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Closed G2-structures on compact quotients of Lie groups

Anna Fino and Alberto Raffero

Abstract. G2-structures defined by a closed non-degenerate 3-form constitute the starting
point in various known and potentially effective methods to obtain holonomy G2-metrics on
compact 7-manifolds. Albeit linear, the closed condition is quite restrictive, and no general
results on the existence of closed G2-structures on compact 7-manifolds are currently known.
In this paper, we review some results regarding compact locally homogeneous spaces admit-
ting invariant closed G2-structures. In particular, we consider the case of compact quotients of
simply connected Lie groups by discrete subgroups.

1. Introduction

A G2-structure is a special type of G-structure that occurs on certain 7-dimensional
smooth manifolds. More precisely, it is a reduction of the structure group of the frame
bundle of a 7-manifold M from the general linear group GL.7; R/ to the compact
exceptional Lie group G2. The existence of a G2-structure on M is equivalent to the
orientability of M and the existence of a spin structure on it, namely to the vanishing
of the the first and second Stiefel–Whitney classes of M .

Since every 7-manifold admitting G2-structures is spin, it also admits almost con-
tact structures. The interplay between the existence of special types of G2-structures
and of contact structures has been recently investigated in [2, 13, 26].

The existence of a G2-structure on M can also be described in terms of differen-
tial forms. Indeed, it is characterized by the existence of a 3-form ' 2 �3.M/ with
pointwise stabilizer isomorphic to G2. This is also equivalent to requiring that ' is
non-degenerate; namely that at each point p of M one has that

�X' ^ �X' ^ ' ¤ 0;

for every non-zero tangent vector X 2 TpM , where �X denotes the contraction by
X . Every such 3-form ' gives rise to a Riemannian metric g' and to an orientation
on M . More precisely, g' and the corresponding Riemannian volume form dV' are
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related to ' as follows:

g'.X; Y /dV' D
1

6
�X' ^ �Y ' ^ ':

Moreover, at each point p of M , the 3-form ' can be written as

' D e127
C e347

C e567
C e135

� e146
� e236

� e245;

where .e1; : : : ; e7/ is a g'-orthonormal basis of the cotangent space T �
p M , and eijk

denotes the wedge product ei ^ ej ^ ek .
Let � be the Hodge star operator determined by g' and the orientation, and let

r be the Levi-Civita connection of g' . By [19], the 3-form ' is parallel with respect
to r if and only if it is closed and co-closed; namely d' D 0 and d � ' D 0. In this
case, the G2-structure is said to be parallel or torsion-free, its intrinsic torsion van-
ishes identically, the Riemannian metric g' is Ricci-flat (see also [4]), and Hol.g'/

is isomorphic to a subgroup of G2. Notice that the conditions r' D 0 and d � ' D 0

are both non-linear in ', as both r and � depend on g' , which is determined by '.
The existence of Riemannian metrics with holonomy equal to G2 was first proved

by Bryant in [7], where some non-compact examples of Riemannian 7-manifolds
with holonomy G2 were given. The first complete (but still non-compact) examples
were obtained by Bryant and Salamon in 1989 [9], and the first compact examples
were constructed by Joyce in 1994 [35, 36]. Further compact examples admitting
holonomy G2 metrics were obtained in [12, 34, 38, 39].

A G2-structure defined by a non-degenerate 3-form ' satisfying the linear con-
dition d' D 0 is said to be closed or calibrated, since ' defines a calibration on M ,
namely 'j� � vol� , for every oriented tangent 3-plane � (cf. [30]). The codifferential
of a closed G2-structure ' is given by

d � ' D � ^ ';

for a unique 2-form � belonging to the irreducible 14-dimensional space ƒ2
14 Š g2.

This 2-form is usually called the torsion form of the closed G2-structure ', and it
satisfies the identities � ^' D�� � and � ^�' D 0. Note that � D d �', and therefore
d �� D 0. As a consequence, d� D �'', where �' D dd � C d �d denotes the Hodge
Laplacian of g' .

By [8], the scalar curvature of the metric g' induced by a closed G2-structure is
given by

Scal.g'/ D �
1

2
j� j2;

and so it is non-positive. Notice that this is not a restrictive condition on compact
manifolds.

By [56], a compact homogeneous 7-manifold cannot admit any invariant closed
non-parallel G2-structure. On the other hand, there exist many examples of compact
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locally homogeneous 7-manifolds admitting invariant G2-structures of this type; see
for instance [3, 8, 11, 14, 15, 23, 37, 50]. All these examples are compact quotients
of simply connected Lie groups by co-compact discrete subgroups (lattices). Further
examples of compact manifolds admitting closed non-parallel G2-structures are given
in [16, 51] and they are obtained resolving the singularities of 7-orbifolds.

In Section 2, we review known examples of compact locally homogeneous spaces
admitting invariant closed G2-structures and known classification results for Lie alge-
bras admitting closed G2-structures. A classification is currently available for 7-
dimensional Lie algebras that are non-solvable [23] and for those having a non-trivial
center [11,26]. The classification of solvable Lie algebras with a trivial center admit-
ting closed G2-structures is still missing.

A geometric flow evolving closed G2-structures was introduced by Bryant in [8].
Self-similar solutions to this flow correspond to the so-called Laplacian solitons,
namely to closed G2-structures ' satisfying the condition �'' D �' C LX', for
some real constant � and some vector field X on M , where LX' denotes the Lie
derivative of ' with respect to X . In Section 3, after reviewing general properties of
the Laplacian flow and of Laplacian solitons, we present some recent results obtained
in [26], where left-invariant Laplacian solitons on Lie groups with a non-trivial center
were considered.

A Laplacian soliton ' is called expanding if � > 0. In this case, the G2-form '

has to be exact, i.e., ' D d˛, for some 2-form ˛ on M . By [42, 44], a non-parallel
Laplacian soliton on a compact 7-manifold must be expanding with LX' ¤ 0.

Currently, it is still not known whether exact G2-structures may occur on compact
7-manifolds. In Section 4, we review the results of [18, 22, 28], where this problem
was considered in the case when the compact 7-manifold M is the quotient of a 7-
dimensional simply connected Lie group G by a co-compact discrete subgroup � �

G, and the exact G2-structure on M is induced by a left-invariant one on G. In [18,28],
it was shown that there are no examples of this type whenever the group G satisfies
suitable extra assumptions. In the recent joint work with L. Martín Merchán [22], we
extended the previous results, showing that every compact manifold M D �nG as
above does not admit any exact G2-structure which is induced by a left-invariant one
on G.

2. Compact locally homogeneous examples and classification results
for Lie algebras

Let M be a 7-manifold endowed with a G2-structure ' and consider its automorphism
group

Aut.M; '/ WD
®
f 2 Diff.M/ j f �' D '

¯
:
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Note that Aut.M; '/ is a closed Lie subgroup of the full isometry group Isom.M; g'/

of the Riemannian manifold .M; g'/.
When M is compact, Aut.M; '/ is compact, too, and its Lie algebra is given by

aut.M; '/ D
®
X 2 X.M / j LX' D 0

¯
:

In particular, every X 2 aut.M; '/ is a Killing vector field for the metric g' ; namely
LXg' D 0.

When ' is parallel, g' is Ricci-flat, and it follows from the Bochner–Weitzenböck
technique that every Killing vector field must be parallel with respect to the Levi-
Civita connection of g' . Consequently, the Lie algebra aut.M; '/ is abelian. More-
over, its possible dimensions are 0; 1; 3 or 7, depending on Hol0.g'/ being equal to
G2, SU.3/, SU.2/ or ¹1º, respectively.

If the G2-structure ' is closed and non-parallel, namely � D d �' ¤ 0, then for
every X 2 aut.M;'/ the closed 2-form �X' is �'-harmonic, since �.�X'/D 1

2
�X' ^

' is also closed. There is then an injective map

X 2 aut.M; '/ 7! �X' 2 H 2.M/;

and thus dim aut.M; '/ � b2.M/, where b2.M/ D dim H 2.M/ D dim H 2
dR.M/ is

the second Betti number of M . Moreover, it is possible to prove the following.

Theorem 2.1 ([56]). Let M be a compact 7-manifold with a closed non-parallel G2-
structure '. Then, aut.M; '/ is abelian and its dimension is at most 6.

Therefore, the identity component of Aut.M; '/ is a compact abelian Lie group
whose dimension is bounded above by min¹6; b2.M/º. As a consequence, a compact
7-manifold M with a closed non-parallel G2-structure ' cannot be homogeneous;
namely neither Aut.M; '/ nor a subgroup thereof can act transitively on M . In con-
trast to this last result, it is possible to construct non-compact homogeneous examples;
see for instance [55].

The first example of compact 7-manifold M admitting closed G2-structures but
not admitting any parallel G2-structure was constructed by Fernández in [14]. In
this example, M D �nN is a compact nilmanifold; i.e., the compact quotient of a
7-dimensional simply connected nilpotent Lie group N by a co-compact discrete sub-
group (lattice) � . Moreover, the closed G2-structure ' on �nN considered in [14] is
induced by a left-invariant one on the Lie group N . In particular, the pair .�nN; '/

is a locally homogeneous space that is not globally homogeneous, as the transitive
action of N on �nN does not preserve the 3-form '. In other words, N is not a
subgroup of Aut.�nN; '/.

Remark. By Malcev’s criterion [49], a nilpotent Lie group admits lattices if and only
if its Lie algebra admits a basis with rational structure constants.
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We now consider the following problem.

Problem 2.2. Study the existence of invariant closed G2-structures on compact 7-
manifolds of the form �nG, where G is a 7-dimensional simply connected Lie group
and � � G is a co-compact discrete subgroup.

We recall that a G2-structure on �nG is said to be invariant if it is induced by a
left-invariant one on the Lie group G. Therefore, an invariant closed G2-structure on
�nG is completely determined by a G2-structure ' on the Lie algebra g of G which
is closed with respect to the Chevalley–Eilenberg differential d of g.

A 3-form ' on a 7-dimensional Lie algebra g defines a G2-structure if and only
if the symmetric bilinear map

b' W g � g ! ƒ7g�; b'.v; w/ D
1

6
�v' ^ �w' ^ '

satisfies the condition det.b'/1=9 ¤ 0 2 ƒ7g� and the symmetric bilinear form

g' WD det.b'/�1=9b' W g � g ! R

is positive definite; see e.g. [32]. In particular, for any choice of orientation on g, the
map

b' W g � g ! ƒ7g�
Š R

has to be positive or negative definite.
By [52], a simply connected Lie group G admits lattices only if its Lie algebra g

is unimodular; i.e., tr.adX / D 0, for every X 2 g.
In the sequel, the structure equations of an n-dimensional Lie algebra with

respect to a basis of covectors .e1; : : : ; en/ of g� will be specified by the n-tuple
.de1; : : : ; den/. Moreover, we will use the shortening eijk��� to denote the wedge
product of covectors ei ^ ej ^ ek ^ � � � .

In [23], we classified all unimodular non-solvable Lie algebras admitting closed
G2-structures, up to isomorphism, obtaining the following result.

Theorem 2.3 ([23]). A unimodular non-solvable Lie group G admits left-invariant
closed G2-structures if and only if its Lie algebra g is isomorphic to one of the fol-
lowing:

q1 D

�
� e23;�2e12; 2e13; 0;�e45;

1

2
e46

� e47;
1

2
e47

�
;

q2 D
�
� e23;�2e12; 2e13; 0;�e45;��e46; .1 C �/e47

�
; �1 < � � �

1

2
;

q3 D

�
� e23;�2e12; 2e13; 0;��e45;

�

2
e46

� e47; e46
C

�

2
e47

�
; � > 0;

q4 D .�e23;�2e12; 2e13;�e14
� e25

� e47; e15
� e34

� e57; 2e67; 0/:
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The first three Lie algebras in the previous list decompose as a product of the form
sl.2; R/ ˚ r, where the radical r is unimodular and centerless. The Lie algebra q4

is indecomposable and its Levi decomposition is given by q4 Š sl.2; R/ Ë r, where
r Š R Ë R3.

As a consequence of the previous result, a unimodular Lie algebra with a non-
trivial center admitting closed G2-structures must be solvable.

It is well known that every nilpotent Lie algebra is unimodular and has a non-
trivial center. Nilpotent Lie algebras admitting closed G2-structures were considered
in [11], where the following classification result was obtained.

Theorem 2.4 ([11]). A 7-dimensional nilpotent Lie algebra admits closed G2-struc-
tures if and only if it is isomorphic to one of the following:

n1 D .0; 0; 0; 0; 0; 0; 0/;

n2 D .0; 0; 0; 0; e12; e13; 0/;

n3 D .0; 0; 0; e12; e13; e23; 0/;

n4 D .0; 0; e12; 0; 0; e13
C e24; e15/;

n5 D .0; 0; e12; 0; 0; e13; e14
C e25/;

n6 D .0; 0; 0; e12; e13; e14; e15/;

n7 D .0; 0; 0; e12; e13; e14
C e23; e15/;

n8 D .0; 0; e12; e13; e23; e15
C e24; e16

C e34/;

n9 D .0; 0; e12; e13; e23; e15
C e24; e16

C e34
C e25/;

n10 D .0; 0; e12; 0; e13
C e24; e14; e46

C e34
C e15

C e23/;

n11 D .0; 0; e12; 0; e13; e24
C e23; e25

C e34
C e15

C e16
� 3e26/;

n12 D .0; 0; 0; e12; e23;�e13; 2e26
� 2e34

� 2e16
C 2e25/:

In [26], we dealt with the more general case of unimodular solvable non-nilpotent
Lie algebras with a non-trivial center admitting closed G2-structures. There, we ob-
tained a characterization that is based on the following observation. Let W be a 7-
dimensional vector space endowed with a G2-structure '. Choosing a non-zero vector
z 2 W and a complementary vector subspace V � W so that W Š V ˚ Rz, one can
write

' D z! ^ � C �;

where � 2 W � is the dual of z, z! 2 ƒ2V �, and � 2 ƒ3V �. The 3-form ' defines a
G2-structure on W if and only if it is definite; namely for each non-zero vector w 2W

the contraction �w' has rank six. Moreover, the 3-form ' on W is definite if and only
if the 3-form � on V is definite; i.e., for each non-zero vector v 2 V the contraction
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�v� has rank four, and z! is a taming form for the complex structure J induced by �

and one of the two orientations of V ; namely z!.v; J v/ > 0 for every non-zero vector
v 2 V .

Using this property, in [26] we proved that a Lie algebra g with a non-trivial
center endowed with a closed G2-structure ' must be the central extension of a 6-
dimensional Lie algebra h by means of a closed 2-form !0 2 ƒ2h�; namely g D

h ˚ Rz and its Lie bracket is given by

Œz; h� D 0; Œx; y� D �!0.x; y/z C Œx; y�h; 8x; y 2 h:

Moreover, ' D z! ^ � C �, where � is a 1-form on g satisfying the condition d� D!0,
� is a definite 3-form on h such that d� D �!0 ^ z!, and z! is a symplectic form on
h that tames the almost complex structure induced by � and a suitable orientation.
If the 2-form z! is symplectic, the 1-form � is a contact form on g and .g; �/ is
the contactization of .h; z!/; see [1]. In this last case, the Lie algebra g admits both a
closed G2-structure and a contact structure. This is reminiscent of the Boothby–Wang
construction in [5].

As a first consequence of this characterization, we determined all isomorphism
classes of nilpotent Lie algebras admitting closed G2-structures that arise as the con-
tactization of a 6-dimensional symplectic nilpotent Lie algebra .h; !0/, showing that
any such Lie algebra must be isomorphic to one of the following Lie algebras: n9,
n10, n11, n12.

Then, we proved that there exist eleven unimodular solvable non-nilpotent Lie
algebras with a non-trivial center admitting closed G2-structures, up to isomorphism,
achieving in this way the classification of all isomorphism classes of unimodular Lie
algebras with a non-trivial center admitting closed G2-structures.

Theorem 2.5 ([26]). Let g be a 7-dimensional unimodular solvable non-nilpotent
Lie algebra with a non-trivial center. Then, g admits closed G2-structures if and only
if it is isomorphic to one of the following:

s1 D .e23;�e36; e26; e26
� e56; e36

C e46; 0; 0/;

s2 D .e16
C e35;�e26

C e45; e36;�e46; 0; 0; 0/;

s3 D .�e16
C e25;�e15

� e26; e36
� e45; e35

C e46; 0; 0; 0/;

s4 D .0;�e13;�e12; 0;�e46;�e45; 0/;

s5 D .e15;�e25;�e35; e45; 0; 0; 0/;

s6 D .˛e15
C e25;�e15

C ˛e25;�˛e35
C e45;�e35

� ˛e45; 0; 0; 0/; ˛ > 0;

s7 D .e25;�e15; e45;�e35; 0; 0; 0/;

s8 D .e16
C e35;�e26

C e45; e36;�e46; 0; 0; e34/;
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s9 D .�e26
C e35; e16

C e45;�e46; e36; 0; 0; e34/;

s10 D .e23;�e36; e26; e26
�e56; e36

Ce46; 0; 2e16
Ce25

�e34
C
p

3e24
C
p

3e35/;

s11 D .e23;�e36; e26; e26
�e56; e36

Ce46; 0; 2e16
Ce25

�e34
�
p

3e24
�
p

3e35/:

In particular, g is the contactization of a symplectic Lie algebra if and only if it is
isomorphic either to s10 or to s11.

By the characterization above, we know that g has to be the central extension
of a unimodular symplectic Lie algebra h endowed with a closed (possibly non-
degenerate) 2-form !0 and a suitable pair of forms .z!; �/. Such an extension is
determined by any representative in the cohomology class Œ!0� 2 H 2.h/, and the
proof of the theorem follows after an inspection of all 6-dimensional unimodular
symplectic Lie algebras that exist up to isomorphism (cf. [20, 47]).

As far as we know, the following problem remains open.

Problem 2.6. Classify all 7-dimensional solvable Lie algebras with a trivial center
admitting closed G2-structures, up to isomorphism.

3. Laplacian solitons

A special class of closed G2-structures that has attracted a lot of attention in recent
years is given by Laplacian solitons. These G2-structures are closely related to the
self-similar solutions to the Laplacian flow for closed G2-structures, a geometric flow
that was introduced by Bryant in [8] as a tool to potentially deform a closed G2-
structure towards a parallel one.

Definition 3.1 ([8]). Let '0 be a closed G2-structure on a 7-manifold M . The Lapla-
cian flow starting at '0 is the initial value problem8̂̂<̂

:̂
@t'.t/ D �'.t/'.t/;

d'.t/ D 0;

'.0/ D '0;

where �'.t/ is the Hodge Laplacian of g'.t/.

The stationary points of the Laplacian flow are parallel G2-structures, even on
non-compact manifolds (see [43] for the explicit computation in the non-compact
case). If '.t/ is a family of closed G2-structures solving the Laplacian flow, then
'.t/ 2 Œ'0� 2 H 3

dR.M/; namely the de Rham cohomology class Œ'.t/� is constant in
t . Moreover, the evolution equation of the metric g'.t/ induced by '.t/ coincides with
the Ricci flow of g'.t/ up to lower order terms; namely

@tg'.t/ D �2 Ric.g'.t// C l:o:t:
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Remark. On a compact manifold M , the Laplacian flow is the gradient flow of
Hitchin’s volume functional

V W ' 2 Œ'0� 7!

Z
M

' ^ �':

This functional is monotonically increasing along the flow, its critical points are par-
allel G2-structures, and they are strict local maxima. See [6,43] and the arXiv version
of [31] for more details.

The short-time existence and uniqueness of the solution to the Laplacian flow on
a compact manifold were proved by Bryant and Xu in [6].

Theorem 3.2 ([6]). Let M be a compact 7-manifold with a closed G2-structure '0.
Then, the Laplacian flow starting at '0 has a unique solution defined for short time
t 2 Œ0; "/, with " depending on '0.

The geometric and analytic properties of the Laplacian flow have been deeply
investigated by Lotay and Wei in [44–46], and further results are available in [10,
21, 57]. Moreover, various lower-dimensional reductions of the flow were studied in
[21, 24, 27, 40]. Explicit examples of solutions to the flow are also known; see for
instance [17, 24, 41] for examples on simply connected Lie groups with left-invariant
closed G2-structures, and [33] for a cohomogeneity one example on the 7-torus.

A closed G2-structure ' on a 7-manifold M is said to be a Laplacian soliton if it
satisfies the equation

�'' D �' C LX';

for some real constant � and some vector field X on M . These G2-structures give rise
to self-similar solutions to the Laplacian flow, namely to solutions of the form '.t/ D

�.t/f �
t ', where �.t/ is a real-valued function of t , and ft 2 Diff.M/. Laplacian

solitons are expected to model finite time singularities of the Laplacian flow; see [43]
for more details.

Depending on the sign of �, one can introduce the following definitions.

Definition 3.3. A Laplacian soliton ' is called shrinking if � < 0, steady if � D 0

and expanding if � > 0.

Some restrictions to the existence of a Laplacian soliton on a compact manifold
are known.

Theorem 3.4 ([42, 44]). On a compact 7-manifold, a non-parallel Laplacian soliton
' must satisfy the equation �'' D �' C LX', with � > 0 and LX' ¤ 0. Moreover,
the only steady Laplacian solitons are given by parallel G2-structures.

Thus, a non-parallel Laplacian soliton on a compact manifold must be expanding.
The following problem is still open.
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Problem 3.5. Do there exist expanding Laplacian solitons on compact manifolds?

The non-compact setting is less restrictive, and various homogeneous examples
of steady, shrinking, and expanding solitons are known [3, 24, 25, 41, 53, 54]. More
recently, complete inhomogeneous examples of steady and shrinking solitons were
obtained in [3, 27]. These examples are of gradient type; i.e., X is a gradient vector
field.

By [41], any left-invariant Laplacian soliton ' on a Lie group G is semi-algebraic;
i.e., the vector field X is defined by a 1-parameter group of automorphisms induced
by a derivation D of the Lie algebra g. Some results on semi-algebraic solitons on
unimodular Lie algebras with a non-trivial center have been recently obtained in [26].
For instance, under a natural assumption on the derivation D, it is possible to relate
the constant � to a certain eigenvalue of D and to the norm of the torsion form � of
the semi-algebraic soliton '. Moreover, the following result can be proved.

Theorem 3.6 ([26]). Let g be a unimodular Lie algebra with a non-trivial center
z.g/ admitting a semi-algebraic soliton '. Then the following conditions hold:

(1) if g is the contactization of a symplectic Lie algebra, then � D j� j2 and thus
' must be expanding;

(2) if dim z.g/ D 2, then g has to be isomorphic to one of the following Lie
algebras: n1, n2, n3, n4, n5, n6, n7, s5, s6, s7.

If dim z.g/ D 1, some non-existence results for semi-algebraic solitons on certain
Lie algebras are also known [26], but a general result is still missing.

Remark. All known examples of Lie algebras admitting shrinking or steady Lapla-
cian solitons have a trivial center. It would be interesting to establish whether the
existence of these types of solitons forces the Lie algebra to be centerless.

4. Exact G2-structures
An expanding Laplacian soliton ' is an exact G2-structure. Indeed, since ' is closed
and �'' D d� , the condition �'' D �' C LX' can be rewritten as follows:

' D d

�
1

�
.� � �X'/

�
:

In the literature, all known examples of compact 7-manifolds M admitting closed
G2-structures, but not admitting parallel G2-structures, have b1.M/ > 0 and b3.M/ >

0; see [11, 14–16, 50, 51]. A longstanding open question concerns the existence of
closed G2-structures on compact 7-manifolds with b3.M/ D 0, such as the 7-sphere.
Notice that, in this case, any closed G2-structure would be defined by an exact 3-form.
A natural question is then the following.
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Problem 4.1. Does there exist a compact 7-manifold admitting exact G2-structures?

In this section, we consider this problem in the case when the manifold is the
compact quotient of a simply connected unimodular Lie group G by a lattice.

The following example constructed in [18] shows that exact G2-structures occur
on unimodular Lie algebras.

Example 4.2. Let s be the 7-dimensional unimodular solvable Lie algebra with
structure equations

de1
D �2e17; de2

D �4e27; de3
D

9

2
e37;

de4
D

5

2
e47

� e13; de5
D

1

2
e57

� 6e37
� e14

� e23;

de6
D �

3

2
e67

� 6e47
C 3e13

C e15
C e24; de7

D 0:

This Lie algebra is a semidirect product of the form s D R Ë n, where n is a codi-
mension one 4-step nilpotent ideal, and it satisfies the conditions b2.s/ D 0 D b3.s/.
Moreover, s admits the exact G2-structure

' D e127
C e347

C e567
C e135

� e146
� e236

� e245

D d

�
1

6
e12

C
23

7
e34

C 2e36
� 2e45

C e56

�
:

Consequently, the simply connected solvable Lie group S with Lie algebra s is en-
dowed with a left-invariant exact G2-structure obtained from ' via left multiplication.

As we already recalled, a Lie group G admitting lattices must be unimodular. In
the case of solvable Lie groups, a stronger necessary condition for the existence of
lattices is known; namely the group must be strongly unimodular (cf. [29, Prop. 3.3]).
We recall the definition here.

Definition 4.3 ([29]). A solvable Lie group G with Lie algebra g and nilradical n is
said to be strongly unimodular if tr.adX /jni =niC1 D 0, for every X 2 g, where n0 D n,
and ni D Œn; ni�1�, i � 1, is the i th term in the descending central series of n.

For instance, the simply connected solvable Lie group S in Example 4.2 is uni-
modular but not strongly unimodular, so it does not admit any compact quotient by a
lattice.

In [18], we showed that a strongly unimodular .2; 3/-trivial Lie algebra g, namely
with b2.g/ D b3.g/ D 0, does not admit any exact G2-structure. Therefore, there are
no compact examples of the form �nG admitting invariant exact G2-structures when-
ever the Lie algebra of G is .2; 3/-trivial. To prove this result, we used the property
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that a .2; 3/-trivial Lie algebra g is solvable and g D R Ë n, with n a codimension
one nilpotent ideal (see [48]), and we classified all 7-dimensional strongly unimodu-
lar .2; 3/-trivial Lie algebras.

One can then investigate what happens if either b3.g/ D 0 and b2.g/ ¤ 0 or if
no conditions on the Betti numbers of g are imposed. A first partial answer to this
problem was given in [28].

Theorem 4.4 ([28]). If the Lie algebra g of G has a codimension one nilpotent ideal,
then any compact quotient �nG does not admit any invariant exact G2-structure. If
in addition G is completely solvable, namely adX has only real eigenvalues for every
X 2 g, then �nG does not have any exact G2-structure at all.

In [22], we investigated the existence of invariant exact G2-structures on compact
quotients of Lie groups without introducing any extra assumption on the Lie algebra
g, and we proved the following result.

Theorem 4.5 ([22]). A potential compact 7-manifold M with an exact G2-structure
' cannot be of the form M D �nG, where G is a 7-dimensional simply connected Lie
group, � � G is a lattice, and the exact G2-structure ' on M is invariant.

To prove this result, we focused on 7-dimensional unimodular Lie algebras g and
we studied the non-solvable case and the solvable case separately. By Theorem 2.3,
there are four non-solvable unimodular Lie algebras admitting closed G2-structures,
up to isomorphism. The first three Lie algebras are decomposable, and by a direct
computation we showed that b' is never definite for every exact 3-form ' on each
one of them. The remaining Lie algebra q4 is indecomposable, and for this we proved
that the corresponding simply connected Lie group does not admit any lattice. In
the solvable case, g has a codimension one unimodular ideal s, and the existence
of a G2-structure ' on g allows one to consider the g'-orthogonal decomposition
g D s ˚ R, where R denotes the orthogonal complement of s. As a Lie algebra, g

is then a semidirect product of the form g D s ÌD R, for some derivation D of s.
Moreover, the G2-structure ' on g can be written as follows:

' D ! ^ � C �;

where � WD z[ is the metric dual of a unit vector z 2 R, and the pair .!; �/ defines
an SU.3/-structure on s. By imposing that ' is an exact non-degenerate 3-form and
using that g has to be strongly unimodular, one sees that no examples can be found
also in the solvable case.
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