇ̌
� n=.r � 1/ C .1 C ˛/2r2

� .1 � 5�=6/n:

Thus, every v 2 V.L/ satisfies e.LŒN.v/�/ � �.1 � 5�=6/n=2 � .1 � 5�=6/
�

�
2

�
.

Therefore, by Theorem 3.5, �0.H / D �.L/ � .1 � 5�=.6e6//� � .1 � �=500/n, as
desired.

Now we can combine Lemmas 5.11–5.13 to prove Theorem 4.4.

Proof of Theorem 4.4. We may assume without loss of generality that ı � 1, and we
let 0 < 1=n0 � 1=r � � � ı. We assume that �0.H / > .1 � �/n or else there is
nothing to prove.

Apply Lemma 5.11 to obtain a partition of H into H1, W , and H2 satisfying
(P1)–(P3) and an ordering � of the edges of H satisfying (FD1) and (FD2), and let
r 0 WD mine2W jej. We assume that

r 0 �
p

n=.1 � 4�/; (5.8)

as otherwise the fact that volH .H2 [ W / � 1 and (P3) together would imply e.H2 [

W / � .1 � 2�/n. Together with (FD1), this fact would imply that every e 2 H satis-
fies d�

H
.e/ � .1 � 2�/n, in which case �0.H / � .1 � �/n, a contradiction.

We now consider two cases: r 0 < .1 � ı/
p

n and r 0 � .1 � ı/
p

n. In the former
case, we derive a contradiction by showing �0.H / � .1 � �/n, and in the latter case,
we prove that �0.H / � n and j¹e 2 H W jej D .1 ˙ ı/

p
nºj � .1 � ı/n.

Case 1. r 0 < .1 � ı/
p

n.
Let � WD1�r 0=

p
n. Since r 0 <.1�ı/

p
n, we have � >ı. By (P1) and Lemma 5.13

with r 0 and 4�1=4 playing the roles of r and ˛, respectively, we have �0.W / �

.1 � �=500/n.
Now we claim that �0.H2/ � �n=1000. To that end, let k WD e.H2/. If k �

�n=1000, then we can simply assign each edge of H2 a distinct colour and the claim
holds; so we assume that k > �n=1000. Since � > ı, we have k > �n=1000 > 2ı2n. By
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(P3), every edge of H2 has size at least r 0, so we have volH .H2/ � k.r 0 � 1/2=n2. On
the other hand, by (P2), and since H2 \ W D ¿, we have volH .H2/ � 4�1=5 � ı3.
Thus, 2ı2n < k � ı3n2=.r 0 � 1/2, so r 0 < ı1=4

p
n. Therefore � > 1000=1001. Now

by (FD2), we can properly colour H2 greedily in the ordering provided by � using at
most n=2000 C 1 � �n=1000 colours, as claimed.

Since �0.H2/ � �n=1000 and �0.W / � .1 � �=500/n, there is a proper edge-
colouring of H2 [W using at most .1� �=1000/n � .1� �/n colours, and by (FD1),
we can extend such a colouring to H1 greedily without using any additional colours,
contradicting that �0.H / > .1 � �/n.

Case 2. r 0 � .1 � ı/
p

n.
By (P3) and Lemma 5.12, there is a proper edge-colouring of H2 [ W using

at most n colours, and as before, by (FD1), we can extend such a colouring to H1

greedily without using any additional colours. Hence, �0.H / � n, as desired.
Since r 0 � .1 � ı/

p
n, by (P1) and (5.8), the edges in W have size .1 ˙ ı/

p
n.

In fact, the edges in W have size at most .1 C ı2/
p

n, so by (P2), since volH .W / �

1 � ı2, we have e.W / � volH .W /.n � 1/=.1 C ı2/2 � .1 � ı/n, as desired.

We conclude by briefly discussing how to combine the arguments of Theorems
4.3 and 4.4 to obtain Theorem 4.1. First, we merge the hierarchy used in the proof of
Theorem 4.4 with (5.1) and also introduce constants r1, r0, ˇ, and � into the hierarchy,
letting

1=n0 � 1=r0 � � � 1=r1 � ˇ � � �  � " � � � � � ı � 1:

As in the proof of Theorem 4.7, we decompose H into three spanning subhypergraphs
Hsml WD ¹e 2 H W jej � r1º, Hmed WD ¹e 2 H W r1 < jej � r0º, and Hlrg WD ¹e 2 H W

jej > r0º. We apply a stronger version of Theorem 4.4 to Hlrg [ Hmed in which

(a) every colour class either covers at most ˇn vertices or consists of a single
edge, and

(b) at most n colours are used to colour Hmed.

This strengthening of Theorem 4.4 enables us to modify the proof of Lemma 5.9 to
find a colouring of some H 0 satisfying Hsml n R � H 0 � Hsml compatible with the
colouring of Hlrg [Hmed. As in the proof of Theorem 4.3, we can ensure that H nH 0

is a graph of maximum degree at most n � dn=2e � d1=3ne; however, Vizing’s theo-
rem does not guarantee a colouring of H n H 0 that avoids conflicts with Hlrg [ Hmed.
To that end, we modify Lemma 5.9 further to colour H 0 with k WD d.1� �/ne colours.
If Hlrg [ Hmed can be coloured with at most .1 � �/n colours, then we can colour
H n H 0 with n � k colours that are not used on Hlrg [ Hmed (either using Viz-
ing’s theorem or the more involved argument discussed at the end of Section 5.1). If
Hlrg [ Hmed requires more than .1 � �/n colours, then we need a different approach,
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using the fact that in this case we know that j¹e 2 H W jej D .1 ˙ ı/
p

nºj � .1 � ı/n;
i.e., that H is close to a projective plane. See [96] for the full proof.
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[2] M. Ajtai, P. Erdős, J. Komlós, and E. Szemerédi, On Turán’s theorem for sparse graphs.
Combinatorica 1 (1981), no. 4, 313–317 Zbl 0491.05038 MR 647980

[3] M. Ajtai, J. Komlós, J. Pintz, J. Spencer, and E. Szemerédi, Extremal uncrowded hyper-
graphs. J. Combin. Theory Ser. A 32 (1982), no. 3, 321–335 Zbl 0485.05049
MR 657047

[4] M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers. J. Combin. Theory
Ser. A 29 (1980), no. 3, 354–360 Zbl 0455.05045 MR 600598

[5] M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence. European J.
Combin. 2 (1981), no. 1, 1–11 Zbl 0474.10038 MR 611925

[6] N. Alon, Independence numbers of locally sparse graphs and a Ramsey type problem.
Random Structures Algorithms 9 (1996), no. 3, 271–278 Zbl 0876.05049
MR 1606837

[7] N. Alon, Degrees and choice numbers. Random Structures Algorithms 16 (2000), no. 4,
364–368 Zbl 0958.05049 MR 1761581

[8] N. Alon, S. Cambie, and R. J. Kang, Asymmetric list sizes in Bipartite graphs. Ann.
Comb. 25 (2021), no. 4, 913–933 Zbl 07449490 MR 4346745

[9] N. Alon and J. H. Kim, On the degree, size, and chromatic index of a uniform hyper-
graph. J. Combin. Theory Ser. A 77 (1997), no. 1, 165–170 Zbl 0868.05037
MR 1426745

https://mathscinet.ams.org/mathscinet-getitem?mr=4228196
https://zbmath.org/?q=an:0491.05038&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=647980
https://zbmath.org/?q=an:0485.05049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=657047
https://zbmath.org/?q=an:0455.05045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=600598
https://zbmath.org/?q=an:0474.10038&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=611925
https://zbmath.org/?q=an:0876.05049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1606837
https://zbmath.org/?q=an:0958.05049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1761581
https://zbmath.org/?q=an:07449490&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4346745
https://zbmath.org/?q=an:0868.05037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1426745


Graph and hypergraph colouring via nibble methods 815

[10] N. Alon, J.-H. Kim, and J. Spencer, Nearly perfect matchings in regular simple hyper-
graphs. Israel J. Math. 100 (1997), 171–187 Zbl 0882.05107 MR 1469109

[11] N. Alon and M. Krivelevich, The choice number of random bipartite graphs. Ann. Comb.
2 (1998), no. 4, 291–297 Zbl 0927.05028 MR 1774970

[12] N. Alon, M. Krivelevich, and B. Sudakov, Coloring graphs with sparse neighborhoods.
J. Combin. Theory Ser. B 77 (1999), no. 1, 73–82 Zbl 1026.05043 MR 1710532

[13] N. Alon and J. H. Spencer, The Probabilistic Method. 4th edn., Wiley Ser. Discrete Math.
Optim., John Wiley & Sons, Hoboken, NJ, 2016 Zbl 1333.05001 MR 3524748

[14] N. Alon and R. Yuster, On a hypergraph matching problem. Graphs Combin. 21 (2005),
no. 4, 377–384 Zbl 1090.05051 MR 2209008

[15] P. Bennett and T. Bohman, A natural barrier in random greedy hypergraph matching.
Combin. Probab. Comput. 28 (2019), no. 6, 816–825 Zbl 1436.05079 MR 4015657

[16] C. Berge, On the chromatic index of a linear hypergraph and the Chvátal conjecture. In
Combinatorial Mathematics: Proceedings of the Third International Conference (New
York, 1985), pp. 40–44, Ann. New York Acad. Sci. 555, New York Acad. Sci., New
York, 1989 Zbl 0726.05055 MR 1018607

[17] A. Bernshteyn, The Johansson–Molloy theorem for DP-coloring. Random Structures
Algorithms 54 (2019), no. 4, 653–664 Zbl 1417.05059 MR 3957361

[18] N. Besharati, L. Goddyn, E. S. Mahmoodian, and M. Mortezaeefar, On the chromatic
number of Latin square graphs. Discrete Math. 339 (2016), no. 11, 2613–2619
Zbl 1339.05036 MR 3518411

[19] T. Bohman and P. Keevash, Dynamic concentration of the triangle-free process. Random
Structures Algorithms 58 (2021), no. 2, 221–293 MR 4201797

[20] B. Bollobás, The independence ratio of regular graphs. Proc. Amer. Math. Soc. 83 (1981),
no. 2, 433–436 Zbl 0474.05057 MR 624948

[21] M. Bonamy, M. Delcourt, R. Lang, and L. Postle, Edge-colouring graphs with local list
sizes. 2020, arXiv:2007.14944

[22] M. Bonamy, T. Kelly, P. Nelson, and L. Postle, Bounding � by a fraction of � for graphs
without large cliques. J. Combin. Theory Ser. B, to appear

[23] M. Bonamy, T. Perrett, and L. Postle, Colouring graphs with sparse neighbourhoods:
Bounds and applications. 2018, arXiv:1810.06704

[24] R. L. Brooks, On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37
(1941), 194–197 Zbl 0027.26403 MR 12236

[25] A. E. Brouwer, On the size of a maximum transversal in a Steiner triple system. Cana-
dian J. Math. 33 (1981), no. 5, 1202–1204 Zbl 0481.05016 MR 638375

[26] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Encyclopedia Math. Appl.
39, Cambridge University Press, Cambridge, 1991 Zbl 0746.05002 MR 1130611

[27] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index. Combin. Probab.
Comput. 27 (2018), no. 1, 21–43 Zbl 1378.05047 MR 3734328

https://zbmath.org/?q=an:0882.05107&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1469109
https://zbmath.org/?q=an:0927.05028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1774970
https://zbmath.org/?q=an:1026.05043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1710532
https://zbmath.org/?q=an:1333.05001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3524748
https://zbmath.org/?q=an:1090.05051&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2209008
https://zbmath.org/?q=an:1436.05079&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4015657
https://zbmath.org/?q=an:0726.05055&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1018607
https://zbmath.org/?q=an:1417.05059&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3957361
https://zbmath.org/?q=an:1339.05036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3518411
https://mathscinet.ams.org/mathscinet-getitem?mr=4201797
https://zbmath.org/?q=an:0474.05057&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=624948
https://arxiv.org/abs/2007.14944
https://arxiv.org/abs/1810.06704
https://zbmath.org/?q=an:0027.26403&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=12236
https://zbmath.org/?q=an:0481.05016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=638375
https://zbmath.org/?q=an:0746.05002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1130611
https://zbmath.org/?q=an:1378.05047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3734328


D. Y. Kang et al. 816

[28] D. Bryant, C. J. Colbourn, D. Horsley, and I. M. Wanless, Steiner triple systems with
high chromatic index. SIAM J. Discrete Math. 31 (2017), no. 4, 2603–2611
Zbl 1375.05034 MR 3723319

[29] N. J. Cavenagh and J. Kuhl, On the chromatic index of Latin squares. Contrib. Discrete
Math. 10 (2015), no. 2, 22–30 Zbl 1341.05017 MR 3499074

[30] W. I. Chang and E. L. Lawler, Edge coloring of hypergraphs and a conjecture of Erdős,
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