

On a class of nonlocal problems with fractional gradient constraint

Assis Azevedo, José-Francisco Rodrigues, and Lisa Santos

Abstract. We consider a Hilbertian and a charges approach to fractional gradient constraint problems of the type $|D^{\sigma}u| \leq g$, involving the distributional fractional Riesz gradient D^{σ} , $0 < \sigma < 1$, extending previous results on the existence of solutions and Lagrange multipliers of these nonlocal problems.

We also prove their convergence as $\sigma \nearrow 1$ towards their local counterparts with the gradient constraint $|Du| < g$.

1. Introduction

Recently, the distributional partial derivatives of the Riesz potentials of order $1 - \sigma$, $0 < \sigma < 1$.

$$
(D^{\sigma}u)_j = \frac{\partial}{\partial x_j}(I_{1-\sigma}u) = D_j(I_{1-\sigma}u), \quad j = 1,\ldots,N,
$$

where I_{α} , $0 < \alpha < 1$, is given by

$$
I_{\alpha}u(x) = (I_{\alpha} * u)(x) = \gamma_{N,\alpha} \int_{\mathbb{R}^N} \frac{u(y)}{|x - y|^{d - \alpha}} dy, \quad \text{with } \gamma_{N,\alpha} = \frac{\Gamma(\frac{N - \alpha}{2})}{\pi^{\frac{N}{2}} 2^{\alpha} \Gamma(\frac{\alpha}{2})},
$$

are shown to be a useful tool for a fractional vector calculus with the σ -gradient D^{σ} and σ -divergence D^{σ} . (see [\[5,](#page-20-0) [6,](#page-20-1) [12–](#page-21-0)[14\]](#page-21-1)). It leads to a new class of fractional partial differential equations and new problems in the calculus of variations [\[4\]](#page-20-2). As a consequence of the approximation of the identity by the Riesz kernel as $\alpha \rightarrow 0$ (see [\[7\]](#page-20-3)), the σ -gradient converges to the classical gradient D as $\sigma \nearrow 1$, for instance, for smooth functions $u \in C_0^{\infty}(\mathbb{R}^N)$ (see also [\[4,](#page-20-2)[6\]](#page-20-1)). Among the nice properties of D^{σ} , in [\[12\]](#page-21-0) it was shown, for $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^N)$, that

$$
D^{\sigma}u \equiv D(I_{1-\sigma} * u) = I_{1-\sigma} * Du,
$$
\n(1.1)

²⁰²⁰ Mathematics Subject Classifcation. Primary 35R11; Secondary 35J62, 49J40, 35J86, 26A33.

Keywords. Fractional gradient, nonlocal variational inequalities, gradient constraint, nonlocal Lagrange multiplier, elliptic quasilinear equations.

$$
(-\Delta)^{\sigma} u = -D^{\sigma} \cdot (D^{\sigma} u), \qquad (1.2)
$$

where $(-\Delta)^{\sigma}$ is the classical fractional Laplacian in \mathbb{R}^{N} .

Here we are interested in complementing and extending some results of [\[10\]](#page-20-4) on elliptic fractional equations of second σ -order, subjected to a σ -gradient constraint

$$
|D^{\sigma}u| \le g \quad \text{in } \mathbb{R}^N \tag{1.3}
$$

and having the distributional form

$$
-D^{\sigma} \cdot (AD^{\sigma}u + \Lambda^{\sigma}) = f_{\#} - D^{\sigma} \cdot f. \tag{1.4}
$$

We consider the homogeneous Dirichlet problem in a bounded open domain $\Omega \subset \mathbb{R}^N$, with Lipschitz boundary, so that the solution u is to be found in the fractional Sobolev space $H_0^{\sigma}(\Omega)$, $0 < \sigma < 1$, and may be extended by zero, belonging to $H^{\sigma}(\mathbb{R}^{N})$. The Lipschitz boundary is sufficient for the $H^{\sigma}_{0}(\Omega)$ -extension property, which is required in Section [4.](#page-15-0) Although in Sections [2](#page-2-0) and [3](#page-7-0) it is not strictly necessary, we prefer to keep this assumption in order to avoid delicate issues, in particular, with the definition of the classical space $H_0^{\sigma}(\Omega)$, which is the natural space to treat the Dirichlet boundary condition.

In (1.4) , A is a coercive matrix with bounded variable coefficients (see (2.1) , [\(2.2\)](#page-2-2)) and f and f are given functions making the right-hand side an element f' of a suitable dual space.

The vector field Λ^{σ} is associated with the constraint [\(1.3\)](#page-1-1) and may have two possible expressions. As we show in Section [2,](#page-2-0) with a Hilbertian approach, for $g \in$ $L^2(\mathbb{R}^N)$, $g \ge 0$, and $f' \in H^{-\sigma}(\Omega) = (H_0^{\sigma}(\Omega))'$, $\Lambda^{\sigma} = D^{\sigma} \gamma$ for a unique $\gamma \in H_0^{\sigma}(\Omega)$ and it defines an element of the subdifferential of \mathbb{K}_g^{σ} , the convex subset of $H_0^{\sigma}(\Omega)$ of functions satisfying (1.3) . The solution u is then the unique solution to the variational inequality [\(2.9\)](#page-3-0) in \mathbb{K}_g^{σ} for the operator $-D^{\sigma} \cdot (AD^{\sigma}) - f'$.

In the second case, with a strictly positive $g \in L^{\infty}(\mathbb{R}^N)$ and $f_{\#} \in L^1(\Omega)$, $f \in$ $L^1(\mathbb{R}^N) = L^1(\mathbb{R}^N)^N$, in Section [3,](#page-7-0) by approximating the unique solution u with a suitable quasilinear penalised Dirichlet problem, we show the existence of at least a generalised nonnegative Lagrange multiplier $\lambda^{\sigma} \in L^{\infty}(\mathbb{R}^{N})'$, such that $\Lambda^{\sigma} = \lambda^{\sigma} D^{\sigma} u$ and $\lambda^{\sigma}(|D^{\sigma}u| - g) = 0$ in the sense of charges, i.e., as an element of $L^{\infty}(\mathbb{R}^{N})'$.

We recall (see [\[15,](#page-21-2) Example 5, Section 9, Chapter IV]), for instance, that a charge or an element $\chi \in L^{\infty}(0)'$, in an open set $\mathcal{O} \subset \mathbb{R}^{N}$, can be represented by a finitely additive measure χ^* , with bounded total variation, which is also absolutely continuous with respect to the Lebesgue measure and may be given by a Radon integral

$$
\langle \chi, \varphi \rangle = \int_{\mathcal{O}} \varphi \, d\chi^*, \quad \forall \varphi \in L^{\infty}(\mathcal{O}). \tag{1.5}
$$

As a consequence, it is easy to show the Hölder inequality for nonnegative charges $\chi \in L^{\infty}(0)'$ and arbitrary functions $\varphi, \psi \in L^{\infty}(0)$:

$$
\left| \langle \chi, \varphi \psi \rangle \right| \le \left\langle \chi, |\varphi|^p \right\rangle^{\frac{1}{p}} \left\langle \chi, |\psi|^{p'} \right\rangle^{\frac{1}{p'}}, \quad p > 1, \ p' = \frac{p}{p-1}.\tag{1.6}
$$

It was proved in [\[12\]](#page-21-0) that, similarly to the classical case $\sigma = 1$, the Sobolev, Trudinger, and Morrey inequalities also hold for the fractional D^{σ} ; in particular, there exists a constant $C = C(N, p, \sigma) > 0$, such that, for $1 < p < \infty, \sigma \in (0, 1)$,

$$
||u||_{L^{q}(\mathbb{R}^N)} \leq C||D^{\sigma}u||_{L^{p}(\mathbb{R}^N)}, \quad u \in \mathcal{C}_c^{\infty}(\mathbb{R}^N), \tag{1.7}
$$

where $q = \frac{Np}{N - \sigma p}$ if $\sigma < \frac{N}{p}$, $q < \infty$ if $\sigma = \frac{N}{p}$, and $q = \infty$ if $\sigma > \frac{N}{p}$. In addition, when $\sigma > \frac{N}{p}$, we may take in the left-hand side of [\(1.7\)](#page-2-3) the norm of the Hölder continuous functions $\mathcal{C}_c^{\beta}(\mathbb{R}^N)$, $0 < \beta = \sigma - \frac{N}{p} < 1$. As a consequence, we consider $H_0^{\sigma}(\Omega)$ with the equivalent Hilbertian norm $\|\tilde{D}^{\sigma}u\|_{L^2(\mathbb{R}^N)}$ (see [\[12\]](#page-21-0)), which is also a consequence of the fractional Poincaré inequality (see [\[4\]](#page-20-2)).

We observe that our results of Sections [2](#page-2-0) and [3](#page-7-0) also hold in the limit local case $\sigma = 1$, i.e., in $H_0^1(\Omega)$. We then show in Section [4,](#page-15-0) where we need to work with generalised sequences or nets, that the charges approach to the constrained problem yields the convergence, as $\sigma \nearrow 1$, of the solution u^{σ} and the generalised Lagrange multiplier λ^{σ} to the respective solution $(u, \lambda) \in W_0^{1, \infty}$ $L_0^{1,\infty}(\Omega) \times L^\infty(\Omega)'$ to the classical problem for D. We remark that, in this case, our results are new for data in $L¹$ and the general elliptic operator $-D \cdot (AD)$, extending [\[3\]](#page-20-5), where the charges approach was introduced for $-\Delta$ with $f_{\#} \in L^2(\Omega)$ and $f = 0$. For a recent survey on gradient type constrained problems, see [\[11\]](#page-20-6).

2. The Hilbertian approach with σ -gradient constraint in L^2

Let the not necessarily symmetric measurable matrix $A = A(x) : \mathbb{R}^N \to \mathbb{R}^{N \times N}$ satisfy the coercive assumption, for some given $a_*, a^* > 0$,

$$
A(x)\xi \cdot \xi \ge a_*|\xi|^2, \quad \text{a.e. } x \in \mathbb{R}^N, \ \forall \xi \in \mathbb{R}^N,
$$
 (2.1)

and the boundedness conditions

$$
A(x)\xi \cdot \eta \le a^*|\xi| |\eta|, \quad \text{a.e. } x \in \mathbb{R}^N, \ \forall \xi, \ \eta \in \mathbb{R}^N. \tag{2.2}
$$

Consider

$$
f_{\#} \in L^{2^{\#}}(\Omega)
$$
 and $f = (f_1, ..., f_N) \in L^2(\mathbb{R}^N)$, (2.3)

where, by the Sobolev embeddings [\(1.7\)](#page-2-3), $2^{\#} = \frac{2N}{N+2\sigma}$ if $0 < \sigma < \frac{N}{2}$, or $2^{\#} = q$ for any $q > 1$ when $\sigma = \frac{1}{2}$ and $2^{\#} = 1$ when $\frac{1}{2} < \sigma < 1$, so that

$$
\langle f', v \rangle_{\sigma} = \int_{\Omega} f_{\#}v + \int_{\mathbb{R}^N} f \cdot D^{\sigma}v, \tag{2.4}
$$

for arbitrary $v \in H_0^{\sigma}(\Omega)$, defines the linear form $f' \in H^{-\sigma}(\Omega) = H_0^{\sigma}(\Omega)'$, $0 < \sigma < 1$. We have

$$
\exists! \phi \in H_0^{\sigma}(\Omega) : \int_{\mathbb{R}^N} D^{\sigma} \phi \cdot D^{\sigma} v = \langle f', v \rangle_{\sigma}, \quad \forall v \in H_0^{\sigma}(\Omega). \tag{2.5}
$$

The validity of [\(2.5\)](#page-3-1) is a consequence of the Fréchet–Riesz representation theorem and the choice of the left-hand side of this equality as the inner product in $H_0^{\sigma}(\Omega)$, as stated in Section [1.](#page-0-0) It follows that $F = D^{\sigma} \phi \in L^2(\Omega)$ belongs to the image of $H_0^{\sigma}(\Omega)$ by D^{σ} :

$$
\Psi_{\sigma} = \left\{ G \in L^{2}(\mathbb{R}^{N}) : G = D^{\sigma} v, \ v \in H_{0}^{\sigma}(\Omega) \right\} = D^{\sigma} (H_{0}^{\sigma}(\Omega)), \tag{2.6}
$$

which is a strict Hilbert subspace of $L^2(\mathbb{R}^N)$, for the inner product

$$
(\boldsymbol{F}, \boldsymbol{G})_{\Psi_{\sigma}} = \int_{\mathbb{R}^N} D^{\sigma} \phi \cdot D^{\sigma} v,
$$

and Ψ_{σ} is isomorphic to $H^{-\sigma}(\Omega)$, by the Riesz theorem [\(2.5\)](#page-3-1). Actually, this remark extends the well-known case $\sigma = 1$, when D^1 is the classical gradient D.

Consider the nonempty closed convex set

$$
\mathbb{K}_g^{\sigma} = \{ v \in H_0^{\sigma}(\Omega) : |D^{\sigma} v| \le g \text{ a.e. in } \mathbb{R}^N \},\tag{2.7}
$$

where the σ -gradient threshold g is such that

$$
g \in L^{2}(\mathbb{R}^{N}), \quad g(x) \ge 0 \text{ a.e. } x \in \mathbb{R}^{N}. \tag{2.8}
$$

Under the assumptions (2.1) and (2.2) , A defines a continuous bounded coercive bilinear form over $H_0^{\sigma}(\Omega)$ and, as an immediate consequence of the Stampacchia theorem (see [\[9,](#page-20-7) p. 95], for instance), we have the existence, uniqueness, and continuous dependence of the solution u , with respect to the linear form [\(2.4\)](#page-3-2), of the variational inequality

$$
u \in \mathbb{K}_g^{\sigma} : \int_{\mathbb{R}^N} AD^{\sigma} u \cdot D^{\sigma} (v - u)
$$

$$
\geq \int_{\Omega} f_{\#}(v - u) + \int_{\mathbb{R}^N} f \cdot D^{\sigma} (v - u), \quad \forall v \in \mathbb{K}_g^{\sigma}.
$$
 (2.9)

In particular, if C_* denotes the Sobolev constant, with $L^{2^*}(\Omega) = L^{2^*}(\Omega)$ ',

$$
||v||_{L^{2^{*}}(\Omega)} \leq C_{*}||D^{\sigma}v||_{L^{2}(\mathbb{R}^{N})}, \quad v \in H_{0}^{\sigma}(\Omega), \ 0 < \sigma \leq 1,
$$

and \hat{u} is the solution corresponding to the data $\hat{f}_{#}, \hat{f}$, we have

$$
\|u - \hat{u}\|_{H_0^{\sigma}(\Omega)} \le \frac{C_*}{a_*} \|f_* - \hat{f}_* \|_{L^{2^{\#}}(\Omega)} + \frac{1}{a_*} \|f - \hat{f}\|_{L^2(\mathbb{R}^N)}.
$$
 (2.10)

It is well known (see $[8, p. 203]$ $[8, p. 203]$, for instance) that to solve (2.9) is equivalent to finding $u \in H_0^{\sigma}(\Omega)$, such that

$$
\Gamma \equiv f' - \mathcal{L}_A^{\sigma} u \in \partial I_{\mathbb{K}_S^{\sigma}}(u) \quad \text{in } H^{-\sigma}(\Omega), \tag{2.11}
$$

where $\mathcal{L}_{A}^{\sigma}: H_0^{\sigma}(\Omega) \to H^{-\sigma}(\Omega)$ is the linear continuous operator defined by

$$
\langle \mathcal{L}_A^{\sigma} w, v \rangle_{\sigma} = \int_{\mathbb{R}^N} A D^{\sigma} w \cdot D^{\sigma} v, \quad \forall v, w \in H_0^{\sigma}(\Omega),
$$

and $\Gamma = \Gamma(u) \in H^{-\sigma}(\Omega)$ is an element of the sub-gradient of the indicatrix function $I_{\mathbb{K}_g^{\sigma}}$ of the convex set \mathbb{K}_g^{σ} at u:

$$
I_{\mathbb{K}_g^{\sigma}}(v) = \begin{cases} 0 & \text{if } v \in \mathbb{K}_g^{\sigma}, \\ +\infty & \text{if } v \in H_0^{\sigma}(\Omega) \setminus \mathbb{K}_g^{\sigma}. \end{cases}
$$

By the Riesz theorem, there exists a unique $\gamma = \gamma(u) \in H_0^{\sigma}(\Omega)$ corresponding to $\Gamma = \Gamma(u)$ given by [\(2.11\)](#page-4-0) (recall [\(2.5\)](#page-3-1)) and the couple $(u, \gamma) \in \mathbb{K}_g^{\sigma} \times H_0^{\sigma}(\Omega)$ solves the problem

$$
\int_{\mathbb{R}^N} (AD^{\sigma}u + D^{\sigma}\gamma) \cdot D^{\sigma}v = \int_{\Omega} f_{\#}v + \int_{\mathbb{R}^N} f \cdot D^{\sigma}v, \quad \forall v \in H_0^{\sigma}(\Omega). \tag{2.12}
$$

If we denote $\hat{\gamma} = \gamma(\hat{u})$, with \hat{u} solving [\(2.9\)](#page-3-0) with $\hat{f}_{\#}$ and \hat{f} given in [\(2.3\)](#page-2-4), using [\(2.10\)](#page-4-1) and [\(2.2\)](#page-2-2), we easily obtain, by the Riesz isometry $\|\Gamma\|_{H^{-\sigma}(\Omega)} = \|\gamma\|_{H_0^{\sigma}(\Omega)}$,

$$
\|\gamma - \hat{\gamma}\|_{H_0^{\sigma}(\Omega)} \le C_* \left(1 + \frac{a^*}{a_*}\right) \|f_{\#} - \hat{f}_{\#}\|_{L^{2^{\#}}(\Omega)} + \left(1 + \frac{a^*}{a_*}\right) \|f - \hat{f}\|_{L^2(\mathbb{R}^N)}. \tag{2.13}
$$

We have then proven the following result.

Theorem 2.1. *Under the previous assumptions, namely,* [\(2.1\)](#page-2-1)*,* [\(2.2\)](#page-2-2)*,* [\(2.3\)](#page-2-4)*, and* [\(2.8\)](#page-3-3)*, there exists a unique solution of* [\(2.9\)](#page-3-0), *which also satisfies* [\(2.12\)](#page-4-2) *with a unique* $\gamma =$ $\gamma(u) \in H_0^{\sigma}(\Omega)$, *obtained through* [\(2.11\)](#page-4-0) *and depending on the data through* [\(2.13\)](#page-4-3)*.*

Remark 2.2. This result extends to the Riesz fractional gradient the limit case $\sigma = 1$, where the classical gradients of u and γ are extended by zero in $\mathbb{R}^N \setminus \Omega$. A natural and important question is to find a more direct relation of the potential γ with the solution u through the existence of a Lagrange multiplier λ , such that

$$
D^{\sigma}\gamma = \lambda D^{\sigma}u. \tag{2.14}
$$

In the classical case $\sigma = 1$, with $A = Id$, $\Omega \subseteq \mathbb{R}^2$ simply connected, and f' and g given by positive constants, corresponding to the elasto-plastic torsion problem, Brézis has proven the existence and uniqueness of a bounded function

$$
\lambda \ge 0
$$
 such that $\lambda(|Du| - g) = 0$ a.e. in Ω ,

which is even continuous if Ω is convex (see [\[11\]](#page-20-6) for references). Although [\(2.14\)](#page-5-0) is an open question in the general case of Theorem [2.1,](#page-4-4) for strictly positive bounded threshold g, it has been shown to hold in the sense of finite additive measures in $[10]$, following the case $\sigma = 1$ of [\[3\]](#page-20-5).

Using a variant of a classical penalisation method proposed in [\[8,](#page-20-8) p. 376] with $\varepsilon \in (0, 1)$ and

$$
k_{\varepsilon}(t) = 0, t \le 0, \quad k_{\varepsilon}(t) = \frac{t}{\varepsilon}, 0 \le t \le \frac{1}{\varepsilon}, \quad k_{\varepsilon}(t) = \frac{1}{\varepsilon^2}, t \ge \frac{1}{\varepsilon}, \quad (2.15)
$$

we may consider the approximating quasi-linear problem: find $u_{\varepsilon} \in H_0^{\sigma}(\Omega)$, such that

$$
\int_{\mathbb{R}^N} \left(AD^{\sigma} u_{\varepsilon} + \hat{\kappa}_{\varepsilon} (u_{\varepsilon}) D^{\sigma} u_{\varepsilon} \right) \cdot D^{\sigma} v
$$
\n
$$
= \int_{\Omega} f_{\#} v + \int_{\mathbb{R}^N} f \cdot D^{\sigma} v, \ \forall v \in H_0^{\sigma}(\Omega), \tag{2.16}
$$

where we set

$$
\hat{\kappa}_{\varepsilon} = \hat{\kappa}_{\varepsilon}(u_{\varepsilon}) = k_{\varepsilon} (|D^{\sigma} u_{\varepsilon}|^2 - g^2) \quad \text{with } k_{\varepsilon} \text{ given by (2.15).}
$$

In the proof of the approximation theorem, we shall require the following assumption: for each $R > 0$, there exists a g_R , such that

$$
g(x) \ge g_R > 0
$$
, for a.e. $x \in B_R = \{x \in \mathbb{R}^N : |x| < R\}$. (2.17)

Theorem 2.3. *Under the assumptions of Theorem [2.1,](#page-4-4) let also* [\(2.17\)](#page-5-2) *hold. Then, the unique solution* $u_{\varepsilon} \in H_0^{\sigma}(\Omega)$ *of* [\(2.16\)](#page-5-3)*, as* $\varepsilon \to 0$ *, is such that*

$$
u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u \qquad \text{in } H_0^{\sigma}(\Omega)\text{-}weak,
$$
 (2.18)

$$
\widehat{k}_{\varepsilon} D^{\sigma} u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} D^{\sigma} \gamma \quad \text{in } \Psi_{\sigma}^{\prime}\text{-weak},\tag{2.19}
$$

where $(u, \gamma) \in \mathbb{K}^{\sigma}_{g} \times H^{\sigma}_{0}(\Omega)$ is the unique couple given in Theorem [2.1](#page-4-4) and satisfying [\(2.12\)](#page-4-2) and Ψ_{σ} *is the vector space defined in* [\(2.6\)](#page-3-4).

Proof. Since the quasi-linear operator $\hat{A}_{\varepsilon}: H_0^{\sigma}(\Omega) \to H^{-\sigma}(\Omega)$ defined by the lefthand side of [\(2.16\)](#page-5-3) is bounded, strongly monotone, coercive, and hemicontinuous, the existence and uniqueness of u_{ε} solution to [\(2.16\)](#page-5-3) is classical (see [\[8\]](#page-20-8), for instance).

Taking $v = u_{\varepsilon}$ in [\(2.16\)](#page-5-3) and recalling that $\hat{\kappa}_{\varepsilon}(u_{\varepsilon}) \ge 0$, it is clear that we have, with $C_{\sigma} > 0$ independent of ε , $0 < \varepsilon < 1$:

$$
||u_{\varepsilon}||_{H_0^{\sigma}(\Omega)} \le \frac{C_*}{a_*} ||f_{\#}||_{L^{2^{\#}}(\Omega)} + \frac{1}{a_*} ||f||_{L^2(\mathbb{R}^N)} \equiv C_{\sigma},
$$
\n(2.20)

so that we have [\(2.18\)](#page-5-4) at least for a generalised subsequence and some $u \in H_0^{\sigma}(\Omega)$. Consequently, from [\(2.16\)](#page-5-3), we also obtain

$$
\|\hat{\kappa}_{\varepsilon}D^{\sigma}u_{\varepsilon}\|_{\Psi'_{\sigma}} = \sup_{\substack{v \in H_0^{\sigma}(\Omega) \\ \|v\|_{H_0^{\sigma}(\Omega)} = 1}} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon}(u_{\varepsilon})D^{\sigma}u_{\varepsilon} \cdot Dv \leq (a_{*} + a^{*})C_{\sigma},
$$

for all ε , $0 < \varepsilon < 1$, by using [\(2.20\)](#page-6-0) and recalling [\(2.2\)](#page-2-2). Here we use the definition [\(2.5\)](#page-3-1) and we consider $L^2(\mathbb{R}^N)$, identified to its dual, as a subspace of Ψ'_σ , the dual of $\Psi_{\sigma} \subseteq L^2(\mathbb{R}^N)$. Hence, for a generalised subsequence $\varepsilon \to 0$, we also have

$$
\hat{\kappa}_{\varepsilon} D^{\sigma} u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \Lambda \quad \text{in } \Psi_{\sigma}^{\prime}\text{-weak.}
$$
 (2.21)

In order to prove that $u \in \mathbb{K}_g^{\sigma}$, i.e., $|D^{\sigma}u| \leq g$ a.e. in \mathbb{R}^N , we consider, for $R > 0$,

$$
U_{\varepsilon,R} = \{ x \in B_R : 0 \le |D^{\sigma} u_{\varepsilon}(x)|^2 - g^2(x) \le \sqrt{\varepsilon} \},
$$

$$
V_{\varepsilon,R} = \{ x \in B_R : |D^{\sigma} u_{\varepsilon}(x)|^2 - g^2(x) > \sqrt{\varepsilon} \}
$$

and we observe that, using the assumptions [\(2.17\)](#page-5-2), [\(2.20\)](#page-6-0), and $\hat{\kappa}_{\varepsilon}(|D^{\sigma}u^{\varepsilon}|^2 - g^2) \ge 0$, from [\(2.16\)](#page-5-3) it follows that

$$
g_R^2 \int_{B_R} \hat{\kappa}_{\varepsilon} \le \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} g^2 \le \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma} u_{\varepsilon}|^2 \le \frac{a_*}{2} C_{\sigma}^2, \quad 0 < \varepsilon < 1.
$$
 (2.22)

Consequently, for all $R > 0$, we conclude that $|D^{\sigma}u| \leq g$ in B_R from

$$
\int_{B_R} (|D^{\sigma} u| - g)^+ \le \lim_{\varepsilon \to 0} \int_{B_R} (|D^{\sigma} u_{\varepsilon}| - g)^+ \n= \lim_{\varepsilon \to 0} \left[\int_{U_{\varepsilon,R}} (|D^{\sigma} u_{\varepsilon}| - g) + \int_{V_{\varepsilon,R}} (|D^{\sigma} u_{\varepsilon}| - g) \right]
$$

since

$$
\int_{U_{\varepsilon,R}} \left(|D^{\sigma} u_{\varepsilon}| - g \right) \leq \frac{1}{g_R} \int_{U_{\varepsilon,R}} \left(|D^{\sigma} u_{\varepsilon}|^2 - g^2 \right) \leq \frac{|B_R|\sqrt{\varepsilon}}{g_R},
$$
\n
$$
\int_{V_{\varepsilon,R}} \left(|D^{\sigma} u_{\varepsilon}| - g \right) \leq |V_{\varepsilon,R}|^{\frac{1}{2}} \left(\|D^{\sigma} u_{\varepsilon}\|_{L^2(B_R)} + \|g\|_{L^2(B_R)} \right)
$$
\n
$$
\leq (C_{\sigma} + \|g\|_{L^2(\mathbb{R}^N)}) |V_{\varepsilon,R}|^{\frac{1}{2}}
$$

with

$$
|V_{\varepsilon,R}| = \int_{V_{\varepsilon,R}} 1 \leq \int_{V_{\varepsilon,R}} \frac{\widehat{\kappa}_{\varepsilon}}{k_{\varepsilon}(\sqrt{\varepsilon})} \leq \sqrt{\varepsilon} \int_{B_R} \widehat{\kappa}_{\varepsilon} \leq \frac{a_* C_\sigma^2}{2g_R^2} \sqrt{\varepsilon}.
$$

Now, observing that for arbitrary $v \in \mathbb{K}_g^{\sigma}$ we have

$$
\int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} D^{\sigma} u_{\varepsilon} \cdot D^{\sigma} (v - u_{\varepsilon}) \leq \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma} u_{\varepsilon}| (|D^{\sigma} v| - |D^{\sigma} u_{\varepsilon}|) \leq 0
$$

(since $\hat{\kappa}_{\varepsilon} > 0$ if $|D^{\sigma} u_{\varepsilon}| > g \geq |D^{\sigma} v|$), from [\(2.16\)](#page-5-3) we obtain

$$
\int_{\mathbb{R}^N} AD^{\sigma} u_{\varepsilon} \cdot D^{\sigma} (v - u_{\varepsilon}) \ge \int_{\Omega} f_{\#} (v - u_{\varepsilon}) + \int_{\mathbb{R}^N} f \cdot D^{\sigma} (v - u_{\varepsilon}), \quad \forall v \in \mathbb{K}_g^{\sigma},
$$

and, passing to the limit as $\varepsilon \to 0$, we conclude that u solves [\(2.9\)](#page-3-0), by using [\(2.18\)](#page-5-4) and the lower semi-continuity

$$
\underline{\lim}_{\varepsilon \to 0} \int_{\mathbb{R}^N} AD^{\sigma} u_{\varepsilon} \cdot D^{\sigma} u_{\varepsilon} \ge \int_{\mathbb{R}^N} AD^{\sigma} u \cdot D^{\sigma} u. \tag{2.23}
$$

 \blacksquare

Finally, taking an arbitrary $G = D^{\sigma} v \in \Psi_{\sigma}$ and taking $\varepsilon \to 0$ in [\(2.16\)](#page-5-3), by recalling [\(2.21\)](#page-6-1), [\(2.12\)](#page-4-2), and [\(2.5\)](#page-3-1) we fnd

$$
\langle \Lambda, G \rangle_{\Psi_{\sigma}} = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} D^{\sigma} u_{\varepsilon} \cdot D^{\sigma} v = \int_{\mathbb{R}^N} (D^{\sigma} \phi - A D^{\sigma} u) \cdot D^{\sigma} v
$$

=
$$
\int_{\mathbb{R}^N} D^{\sigma} \gamma \cdot D^{\sigma} v,
$$

yielding the conclusion [\(2.19\)](#page-5-5), by the uniqueness of u and γ .

3. The charges approach with a σ -gradient constraint in L^{∞}

In the framework of the previous section, we consider now the convex set \mathbb{K}_g^{σ} defined by (2.7) with the assumption

$$
g \in L^{\infty}(\mathbb{R}^N), \quad 0 < g_* \le g(x) \le g^* \text{ a.e. } x \text{ in } \mathbb{R}^N, \tag{3.1}
$$

for some constants g_* and g^* . It is clear that \mathbb{K}_g^{σ} is still closed for the topology of $H_0^{\sigma}(\Omega)$ in the space

$$
\Upsilon_{\infty}^{\sigma}(\Omega) = \{ v \in H_0^{\sigma}(\Omega) : D^{\sigma} v \in L^{\infty}(\mathbb{R}^N) \}, \quad 0 < \sigma \le 1,\tag{3.2}
$$

and therefore, by the fractional Morrey–Sobolev inequality [\(1.7\)](#page-2-3) for $\sigma > \frac{N}{p}$, we have, for all $0 < \beta < \sigma$,

$$
\mathbb{K}_g^{\sigma} \subset \Upsilon_{\infty}^{\sigma}(\Omega) \subset \mathcal{C}^{0,\beta}(\overline{\Omega}) \subset L^{\infty}(\Omega). \tag{3.3}
$$

Here $\mathcal{C}^{0,\beta}(\bar{\Omega})$ is the space of the Hölder continuous functions with exponent β . As observed in [\[10\]](#page-20-4), [\(3.3\)](#page-8-0) is a consequence of Theorem 7.63 of [\[1\]](#page-20-9) (see also [\[12,](#page-21-0) Theorem 2.2]), which yields

$$
\|u\|_{L^{\infty}(\Omega)} \leq C_p \|D^{\sigma}u\|_{L^p(\mathbb{R}^N)}
$$

\n
$$
\leq C_p \|D^{\sigma}u\|_{L^{\infty}(\mathbb{R}^N)}^{1-\frac{2}{p}} \|D^{\sigma}u\|_{L^2(\mathbb{R}^N)}^{\frac{2}{p}}, \quad \forall u \in \Upsilon_{\infty}^{\sigma}(\Omega),
$$
\n(3.4)

where $C_p > 0$ is the Sobolev constant corresponding to any $p > \frac{N}{\sigma} \vee 2$.

Therefore, in this case, we can extend the result of the solvability of the variational inequality [\(2.9\)](#page-3-0) with data in L^1 :

$$
f_{\#} \in L^{1}(\Omega) \quad \text{and} \quad f \in L^{1}(\mathbb{R}^{N}). \tag{3.5}
$$

Theorem 3.1. *Under the assumptions* [\(2.1\)](#page-2-1)*,* [\(2.2\)](#page-2-2)*,* [\(2.3\)](#page-2-4)*, and* [\(3.1\)](#page-7-1)*, the unique solution* u *to* [\(2.9\)](#page-3-0) *also satisfes the continuous dependence estimates* [\(2.10\)](#page-4-1)*. Moreover, if* in addition $(f, f_{\#})$ and $(\hat{f}, \hat{f}_{\#})$ also satisfy [\(3.5\)](#page-8-1), the following estimate holds:

$$
||u - \hat{u}||_{H_0^{\sigma}(\Omega)} \le a_p ||f_{\#} - \hat{f}_{\#}||_{L^1(\Omega)}^{\frac{1}{2-\tilde{p}}} + b_1 ||f - \hat{f}||_{L^1(\mathbb{R}^N)}^{\frac{1}{2}},
$$
(3.6)

where $p > \frac{N}{\sigma} \vee 2$ *as in* [\(3.4\)](#page-8-2) *and* $a_p, b_1 > 0$ *are constants.*

Consequently, the variational inequality [\(2.9\)](#page-3-0) *is also uniquely solvable with the assumption* [\(2.3\)](#page-2-4) *replaced by* [\(3.5\)](#page-8-1) *and the estimate* [\(3.6\)](#page-8-3) *still holds in this case.*

Proof. While the frst part of this theorem is also a direct consequence of the Stam-pacchia theorem, the estimate [\(3.6\)](#page-8-3) follows easily from [\(2.9\)](#page-3-0). Indeed, if we set \bar{u} = $\hat{u} - \hat{u}$, $\bar{f}_{\#} = f_{\#} - \hat{f}_{\#}$, and $\bar{f} = f - \hat{f}$, we have

$$
a_* \|\bar{u}\|_{H_0^{\sigma}(\Omega)}^2 = a_* \int_{\mathbb{R}^N} \|D^{\sigma}\bar{u}\|^2
$$

\n
$$
\leq \|\bar{u}\|_{L^{\infty}(\Omega)} \|\bar{f}_{*}\|_{L^1(\Omega)} + \|D^{\sigma}\bar{u}\|_{L^{\infty}(\Omega)} \|\bar{f}\|_{L^1(\Omega)}
$$

\n
$$
\leq C_p (2g^*)^{1-\frac{2}{p}} \|D^{\sigma}\bar{u}\|_{L^2(\Omega)}^{\frac{2}{p}} \|\bar{f}_{*}\|_{L^1(\Omega)} + 2g^* \|\bar{f}\|_{L^1(\Omega)}, \quad (3.7)
$$

by [\(3.4\)](#page-8-2) and the assumption [\(3.1\)](#page-7-1). Hence, [\(3.6\)](#page-8-3) follows easily by applying Young's

inequality and $\sqrt{\phi + \psi} \le \sqrt{\phi} + \sqrt{\phi}$ ψ to the right-hand side of [\(3.7\)](#page-8-4), where we obtain the constants a_p and b_1 depending on C_p , a_*, g^* , and $p > \frac{N}{\sigma} \vee 2$. The solvability of (2.9) under the assumption (3.5) can be easily obtained using (3.6) , approximating the solution by a Cauchy sequence in $H_0^{\sigma}(\Omega)$ of solutions $u_{\nu} \longrightarrow u$, where u_{ν} solves [\(2.9\)](#page-3-0) with approximating sequences

$$
f_{\#_{\mathcal{V}}} \xrightarrow[\mathcal{V} \to 0]{} f_{\#} \text{ in } L^{1}(\Omega) \text{ and } f_{\mathcal{V}} \xrightarrow[\mathcal{V} \to 0]{} f \text{ in } L^{1}(\mathbb{R}^{N})
$$
 (3.8)

with $f_{\#v} \in L^2(\Omega)$ and $\mathbf{f}_v \in L^2(\mathbb{R}^N)$, for instance, with $f_v = (f \wedge \frac{1}{v}) \vee (-\frac{1}{v})$ by truncation.

Remark 3.2. This result with L^1 -data extends Theorem 2.1 of [\[10\]](#page-20-4) which considered only the case $f \equiv 0$. If the data $f_{\#} \in L^{2^{\#}}(\Omega)$ and $f \in L^{2}(\mathbb{R}^{N}) \cap L^{1}(\mathbb{R}^{N})$ hold, our approximation Theorem [2.3](#page-5-6) also holds for the solution (u, v) to (2.11) - (2.12) under the assumption [\(3.1\)](#page-7-1), which implies $g \in L^2(B_R)$ for all $R > 0$, since the proof is the same.

It is also possible to obtain with L^1 -data the $\frac{1}{2}$ -Hölder continuity of the map $L^{\infty}(\mathbb{R}^N) \ni g \mapsto u \in H_0^{\sigma}(\Omega)$ with g satisfying [\(3.1\)](#page-7-1) and u solution to [\(2.9\)](#page-3-0), extending Theorem 2.2 of [\[10\]](#page-20-4).

Theorem 3.3. *Under the assumptions* (2.1) , (2.2) *, and* (3.5) *, let* u *and* \hat{u} *be the solutions to* [\(2.9\)](#page-3-0) *corresponding to g and* \hat{g} *satisfying* [\(3.1\)](#page-7-1)*. Then, there exists a constant* $C_* > 0$, depending on g_* and the data, but independent of the solutions, such that

$$
||u - \hat{u}||_{H_0^{\sigma}(\Omega)} \le C_* ||g - \hat{g}||_{L^{\infty}(\mathbb{R}^N)}^{\frac{1}{2}}.
$$
 (3.9)

Proof. Denote $\delta = ||g - \hat{g}||_{L^{\infty}(\mathbb{R}^N)}$, and take as test functions in [\(2.9\)](#page-3-0), respectively,

$$
w = \frac{g_*}{g_* + \delta} \hat{u} \in \mathbb{K}_g^{\sigma} \quad \text{and} \quad \hat{w} = \frac{g_*}{g_* + \delta} u \in \mathbb{K}_g^{\sigma}
$$

for the variational inequality for u and for \hat{u} .

Observing that

$$
|u - \hat{w}| \le \frac{\delta}{g_*} |u| \quad \text{and} \quad |D^{\sigma}(u - \hat{w})| \le \frac{\delta}{g_*} |D^{\sigma}u|
$$

and similarly for $\hat{u} - w$, we obtain [\(3.9\)](#page-9-0) from

$$
a_* \|u - \hat{u}\|_{H_0^{\sigma}(\Omega)}^2 \le \int_{\mathbb{R}^N} AD^{\sigma}(u - \hat{u}) \cdot D^{\sigma}(u - \hat{u})
$$

=
$$
\int_{\mathbb{R}^N} AD^{\sigma}u \cdot D^{\sigma}(u - w) + \int_{\mathbb{R}^N} AD^{\sigma}u \cdot D^{\sigma}(w - \hat{u})
$$

+
$$
\int_{\mathbb{R}^N} AD^{\sigma}\hat{u} \cdot D^{\sigma}(\hat{u} - \hat{w}) + \int_{\mathbb{R}^N} AD^{\sigma}\hat{u} \cdot D^{\sigma}(\hat{w} - u)
$$

$$
\leq \int_{\Omega} f_{\#}((u-w) + (\hat{u} - \hat{w})) + \int_{\mathbb{R}^N} f \cdot D^{\sigma}((u-w) + (\hat{u} - \hat{w}))
$$

+
$$
\frac{2\delta}{g_*} \int_{\mathbb{R}^N} |AD^{\sigma}u \cdot D^{\sigma}\hat{u}|
$$

=
$$
\int_{\Omega} f_{\#}((u-\hat{w}) + (\hat{u}-w)) + \int_{\mathbb{R}^N} f \cdot D^{\sigma}((u-\hat{w}) + (\hat{u}-w))
$$

+
$$
\frac{2\delta}{g_*} \int_{\mathbb{R}^N} |AD^{\sigma}u \cdot D^{\sigma}\hat{u}|
$$

$$
\leq \frac{2\delta}{g_*} (C_p g^{*1-\frac{2}{p}} \eta_p^{\frac{2}{p}} ||f_{\#}||_{L^1(\Omega)} + g^* ||f||_{L^1(\mathbb{R}^N)} + a^* \eta_p^2),
$$

 $\frac{\frac{1}{2-\frac{2}{p}}}{L^1(\Omega)} + b_1 \|f\|_{L^2(\mathbb{R}^N)}^{\frac{1}{2}},$ which is a general upper by using [\(3.4\)](#page-8-2) and $\eta_p = a_p || f_{\#} ||$ bound for $||D^{\sigma}u||_{L^2(\mathbb{R}^N)}$ and $||D^{\sigma}\hat{u}||_{L^2(\mathbb{R}^N)}$, just by taking $v \equiv 0$ in [\(2.9\)](#page-3-0) and calculating as in (3.6) . \blacksquare

Remark 3.4. This theorem allows to obtain solutions to quasi-variational inequalities of the type [\(2.9\)](#page-3-0), with the solution dependent on the convex sets $\mathbb{K}_{G[u]}^{\sigma}$ as in [\(2.7\)](#page-3-5) with $g = G[u]$, where $G: L^{2^*}(\Omega) \to L^{\infty}_{g*}(\mathbb{R}^N)$, being $L^{\infty}_{g*}(\mathbb{R}^N) = \{h \in L^{\infty}(\mathbb{R}^N)$: $h(x) \ge g_* > 0$ a.e. $x \in \mathbb{R}^N$, or $G: \mathcal{C}(\overline{\Omega}) \to L_{g_*}^{\infty}(\mathbb{R}^N)$ are continuous and bounded operators, as in [\[10,](#page-20-4) Section 4], where only the case $f_{\#} \in L^2(\Omega)$ and $f \equiv 0$ was considered.

As we observed in Remark [3.2,](#page-9-1) the solution u to the variational inequality with bounded σ -gradient constraint and data satisfying [\(2.3\)](#page-2-4) also solves [\(2.12\)](#page-4-2), but the extra terms involving γ can be interpreted with a Lagrange multiplier λ in a generalised sense extending Theorem 3.1 of $[10]$ to $L¹$ -data. Here we use the duality in $L^{\infty}(\mathbb{R}^N)$ and in $L^{\infty}(\mathbb{R}^N)$ with the notation

$$
\langle \lambda \alpha, \beta \rangle = \langle \lambda, \alpha \cdot \beta \rangle, \quad \forall \lambda \in L^{\infty}(\mathbb{R}^{N})' \ \forall \alpha, \beta \in L^{\infty}(\mathbb{R}^{N}). \tag{3.10}
$$

Theorem 3.5. *Under the assumptions* [\(2.1\)](#page-2-1)*,* [\(2.2\)](#page-2-2)*,* [\(3.1\)](#page-7-1)*, and* [\(2.3\)](#page-2-4) *or* [\(3.5\)](#page-8-1)*, there exists* $(u, \lambda) \in \Upsilon_{\infty}^{\sigma}(\Omega) \times L^{\infty}(\mathbb{R}^{N})'$, *such that*

$$
\int_{\mathbb{R}^N} AD^{\sigma}u \cdot D^{\sigma}w + \langle \lambda D^{\sigma}u, D^{\sigma}w \rangle
$$
\n
$$
= \int_{\Omega} f_{\#}w + \int_{\mathbb{R}^N} f \cdot D^{\sigma}w, \quad \forall w \in \Upsilon_{\infty}^{\sigma}(\Omega), \tag{3.11}
$$

 $|D^{\sigma}u| \leq g$ a.e. in \mathbb{R}^N , $\lambda \geq 0$ and $\lambda(|D^{\sigma}u| - g) = 0$ in $L^{\infty}(\mathbb{R}^N)'$ (3.12)

Moreover, u *is the unique solution to the variational inequality* [\(2.9\)](#page-3-0)*.*

Proof. (i) First we suppose [\(2.3\)](#page-2-4), i.e., $f_{\#} \in L^2(\Omega)$ and $f \in L^2(\mathbb{R}^N)$, and, from the approximation problem [\(2.16\)](#page-5-3), in addition to [\(2.20\)](#page-6-0), we obtain the *a priori* estimates independent of $0 < \varepsilon < 1$:

$$
\|\hat{k}_{\varepsilon}\|_{L^{1}(\mathbb{R}^{N})} \leq \frac{a_{*}}{2g_{*}^{2}}C_{\sigma}^{2} \equiv \frac{C_{1}}{g_{*}^{2}},\tag{3.13}
$$

$$
\|\widehat{k}_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^N)'} \le \frac{C_1}{g_*^2},\tag{3.14}
$$

$$
\|\widehat{k}_{\varepsilon}D^{\sigma}u_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^N)'} \leq \frac{C_1}{g_*}.
$$
\n(3.15)

Indeed, (3.13) follows from (2.22) with the assumption (3.1) , which implies (3.14) , by definition of the dual norm, as well as (3.15) , by using (3.13) and again [\(2.22\)](#page-6-2):

$$
\begin{aligned} \|\widehat{\kappa}_{\varepsilon}D^{\sigma}u_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^{N})'} &= \sup_{\substack{\boldsymbol{\beta}\in L^{\infty}(\mathbb{R}^{N})\\ \|\boldsymbol{\beta}\|_{L^{\infty}(\mathbb{R}^{N})}=1}} \int_{\mathbb{R}^{N}} \widehat{\kappa}_{\varepsilon}D^{\sigma}u_{\varepsilon} \cdot \boldsymbol{\beta} \\ &\leq \left(\int_{\mathbb{R}^{N}} \widehat{\kappa}_{\varepsilon}|D^{\sigma}u_{\varepsilon}|^{2}\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{N}} \widehat{\kappa}_{\varepsilon}\right)^{\frac{1}{2}} \leq \frac{C_{1}}{g_{*}}.\end{aligned}
$$

By the estimates [\(3.14\)](#page-11-1), [\(3.15\)](#page-11-2), and the Banach–Alaoglu–Bourbaki theorem, at least for some generalised subsequence $u_{\varepsilon} \longrightarrow u$ in $H_0^{\sigma}(\Omega)$ also

$$
\widehat{k}_{\varepsilon} \longrightarrow_{0} \lambda \text{ weakly in } L^{\infty}(\mathbb{R}^{N})' \text{ and } \widehat{k}_{\varepsilon} D^{\sigma} u_{\varepsilon} \longrightarrow_{0} \Lambda \text{ weakly in } L^{\infty}(\mathbb{R}^{N})'.
$$

Since $\hat{\kappa}_{\varepsilon} \ge 0$ a.e., $\lambda \ge 0$ in $L^{\infty}(\mathbb{R}^N)'$, and letting $\varepsilon \to 0$ in [\(2.16\)](#page-5-3) with $w \in$ $\Upsilon^{\sigma}_{\infty}(\Omega)$, u and Λ satisfy

$$
\int_{\mathbb{R}^N} AD^{\sigma}u \cdot D^{\sigma}w + \langle \Lambda, D^{\sigma}w \rangle
$$
\n
$$
= \int_{\Omega} f_{\#}w + \int_{\mathbb{R}^N} f \cdot D^{\sigma}w, \quad \forall w \in \Upsilon_{\infty}^{\sigma}(\Omega). \tag{3.16}
$$

Letting $\varepsilon \to 0$ in [\(2.16\)](#page-5-3) with $v = u_{\varepsilon}$ and using [\(2.23\)](#page-7-2), we easily find that

$$
\overline{\lim}_{\varepsilon\to 0}\int_{\mathbb{R}^N}\widehat{\kappa}_{\varepsilon}|D^{\sigma}u_{\varepsilon}|^2\leq \{\Lambda,D^{\sigma}u\}.
$$

Recalling that $(|D^{\sigma}u_{\varepsilon}|^2 - g^2)\hat{\kappa}_{\varepsilon} \ge 0$ and $|D^{\sigma}u| \le g$ a.e. $x \in \mathbb{R}^N$, we obtain

$$
\langle \lambda, |D^{\sigma} u|^2 \rangle \leq \langle \lambda, g^2 \rangle = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \widehat{\kappa}_{\varepsilon} g^2 \leq \overline{\lim_{\varepsilon \to 0}} \int_{\mathbb{R}^N} \widehat{\kappa}_{\varepsilon} |D^{\sigma} u_{\varepsilon}|^2 \leq (\Lambda, D^{\sigma} u).
$$

Since we get the opposite inequality from

$$
0 \leq \overline{\lim}_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma}(u_{\varepsilon} - u)|^2
$$

=
$$
\overline{\lim}_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma}u_{\varepsilon}|^2 - 2 \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} D^{\sigma}u_{\varepsilon} \cdot D^{\sigma}u + \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma}u|^2
$$

\$\leq \langle \Lambda, D^{\sigma}u \rangle - 2\langle \Lambda, D^{\sigma}u \rangle + \langle \lambda, |D^{\sigma}u|^2 \rangle = -\langle \Lambda, D^{\sigma}u \rangle + \langle \lambda, |D^{\sigma}u|^2 \rangle,

we conclude $\langle \Lambda, D^{\sigma} u \rangle = \langle \lambda, |D^{\sigma} u|^2 \rangle$ and

$$
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma}(u_{\varepsilon} - u)|^2 = 0.
$$
 (3.17)

Hence, for any $\beta \in L^{\infty}(\mathbb{R}^N)$, we have

$$
\left| \left\{ \Lambda - \lambda D^{\sigma} u, \beta \right\} \right| = \lim_{\varepsilon \to 0} \left| \int_{\mathbb{R}^N} \widehat{\kappa}_{\varepsilon} D^{\sigma} (u_{\varepsilon} - u) \cdot \beta \right|
$$

\$\leq \lim_{\varepsilon \to 0} \left[\left(\int_{\mathbb{R}^N} \widehat{\kappa}_{\varepsilon} |D^{\sigma} (u_{\varepsilon} - u)|^2 \right)^{\frac{1}{2}} \| \widehat{\kappa}_{\varepsilon} \|_{L^1(\mathbb{R}^N)} \| \beta \|_{L^{\infty}(\mathbb{R}^N)} \right] = 0,

showing that

$$
\Lambda = \lambda D^{\sigma} u \quad \text{in } L^{\infty}(\mathbb{R}^{N})'
$$

and that, in fact, (3.16) is equivalent to (3.11) .

It remains to show the last equation of (3.12) which follows easily from (recall [\(3.1\)](#page-7-1))

$$
0 = \langle \lambda, (g^2 - |D^{\sigma}u|^2)\varphi \rangle = \langle \lambda, (g - |D^{\sigma}u|)(g + |D^{\sigma}u|)\varphi \rangle
$$

$$
\ge g_* \langle \lambda, (g - |D^{\sigma}u|)\varphi \rangle = g_* \langle \lambda(g - |D^{\sigma}u|), \varphi \rangle \ge 0
$$

for arbitrarily $\varphi \in L^{\infty}(\Omega)$, $\varphi \ge 0$, which holds provided that we show

$$
\langle \lambda, (g^2 - |D^{\sigma} u|^2) \varphi \rangle = 0. \tag{3.18}
$$

As above, using (3.17) , we have first

$$
\langle \lambda, g^2 \varphi \rangle \le \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma} u_{\varepsilon}|^2 \varphi
$$

=
$$
\lim_{\varepsilon \to 0} \left(\int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma} (u_{\varepsilon} - u)|^2 \varphi
$$

+
$$
2 \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} D^{\sigma} (u_{\varepsilon} - u) \cdot D^{\sigma} u \varphi + \int_{\mathbb{R}^N} \hat{\kappa}_{\varepsilon} |D^{\sigma} u|^2 \varphi \right)
$$

=
$$
\langle \lambda, |D^{\sigma} u|^2 \varphi \rangle
$$

and, since $u \in \mathbb{K}_g^{\sigma}$ and $\varphi, \lambda \ge 0$, it also holds that

$$
\langle \lambda, (g^2 - |D^{\sigma} u|^2) \varphi \rangle \ge 0.
$$

To show that u is the unique solution to [\(2.9\)](#page-3-0), it suffices to take $w = u - v$, with an arbitrary $v \in \mathbb{K}_g^{\sigma}$, and observe that, by [\(3.18\)](#page-12-1),

$$
\langle \lambda D^{\sigma} u, D^{\sigma} (v - u) \rangle \leq \langle \lambda, |D^{\sigma} u| (|D^{\sigma} v| - |D^{\sigma} u|) \rangle
$$

\n
$$
\leq \langle \lambda, |D^{\sigma} u| (g - |D^{\sigma} u|) \rangle
$$

\n
$$
= \langle \lambda (g^{2} - |D^{\sigma} u|^{2}), \frac{|D^{\sigma} u|}{g + |D^{\sigma} u|} \rangle = 0.
$$

(ii) In the second case, if (3.5) holds, we can use approximation by solutions (u_v, λ_v) of [\(3.11\)](#page-10-0)-[\(3.12\)](#page-10-1) corresponding to data $f_{\#v} \in L^{2^{\#}}(\Omega)$ and $f_v \in L^2(\mathbb{R}^N)$ satisfying [\(3.8\)](#page-9-2), as in Theorem [3.1.](#page-8-5)

Using the estimate [\(3.6\)](#page-8-3), it is clear that

$$
u_{\nu} \xrightarrow[\nu \to 0]{} u \quad \text{in } H_0^{\sigma}(\Omega) \tag{3.19}
$$

and u solves (2.9) .

For $\varphi \in L^{\infty}(\mathbb{R}^N)$, setting $b = \frac{\|\varphi\|_{L^{\infty}(\mathbb{R}^N)}}{n^2}$ $rac{\infty(\mathbb{R}^N)}{g_*^2}$, recalling [\(3.1\)](#page-7-1), and using [\(3.11\)](#page-10-0) and [\(3.12\)](#page-10-1) for λ_{ν} , which also implies that $\langle \lambda_{\nu}, g^2 - |D^{\sigma} u_{\nu}|^2 \rangle = 0$, we have

$$
\left| \langle \lambda_{\nu}, \varphi \rangle \right| \leq \langle \lambda_{\nu}, bg^2 \rangle \n= b \langle \lambda_{\nu}, |D^{\sigma} u_{\nu}|^2 \rangle = b \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} u_{\nu} \rangle \n\leq b \bigg(\int_{\Omega} f_{\#} u_{\nu} + \int_{\mathbb{R}^N} f \cdot D^{\sigma} u_{\nu} \bigg) \leq C \frac{\|\varphi\|_{L^{\infty}(\mathbb{R}^N)}}{g_{*}^2},
$$
\n(3.20)

where the constant $C > 0$ depends only on the L^1 -norms of $f_{\#}$ and f and on the constants a_p and b_1 of [\(3.6\)](#page-8-3), being consequently independent of ν . Then, λ_{ν} is uniformly bounded in $L^{\infty}(\mathbb{R}^N)'$ and we may assume, for some generalised subsequence,

$$
\lambda_{\nu} \xrightarrow[\nu \to 0]{} \lambda \text{ in } L^{\infty}(\mathbb{R}^N)' \text{-weakly}^*, \quad \text{with } \lambda \ge 0,
$$
 (3.21)

and, since $\Lambda_{\nu} = \lambda_{\nu} D^{\sigma} u_{\nu}$ is also bounded in $L^{\infty}(\mathbb{R}^N)'$ (recall $||D^{\sigma} u_{\nu}||_{L^{\infty}(\mathbb{R}^N)} \leq g^*$), also

$$
\Lambda_{\nu} \longrightarrow_{\nu \to 0} \Lambda \quad \text{in } L^{\infty}(\mathbb{R}^N)' \text{-weakly*}. \tag{3.22}
$$

Therefore, taking the limit $v \to 0$ in [\(3.11\)](#page-10-0), we find that (u, λ) solves

$$
\int_{\mathbb{R}^N} AD^{\sigma} u \cdot D^{\sigma} w + \langle \Lambda, D^{\sigma} w \rangle
$$
\n
$$
= \int_{\Omega} f_{\#} w + \int_{\mathbb{R}^N} f \cdot D^{\sigma} w, \quad \forall w \in \Upsilon_{\infty}^{\sigma}(\Omega). \tag{3.23}
$$

Recalling [\(3.18\)](#page-12-1) with $\varphi = 1$, we have

$$
\langle \lambda_{\nu}, |D^{\sigma} u|^2 \rangle \le \langle \lambda_{\nu}, g^2 \rangle = \langle \lambda_{\nu}, |D^{\sigma} u_{\nu}|^2 \rangle. \tag{3.24}
$$

Using the equalities (3.24) and (3.19) , we have

$$
0 \leq \frac{1}{2} \langle \lambda_{\nu}, |D^{\sigma}(u_{\nu} - u)|^{2} \rangle
$$

\n
$$
= \frac{1}{2} (\langle \lambda_{\nu}, |D^{\sigma} u_{\nu}|^{2} \rangle - 2 \langle \lambda_{\nu}, D^{\sigma} u_{\nu} \cdot D^{\sigma} u \rangle + \langle \lambda_{\nu}, |D^{\sigma} u|^{2} \rangle)
$$

\n
$$
\leq \langle \lambda_{\nu}, |D^{\sigma} u_{\nu}|^{2} \rangle - \langle \lambda_{\nu}, D^{\sigma} u_{\nu} \cdot D^{\sigma} u \rangle = \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} (u_{\nu} - u) \rangle
$$

\n
$$
= \int_{\Omega} f_{\#_{\nu}}(u_{\nu} - u) + \int_{\mathbb{R}^{N}} f_{\nu} \cdot D^{\sigma} (u_{\nu} - u)
$$

\n
$$
- \int_{\mathbb{R}^{N}} A D^{\sigma} u_{\nu} \cdot D^{\sigma} (u_{\nu} - u) \xrightarrow{\nu \to 0} 0,
$$
\n(3.25)

being the last equality satisfied because (u_v, λ_v) solves problem [\(3.11\)](#page-10-0)-[\(3.12\)](#page-10-1) with data $f_{\#_{\mathcal{V}}}$ and \boldsymbol{f}_{ν} .

Then, from (3.23) we can conclude that u in fact solves (3.11) from the equality

$$
\begin{aligned} \langle \Lambda, D^{\sigma} w \rangle &= \lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} w \rangle \\ &= \lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} u, D^{\sigma} w \rangle + \lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} (u_{\nu} - u), D^{\sigma} w \rangle \\ &= \lim_{\nu \to 0} \langle \lambda_{\nu}, D^{\sigma} u \cdot D^{\sigma} w \rangle = \langle \lambda, D^{\sigma} u \cdot D^{\sigma} w \rangle = \langle \lambda D^{\sigma} u, D^{\sigma} w \rangle, \quad (3.26) \end{aligned}
$$

which is valid for all $w \in \Upsilon_{\infty}^{\sigma}(\Omega)$ since [\(3.25\)](#page-14-1) implies that

$$
\begin{aligned} \left| \boldsymbol{\mu}_{\nu} D^{\sigma}(u_{\nu} - u), D^{\sigma} w \boldsymbol{\mu} \right| &= \left| \langle \lambda_{\nu}, D^{\sigma}(u_{\nu} - u) \cdot D^{\sigma} w \rangle \right| \\ &\leq \left| \lambda_{\nu}, \left| D^{\sigma}(u_{\nu} - u) \right| |D^{\sigma} w| \right| \\ &\leq \left(\left| \lambda_{\nu}, \left| D^{\sigma}(u_{\nu} - u) \right|^{2} \right) \right)^{\frac{1}{2}} \left(\left| \lambda_{\nu}, \left| D^{\sigma} w \right|^{2} \right) \right)^{\frac{1}{2}} \xrightarrow[\nu \to 0]{} 0, \end{aligned}
$$

where we have used the Hölder inequality for charges in the last inequality.

From [\(3.26\)](#page-14-2), we find $\langle \Lambda, D^{\sigma} u \rangle = \langle \lambda, |D^{\sigma} u|^2 \rangle$ and

$$
\langle \lambda, g^2 \rangle = \lim_{\nu \to 0} \langle \lambda_{\nu}, g^2 \rangle = \lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} u_{\nu} \rangle
$$

=
$$
\lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} u \rangle + \lim_{\nu \to 0} \langle \lambda_{\nu} D^{\sigma} u_{\nu}, D^{\sigma} (u_{\nu} - u) \rangle
$$

=
$$
\lim_{\nu \to 0} \langle \Lambda_{\nu}, D^{\sigma} u \rangle = \langle \Lambda, D^{\sigma} u \rangle = \langle \lambda, |D^{\sigma} u|^2 \rangle.
$$

Finally, we can now complete the proof of the theorem by using this equality in the form $\langle \lambda (g^2 - |D^{\sigma} u|^2)$, 1) = 0 and again the Hölder inequality to conclude the

third condition in [\(3.12\)](#page-10-1) with an arbitrarily $\varphi \in L^{\infty}(\mathbb{R}^N)$,

$$
\left| \langle \lambda (g - |D^{\sigma} u|), \varphi \rangle \right| \leq \left\langle \lambda (g - |D^{\sigma} u|), |\varphi| \right\rangle
$$

= $\left\langle \lambda (g^{2} - |D^{\sigma} u|^{2}), \frac{|\varphi|}{g + |D^{\sigma} u|} \right\rangle$

$$
\leq \left\langle \lambda (g^{2} - |D^{\sigma} u|^{2}), 1 \right\rangle^{\frac{1}{2}} \left\langle \lambda (g^{2} - |D^{\sigma} u|^{2}), \frac{|\varphi|^{2}}{(g + |D^{\sigma} u|)^{2}} \right\rangle^{\frac{1}{2}}
$$

= 0.

The second part of this proof actually shows a generalised continuous dependence of the solution and of the Lagrange multiplier with respect to the L^1 -data.

Corollary. *Under the assumptions* [\(2.1\)](#page-2-1), [\(2.2\)](#page-2-2), [\(3.1\)](#page-7-1)*, and* [\(3.5\)](#page-8-1)*, if* $(u_v, \lambda_v) \in \Upsilon_{\infty}^{\sigma}(\Omega) \times$ $L^{\infty}(\mathbb{R}^N)'$ are the solutions to [\(3.11\)](#page-10-0) and [\(3.12\)](#page-10-1) corresponding to L^1 -data satisfying [\(3.8\)](#page-9-2)*, as* $v \rightarrow 0$ *, we have the convergence, for some generalised subsequence or net.*

$$
u_{\nu} \xrightarrow[\nu \to 0]{} u \text{ in } H_0^{\sigma}(\Omega) \text{ and } \lambda_{\nu} \xrightarrow[\nu \to 0]{} \lambda \text{ in } L^{\infty}(\mathbb{R}^N)' \text{-weakly*},
$$

where $(u, \lambda) \in \Upsilon_{\infty}^{\sigma}(\Omega) \times L^{\infty}(\mathbb{R}^{N})'$ also solves [\(3.11\)](#page-10-0)-[\(3.12\)](#page-10-1).

4. Convergence to the local problem as $\sigma \nearrow 1$

It is easy to check that all the theorems of the preceding two sections hold in the limit case $\sigma = 1$, when $D^{\sigma} = D$ is the classical gradient and the data $f_{\#}$ and f satisfy [\(2.3\)](#page-2-4) (with $f_{\#} \in L^{\frac{2N}{N+2}}(\Omega)$, if $N > 2$, $f_{\#} \in L^{q}(\Omega)$, $\forall q < \infty$ if $N = 2$ and $q = \infty$ if $N = 1$) or [\(3.5\)](#page-8-1), and g satisfies [\(2.8\)](#page-3-3), [\(2.17\)](#page-5-2) or [\(3.1\)](#page-7-1), respectively.

In this section, we show a continuous dependence of the solution u^{σ} and of the Lagrange multiplier λ^{σ} when $\sigma \nearrow 1$. For the sake of simplicity, we take $f_{\#} = 0$ and $f \in L^1(\mathbb{R}^N)$, so that the limit variational inequality reads

$$
u \in \mathbb{K}_g = \{ v \in H_0^1(\Omega) : |Dv| \le g \text{ a.e. in } \Omega \},\tag{4.1}
$$

$$
\int_{\Omega} ADu \cdot D(v - u) \ge \int_{\Omega} f \cdot D(v - u), \quad \forall v \in \mathbb{K}_{g}.
$$
\n(4.2)

Likewise, observing that setting $\sigma = 1$ in [\(3.2\)](#page-8-6) we have $\Upsilon_{\infty}(\Omega) = W_0^{1,\infty}$ $\binom{1,\infty}{0}$ (Ω), we can write the limit Lagrange multiplier problem in the following form: find $(u, \lambda) \in$ $W_0^{1,\infty}$ $L^{1,\infty}(\Omega)\times L^{\infty}(\Omega)'$

$$
\int_{\Omega} ADu \cdot Dw + \langle \lambda Du, Dw \rangle = \int_{\Omega} f \cdot Dw, \quad \forall w \in W_0^{1,\infty}(\Omega), \tag{4.3}
$$

$$
|Du| \le g \text{ a.e. in } \Omega, \quad \lambda \ge 0 \quad \text{and} \quad \lambda(|Du| - g) = 0 \text{ in } L^{\infty}(\Omega)'. \tag{4.4}
$$

In [\(4.3\)](#page-15-1), we denote the duality in $L^{\infty}(\Omega)$ similarly to [\(3.10\)](#page-10-2), as we can always consider the solution and the test functions extended by zero in $\mathbb{R}^N \setminus \Omega$, since $\partial \Omega$ is $\mathcal{C}^{0,1}.$

We frst recall an important consequence of the fact that the Riesz kernel is an approximation of the identity, as remarked by Kurokawa in [\[7\]](#page-20-3).

Proposition 4.1. *If* $h \in L^p(\mathbb{R}^N) \cap C(\mathbb{R}^N)$ *, for some* $p \ge 1$ *, is bounded and uniformly continuous in* \mathbb{R}^N *, then*

$$
\lim_{\alpha \to 0} \|I_{\alpha} * h - h\|_{L^{\infty}(\mathbb{R}^N)} = 0.
$$

As a consequence, we have

$$
D^{\sigma} w \xrightarrow[\sigma \nearrow 1]{} Dw \quad \text{in } \mathcal{L}^{\infty}(\mathbb{R}^N), \text{ for all } w \in \mathcal{C}_c^1(\mathbb{R}^N). \tag{4.5}
$$

Proof. In [\[7,](#page-20-3) Proposition 2.10], it is proved that

$$
I_{\alpha} * h(x) \xrightarrow[\alpha \to 0]{} h(x)
$$

at each point of continuity of any function $h \in L^p(\mathbb{R}^N)$, $1 \le p < \infty$, and it is not difficult to check that this convergence is uniform in $x \in \mathbb{R}^N$ for bounded and uniformly continuous functions (see $[2]$). Then, (4.5) is an immediate consequence of Theorem 1.2 of [\[12\]](#page-21-0), which established that $D^s w = I_{1-s} * Dw$ for all $w \in C_c^{\infty}(\mathbb{R}^N)$, being the proof equally valid for functions only in $\mathcal{C}_c^1(\mathbb{R}^N)$.

Remark 4.2. The convergence [\(4.5\)](#page-16-0), as well as in $L^p(\mathbb{R}^N)$ for $p \ge 1$, has been shown in [\[6,](#page-20-1) Proposition 4.4] for functions of $\mathcal{C}_c^2(\mathbb{R}^N)$. By density of $\mathcal{C}_c^{\infty}(\mathbb{R}^N)$ in $L^p(\mathbb{R}^N)$ for $p \ge 1$, in [\[4\]](#page-20-2) it was shown that the convergence $D^{\sigma} h \longrightarrow Dh$ holds in $L^p(\mathbb{R}^N)$, for $1 < p < \infty$, if $h \in W^{1,p}(\mathbb{R}^N)$.

For $\chi \in L^{\infty}(\mathbb{R}^N)'$, we denote its restriction to $\Omega \subset \mathbb{R}^N$ by $\chi_{\Omega} \in L^{\infty}(\Omega)'$, defined by

$$
\langle \chi_{\Omega}, \varphi \rangle = \langle \chi, \widetilde{\varphi} \rangle, \quad \forall \varphi \in L^{\infty}(\Omega),
$$

where $\tilde{\varphi}$ is the extension of φ by zero to $\mathbb{R}^N \setminus \Omega$.

Theorem 4.3. Let $f \in L^1(\mathbb{R}^N)$ ($f_{\#} = 0$) and let g be given as in [\(3.1\)](#page-7-1). Then, if $(u^{\sigma}, \lambda^{\sigma}) \in \Upsilon_{\infty}^{\sigma}(\Omega) \times L^{\infty}(\mathbb{R}^{N})'$ are the solutions to [\(3.11\)](#page-10-0)-[\(3.12\)](#page-10-1)*, we have, for a generalised subsequence, the convergences, for any s,* $0 < s < \sigma < 1$ *:*

$$
u^{\sigma} \xrightarrow[\sigma \nearrow 1]{} u \text{ in } H_0^s(\Omega) \quad \text{and} \quad \lambda_{\Omega}^{\sigma} \xrightarrow[\sigma \nearrow 1]{} \lambda \text{ in } L^{\infty}(\Omega)' \text{-weakly}^*, \tag{4.6}
$$

where $(u, \lambda) \in W_0^{1, \infty}$ $\int_0^1 \binom{1}{0} \times L^\infty(\Omega)'$ *is a solution to* [\(4.3\)](#page-15-1)-[\(4.4\)](#page-15-2) *and u is the unique solution to* [\(4.1\)](#page-15-3)*-*[\(4.2\)](#page-15-4)*.*

Proof. Setting $v = 0$ in [\(2.9\)](#page-3-0), or $w = u^{\sigma}$ in [\(3.11\)](#page-10-0), we immediately obtain

$$
||u^{\sigma}||_{H_0^{\sigma}(\Omega)} = ||D^{\sigma}u^{\sigma}||_{L^2(\mathbb{R}^N)} \le \left(\frac{g^*}{a_*} ||f||_{L^1(\mathbb{R}^N)}\right)^{\frac{1}{2}} \equiv C_1,
$$
 (4.7)

where C_1 is independent of σ , $0 < \sigma < 1$. Hence, arguing as in [\(3.20\)](#page-13-2), using [\(3.11\)](#page-10-0)-[\(3.12\)](#page-10-1), it also follows easily that

$$
\|\lambda^{\sigma}\|_{L^{\infty}(\mathbb{R}^N)'} = \sup_{\substack{\varphi \in L^{\infty}(\mathbb{R}^N) \\ \|\varphi\|_{L^{\infty}(\mathbb{R}^N)} = 1}} \langle \lambda^{\sigma}, \varphi \rangle \le \frac{\|f\|_{L^1(\mathbb{R}^N)}}{g_*^2}.
$$
 (4.8)

Then, using $\Lambda^{\sigma} = \lambda^{\sigma} D^{\sigma} u^{\sigma}$ and recalling $||D^{\sigma} u^{\sigma}||_{L^{\infty}(\mathbb{R}^{N})} \leq g^*$, from the estimates [\(4.7\)](#page-17-0) and [\(4.8\)](#page-17-1), we may take a generalised subsequence $\sigma \nearrow 1$ such that, by the compactness of $H_0^{\sigma}(\Omega) \hookrightarrow H_0^s(\Omega)$, $0 < s < \sigma \le 1$,

$$
\begin{cases}\nu^{\sigma} \longrightarrow u & \text{in } H_0^s(\Omega), \\
D^{\sigma} u^{\sigma} \longrightarrow \chi & \text{in } L^2(\mathbb{R}^N)' \text{-weak and } L^{\infty}(\mathbb{R}^N)' \text{-weak}^*, \\
\lambda^{\sigma} \longrightarrow \widetilde{\lambda} & \text{in } L^{\infty}(\mathbb{R}^N)' \text{-weak and } L^{\infty}(\mathbb{R}^N)' \text{-weak}^*, \\
\lambda^{\sigma} \longrightarrow \widetilde{\lambda} & \text{in } L^{\infty}(\mathbb{R}^N)' \text{-weak}, \quad \Lambda^{\sigma} \longrightarrow \widetilde{\Lambda} & \text{in } L^{\infty}(\mathbb{R}^N)' \text{-weak}. \end{cases} (4.10)
$$

Denoting by \tilde{u}^{σ} the extension of u^{σ} by zero to $\mathbb{R}^{N} \setminus \Omega$, from [\(4.9\)](#page-17-2) we conclude that $\chi = D\tilde{u}$ and in fact $u \in H_0^1(\Omega)$, and then $D\tilde{u} = \widetilde{Du}$. Indeed, recalling the convergence (4.5), we have convergence [\(4.5\)](#page-16-0), we have

$$
\int_{\mathbb{R}^N} \chi \cdot \varphi = \lim_{\sigma \nearrow 1} \int_{\mathbb{R}^N} D^{\sigma} u^{\sigma} \cdot \varphi = -\lim_{\sigma \nearrow 1} \int_{\mathbb{R}^N} \tilde{u}^{\sigma} (D^{\sigma} \cdot \varphi)
$$

$$
= -\int_{\mathbb{R}^N} \tilde{u} (D \cdot \varphi) = \int_{\mathbb{R}^N} D \tilde{u} \cdot \varphi,
$$

with an arbitrary $\varphi \in \mathcal{C}_c^\infty$ $_c^\infty(\mathbb{R}^N)$.

On the other hand, given any measurable set $\omega \subset \Omega$, we have now

$$
\int_{\omega} |Du|^2 \le \lim_{\sigma \nearrow 1} \int_{\omega} |D^{\sigma} u^{\sigma}|^2 \le \int_{\omega} g^2
$$

and therefore $|Du| \leq g$ a.e. in Ω , which yields $u \in \mathbb{K}_g \subset W_0^{1,\infty}$ $\binom{1,\infty}{0}$ (Ω) . Passing to the limit $\sigma \nearrow 1$ in [\(3.11\)](#page-10-0), first with $w \in C_c^{\infty}(\Omega)$

$$
\int_{\mathbb{R}^N} AD^{\sigma}u^{\sigma} \cdot D^{\sigma}w + \langle \Lambda^{\sigma}, D^{\sigma}w \rangle = \int_{\mathbb{R}^N} f \cdot D^{\sigma}w
$$

and using [\(4.5\)](#page-16-0), [\(4.9\)](#page-17-2), and [\(4.10\)](#page-17-3), since $\chi = \widetilde{Du}$ and $D\tilde{w} = \widetilde{Dw}$, we obtain

$$
\int_{\Omega} ADu \cdot Dw + \langle \Lambda, Dw \rangle = \int_{\Omega} f \cdot Dw, \qquad (4.11)
$$

by setting $\Lambda = \tilde{\Lambda}_{\Omega}$ and $\{\Lambda, Dw\} = \{\tilde{\Lambda}, D \tilde{w}\}.$

Note that for each $w \in W_0^{1,\infty}$ $v_0^{1,\infty}(\Omega)$ we may choose $w_v \in C_c^{\infty}(\Omega)$ such that $w_{\nu} \longrightarrow w$ in $H_0^1(\Omega)$ and $Dw_{\nu} \longrightarrow Dw$ in $L^{\infty}(\Omega)$ -weak* in [\(4.11\)](#page-18-0) and we may pass to the generalised limit $v \to \infty$, concluding that [\(4.11\)](#page-18-0) also holds for all $w \in$ $W_0^{1,\infty}$ $\delta_0^{1,\infty}(\Omega)$. So, in order to see that u and $\lambda = \tilde{\lambda}_{|\Omega}$, i.e., the restriction to Ω of the limit charge λ in [\(4.10\)](#page-17-3), solve [\(4.3\)](#page-15-1), we need to show that

$$
\{\Lambda, Dw\} = \{\lambda Du, Dw\} = \langle \lambda, Du \cdot Dw \rangle, \quad \forall w \in W_0^{1,\infty}(\Omega). \tag{4.12}
$$

We show first [\(4.12\)](#page-18-1) for $w = u$, i.e., $\{\Lambda, Du\} = \langle \lambda, |Du|^2 \rangle$, in two steps. Observing that $\tilde{\lambda} \ge 0$ and $|Du| \le g$, we have $\langle \lambda, |Du|^2 \rangle \le \langle \Lambda, Du \rangle$ from

$$
\langle \lambda, |Du|^2 \rangle \leq \langle \tilde{\lambda}, g^2 \rangle = \lim_{\sigma \nearrow 1} \langle \lambda^{\sigma}, g^2 \rangle = \lim_{\sigma \nearrow 1} \langle \lambda^{\sigma}, |D^{\sigma}u^{\sigma}|^2 \rangle
$$

\n
$$
= \lim_{\sigma \nearrow 1} \langle \lambda^{\sigma} D^{\sigma}u^{\sigma}, D^{\sigma}u^{\sigma} \rangle
$$

\n
$$
= \overline{\lim}_{\sigma \nearrow 1} \int_{\mathbb{R}^N} (f - AD^{\sigma}u^{\sigma}) \cdot D^{\sigma}u^{\sigma}
$$

\n
$$
\leq \int_{\mathbb{R}^N} (f - AD\tilde{u}) \cdot D\tilde{u} = \langle \tilde{\Lambda}, D\tilde{u} \rangle = \langle \Lambda, Du \rangle.
$$
 (4.13)

Note that $D^{\sigma} u^{\sigma} \longrightarrow D \tilde{u}$ in $L^2(\mathbb{R}^N)$ -weak and hence

$$
\underline{\lim}_{\sigma \nearrow 1} \int_{\mathbb{R}^N} AD^{\sigma} u^{\sigma} \cdot D^{\sigma} u^{\sigma} \ge \int_{\mathbb{R}^N} AD\tilde{u} \cdot D\tilde{u} = \int_{\Omega} ADu \cdot Du.
$$

On the other hand, we find $\{\Lambda, Du\} \leq \langle \lambda, |Du|^2 \rangle$ by noting that $\Lambda^{\sigma} = \lambda^{\sigma} D^{\sigma} u^{\sigma}$ and, similarly,

$$
0 \leq \langle \lambda^{\sigma}, |D^{\sigma}u^{\sigma} - D\tilde{u}|^{2} \rangle = \langle \lambda^{\sigma} D^{\sigma}u^{\sigma}, D^{\sigma}u^{\sigma} \rangle - 2\langle \Lambda^{\sigma}, D\tilde{u} \rangle + \langle \lambda^{\sigma}, |D\tilde{u}|^{2} \rangle \tag{4.14}
$$

yields

$$
2(\tilde{\Lambda}, D\tilde{u}) = 2 \lim_{\sigma \nearrow 1} \langle \Lambda^{\sigma}, D\tilde{u} \rangle \le \overline{\lim}_{\sigma \nearrow 1} \int_{\mathbb{R}^N} (f - A D^{\sigma} u^{\sigma}) \cdot D^{\sigma} u^{\sigma} + \lim_{\sigma \nearrow 1} \langle \lambda^{\sigma}, |D\tilde{u}|^2 \rangle
$$

$$
\le \int_{\mathbb{R}^N} (f - A D\tilde{u}) \cdot D\tilde{u} + \langle \lambda, |D u|^2 \rangle = \langle \tilde{\Lambda}, D\tilde{u} \rangle + \langle \lambda, |D u|^2 \rangle.
$$

As a consequence of $\langle \Lambda, Du \rangle = \langle \lambda, |Du|^2 \rangle$, from [\(4.14\)](#page-18-2) we deduce

$$
\lim_{\sigma \nearrow 1} \left\langle \lambda^{\sigma}, |D^{\sigma} u^{\sigma} - D\tilde{u}|^{2} \right\rangle = 0, \tag{4.15}
$$

which by the Hölder inequality yields, for any $\beta \in L^{\infty}(\mathbb{R}^N)$,

$$
\left| \{ \widetilde{\Lambda} - \widetilde{\lambda} D \widetilde{u}, \beta \} \right| = \lim_{\sigma \nearrow 1} \left| \{ \Lambda^{\sigma} - \lambda^{\sigma} D \widetilde{u}, \beta \} \right| = \lim_{\sigma \nearrow 1} \left| \{ \Lambda^{\sigma} (D^{\sigma} u^{\sigma} - D \widetilde{u}), \beta \} \right|
$$

$$
\leq \lim_{\sigma \nearrow 1} \left\{ \lambda^{\sigma}, |D^{\sigma} u^{\sigma} - D \widetilde{u}| |\beta| \right\}
$$

$$
\leq \lim_{\sigma \nearrow 1} \left\{ \lambda^{\sigma}, |D^{\sigma} u^{\sigma} - D \widetilde{u}|^{2} \right\}^{\frac{1}{2}} \left\{ \lambda^{\sigma}, |\beta|^{2} \right\}^{\frac{1}{2}} = 0,
$$

and, consequently, [\(4.12\)](#page-18-1) follows from

$$
\Lambda = \lambda Du \quad \text{in } L^{\infty}(\Omega)'
$$

This equality in [\(4.12\)](#page-18-1) with $g > 0$ implies that

$$
\langle \lambda, |Du|^2 \rangle = \langle \widetilde{\lambda}, g^2 \rangle \ge \langle \lambda, g^2_{\vert_{\Omega}} \rangle \ge \langle \lambda, |Du|^2 \rangle,
$$

and $\langle \lambda, |Du|^2 - g^2 \rangle = 0$ (here $g = g_{\vert_{\Omega}}$). Then, exactly the same argument as at the end of the proof of Theorem [3.4](#page-8-2) shows that λ and u satisfy the third condition of [\(4.4\)](#page-15-2).

Finally, since we also have

$$
\langle \lambda Du, D(v-u) \rangle \leq 0, \quad \forall v \in \mathbb{K}_g,
$$

[\(4.3\)](#page-15-1) implies [\(4.2\)](#page-15-4) and this concludes the proof of the theorem.

Remark 4.4. In the Hilbertian case of $g \in L^2(\Omega)$, $g \ge 0$, and $f \in L^2(\mathbb{R}^N)$, it is easy to show the convergence of the solutions $(u^{\sigma}, \gamma^{\sigma}) \in \Upsilon_{\infty}^{\sigma}(\Omega) \times H_0^{\sigma}(\Omega)$ given by Theorem [2.1,](#page-2-1) also in the case $f_{\#} = 0$ to simplify, as $\sigma \nearrow 1$ to the local problem for $(u, \gamma) \in W_0^{1, \infty}$ $U_0^{1,\infty}(\Omega) \times H_0^1(\Omega)$, satisfying [\(2.11\)](#page-4-0) with $\sigma = 1$ and

$$
\int_{\Omega} (ADu + D\sigma) \cdot Dv = \int_{\Omega} f \cdot Dv, \quad \forall v \in H_0^1(\Omega). \tag{4.16}
$$

П

Indeed, as in (2.10) and (2.13) , the a priori estimates

$$
\|u^{\sigma}\|_{H_0^{\sigma}(\Omega)} \leq \frac{1}{a_*} \|f\|_{L^2(\mathbb{R}^N)} \quad \text{and} \quad \|\gamma^{\sigma}\|_{H_0^{\sigma}(\Omega)} \leq \left(1 + \frac{a^*}{a_*}\right) \|f\|_{L^2(\mathbb{R}^N)}
$$

allow us to take sequences

$$
u^{\sigma} \xrightarrow[\sigma \nearrow 1]{} u \text{ and } \gamma^{\sigma} \xrightarrow[\sigma \nearrow 1]{} \gamma \text{ in } H_0^s(\Omega), \quad 0 < s < 1,
$$

in [\(2.12\)](#page-4-2) with $v \in H_0^1(\Omega) \subset H_0^{\sigma}(\Omega)$, in order to obtain [\(4.16\)](#page-19-0) and, using [\(2.18\)](#page-5-4), the $\Gamma = \Gamma(u) \in H^{-\sigma}(\Omega)$ corresponding to γ satisfies [\(2.11\)](#page-4-0) with $\sigma = 1$.

Funding. The research of José-Francisco Rodrigues was partially done under the framework of the Project PTDC/MATPUR/28686/2017 at CMAFcIO/ULisboa. The research of Assis Azevedo and Lisa Santos was partially fnanced by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.

References

- [1] R. A. Adams, *Sobolev Spaces*. Pure Appl. Math. 65, Academic Press, New York, 1975 Zbl [0314.46030](https://zbmath.org/?q=an:0314.46030&format=complete) MR [0450957](https://mathscinet.ams.org/mathscinet-getitem?mr=0450957)
- [2] A. Azevedo, J.-F. Rodrigues, and L. Santos, Nonlocal Lagrange multipliers and transport densities. 2022, arXiv[:2208.14274](https://arxiv.org/abs/2208.14274)
- [3] A. Azevedo and L. Santos, Lagrange multipliers and transport densities. *J. Math. Pures Appl. (9)* 108 (2017), no. 4, 592–611 Zbl [1386.35486](https://zbmath.org/?q=an:1386.35486&format=complete) MR [3698170](https://mathscinet.ams.org/mathscinet-getitem?mr=3698170)
- [4] J. C. Bellido, J. Cueto, and C. Mora-Corral, Γ -convergence of polyconvex functionals involving s-fractional gradients to their local counterparts. *Calc. Var. Partial Differential Equations* 60 (2021), no. 1, Paper No. 7 Zbl [1455.49008](https://zbmath.org/?q=an:1455.49008&format=complete) MR [4179861](https://mathscinet.ams.org/mathscinet-getitem?mr=4179861)
- [5] G. E. Comi and G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up. *J. Funct. Anal.* 277 (2019), no. 10, 3373–3435 Zbl [1437.46039](https://zbmath.org/?q=an:1437.46039&format=complete) MR [4001075](https://mathscinet.ams.org/mathscinet-getitem?mr=4001075)
- [6] G. E. Comi and G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I. *Rev. Mat. Complut.* 36 (2023), no. 2, 491–569 Zbl [07683439](https://zbmath.org/?q=an:07683439&format=complete) MR [4581759](https://mathscinet.ams.org/mathscinet-getitem?mr=4581759)
- [7] T. Kurokawa, On the Riesz and Bessel kernels as approximations of the identity. *Sci. Rep. Kagoshima Univ.* (1981), no. 30, 31–45 Zbl [0531.40007](https://zbmath.org/?q=an:0531.40007&format=complete) MR [643223](https://mathscinet.ams.org/mathscinet-getitem?mr=643223)
- [8] J.-L. Lions, *Quelques méthodes de résolution des problèmes aux limites non linéaires*. Dunod, Paris, 1969 Zbl [0189.40603](https://zbmath.org/?q=an:0189.40603&format=complete) MR [0259693](https://mathscinet.ams.org/mathscinet-getitem?mr=0259693)
- [9] J.-F. Rodrigues, *Obstacle Problems in Mathematical Physics*. North-Holland Math. Stud. 134, North-Holland, Amsterdam, 1987 Zbl [0606.73017](https://zbmath.org/?q=an:0606.73017&format=complete) MR [880369](https://mathscinet.ams.org/mathscinet-getitem?mr=880369)
- [10] J.-F. Rodrigues and L. Santos, On nonlocal variational and quasi-variational inequalities with fractional gradient. *Appl. Math. Optim.* 80 (2019), no. 3, 835–852; correction in *Appl. Math. Optim.* 84 (2021), 3565–3567 Zbl [1429.49011](https://zbmath.org/?q=an:1429.49011&format=complete) MR [4026601](https://mathscinet.ams.org/mathscinet-getitem?mr=4026601)
- [11] J.-F. Rodrigues and L. Santos, Variational and quasi-variational inequalities with gradient type constraints. In *Topics in Applied Analysis and Optimisation—Partial Differential Equations, Stochastic and Numerical Analysis*, pp. 319–361, CIM Ser. Math. Sci., Springer, Cham, 2019 Zbl [1442.49012](https://zbmath.org/?q=an:1442.49012&format=complete) MR [4410580](https://mathscinet.ams.org/mathscinet-getitem?mr=4410580)
- [12] T.-T. Shieh and D. E. Spector, On a new class of fractional partial differential equations. *Adv. Calc. Var.* 8 (2015), no. 4, 321–336 Zbl [1330.35510](https://zbmath.org/?q=an:1330.35510&format=complete) MR [3403430](https://mathscinet.ams.org/mathscinet-getitem?mr=3403430)
- [13] T.-T. Shieh and D. E. Spector, On a new class of fractional partial differential equations II. *Adv. Calc. Var.* 11 (2018), no. 3, 289–307 Zbl [1451.35257](https://zbmath.org/?q=an:1451.35257&format=complete) MR [3819528](https://mathscinet.ams.org/mathscinet-getitem?mr=3819528)
- [14] M. Šilhavý, Fractional vector analysis based on invariance requirements (critique of coordinate approaches). *Contin. Mech. Thermodyn.* 32 (2020), no. 1, 207–228 Zbl [1443.26004](https://zbmath.org/?q=an:1443.26004&format=complete) MR [4048032](https://mathscinet.ams.org/mathscinet-getitem?mr=4048032)
- [15] K. Yosida, *Functional Analysis*. 6th edn., Grundlehren Math. Wiss. 123, Springer, Berlin, 1980 Zbl [0435.46002](https://zbmath.org/?q=an:0435.46002&format=complete) MR [617913](https://mathscinet.ams.org/mathscinet-getitem?mr=617913)

Assis Azevedo

CMAT and Departamento de Matemática, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; assis@math.uminho.pt

José-Francisco Rodrigues

CMAFcIO and Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; jfrodrigues@ciencias.ulisboa.pt

Lisa Santos

CMAT and Departamento de Matemática, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; lisa@math.uminho.pt