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From matrix pivots to graphs in surfaces:
Exploring combinatorics through partial duals

Iain Moffatt

Abstract. To what extent is a graph determined by the trees in it? What changes if we ask this
question not for graphs in the abstract, but graphs that are embedded on surfaces? By consid-
ering these questions we will see how a collection of seemingly disjoint topics in mathematics
are brought together through the idea of a partial dual.

1. Introduction

Consider two graphs G and H each of which is drawn on a plane so that its edges
do not intersect (or consider two spherical polyhedra if you prefer). Then G and H
are geometric duals if the vertices in one correspond to the faces in the other, and
the edges between vertices in one correspond to the edges between faces in the other.
(See Figure 2 for an example.)

Now consider two graphs G and H (not drawn on the plane this time). Each con-
tains a set of spanning trees, these are the maximal acyclic subgraphs contained in
them. Then G and H are algebraic duals if their sets of spanning trees correspond
through complementation (i.e., the edge set of a spanning tree of one is the comple-
ment of the edge set of a spanning tree of the other).

It is a classical result of H. Whitney that a graph has an algebraic dual if and only
if it can be drawn on the plane without its edges crossing, in which case the algebraic
dual is exactly a geometric dual. This sets up a fundamental relationship between
planarity, duality, and spanning trees.

But what happens if the graphs cannot be drawn on the plane in this way? It is
this situation we examine here. We shall see that it is inexorably linked to graphs
drawn on surfaces, duals and partial duals, matroids and delta-matroids, principal
pivot transforms of matrices, and pivot-minors of simple graphs.
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This exposition is aimed at a general mathematical reader. A familiarity with
elementary graph theory and with orientable surfaces is assumed. We note that graphs
here may have multiple edges (edges that have the same ends) and loops (an edge with
both ends being the same vertex). For simplicity we shall only consider orientable
surfaces, but (almost) everything here can be extended to non-orientable surfaces.

2. Graphs and their spanning trees

We start with a classical question with a well-known answer. Recall that a graph is
a tree if it is connected and contains no cycles. A spanning tree of a graph G is a
subgraph that is a tree and that contains every vertex of G. (For example, the bold
edges in the left and right images in Figure 2 define spanning trees.) Only connec-
ted graphs have spanning trees, and to simplify terminology here we shall generally
restrict ourselves to connected graphs. This restriction does not result in any real loss
of generality. This is since most of our results extend trivially and obviously to non-
connected graphs by considering the maximal spanning forests of a graph, which are
the subgraphs that restrict to a spanning tree in each connected component.

Our initial interest is in the question:

Is a graph determined by its spanning trees?

There are a few ways to interpret this question resulting in different answers. Here
we are interested in what happens if the only information you have about any given
spanning tree is the edges that are in it. But since loops will never appear in a spanning
tree, we will also need to know if there are any loops. So our precise question is: If
you know the edge set of each spanning tree of a connected graph as well as any loops
in the graph, do you then know the graph? It is not hard to see that the answer is no.
For example, consider the two non-isomorphic trees on three edges. But this “no” is
really a “more or less, yes.”

Consider the moves of vertex identification, vertex cleaving, and Whitney twisting
illustrated in Figure 1. Vertex identification is a move that identifies two vertices that
lie in different connected components of a graph, and vertex cleaving is the inverse
operation. For Whitney twisting, suppose u1 and v1 are vertices in a graph G1, and
u2 and v2 are vertices in a graph G2. Construct a graph G by identifying u1 and
u2, and v1 and v2. Construct also a graph G0 by identifying u1 and v2, and v1 and
u2. Then we say G and G0 are related by Whitney twists. Two graphs are said to
be 2-isomorphic if one can be obtained from the other through isomorphism, vertex
identification, vertex cleaving, and Whitney twisting.

Whitney’s 2-isomorphism theorem [57] provides an answer to our question. It
states that if you know the edge set of each spanning tree of a graph as well as any



From matrix pivots to graphs in surfaces 827

G1 G2
identification
�������!

 �������
cleaving

G1 G2

G1 G2 Whitney
 ���!

twisting

G1

G2

Figure 1. The moves for 2-isomorphism: vertex identification, vertex cleaving, and Whitney
twisting.

loops in the graph, then you know the graph up to 2-isomorphism. Conversely, the col-
lections of edge sets of spanning trees and loops in two 2-isomorphic graphs are equal.
(We shall give a cleaner statement of Whitney’s 2-isomorphism theorem below.)

Thus the spanning tree structure determines the graph up to some simple moves.
In particular, it completely determines 3-connected graphs (ones in which there are
three internally disjoint paths between each pair of vertices) up to isomorphism as the
moves cannot be applied to such graphs. It turns out that many graph properties and
results do not distinguish between 2-isomorphic graphs, and so can be understood in
terms of spanning tree structure. In fact, considering the spanning tree structure of a
graph, rather than the graph itself, turns out to be an extremely fruitful thing to do.

The spanning trees in a connected graph G have many nice standard properties.
For example, every non-loop edge of G is in some spanning tree; all spanning trees
have the same number of edges; and if G has n vertices, a spanning subgraph is a
spanning tree if and only if it is connected and has exactly n � 1 edges. Spanning
trees also satisfy an exchange property: if T and T 0 are spanning trees and e is an
edge in T but not T 0, then there is always some edge f in T 0 but not T such that
removing e from T then adding f results in another spanning tree. (A reader may
spot that this exchange property also applies to the bases of a vector space.) These
properties on the collection of spanning trees lead us to matroids.

Definition 2.1. Let E be a finite set, and let B be a non-empty collection of subsets
of E. Then the pair M WD .E; B/ is called a matroid if for distinct A; B 2 B and for
all a 2 A n B there exists b 2 B n A such that .A n a/ [ b 2 B.

By the properties of trees mentioned above, if G is a connected graph with edge
set E and B is the set consisting of all edge sets of its spanning trees, then C.G/ WD

.E; B/ is a matroid. It is called the cycle matroid of G.

Example 2.2. The graph on the left of Figure 2 has cycle matroid .E; B/ with E D

¹1; 2; 3; 4; 5; 6; 7º and B D ¹¹1; 2; 3; 5º; ¹1; 2; 4; 5º; ¹1; 3; 4; 5º; ¹2; 3; 4; 5º; ¹1; 3; 5; 7º;

¹1; 4; 5; 7º; ¹2; 3; 5; 7º; ¹2; 4; 5; 7ºº.



I. Moffatt 828

1

2 3

4 5

6

7

A plane graph G Placing vertices
and edges of G�

1

2 3

4 5

6

7
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Figure 2. Forming the geometric dual G� of a plane graph G.

Our initial question of whether the spanning trees determine the graph then be-
comes a matroid theoretic one: If you have a cycle matroid, can you determine the
graph it came from? We can rephrase our previous answer as follows. (For the state-
ment, matroid isomorphism is defined in the obvious way.)

Theorem 2.3 (Whitney’s 2-isomorphism theorem). Let G and H be connected
graphs. Then C.G/ and C.H/ are isomorphic matroids if and only if G and H are
2-isomorphic.

Whitney’s 2-isomorphism theorem nails down the connection between cycle
matroids and graphs. Cycle matroids give rise to a class of matroids, but almost all
matroids are not cycle matroids [41]. Nevertheless, cycle matroids are important in
matroid theory and graph theory. On one hand, insights from matroid theory can lead
to new results about graphs. On the other hand, graph theory can serve as an excellent
guide for studying matroids. A good introduction to the mutually enriching relation-
ship between graph theory and matroid theory can be found in [42].

Bibliographic remarks. The topics discussed in this section are classical. An excel-
lent resource for this material is Chapter 5 of J. Oxley’s book [43]. Whitney’s 2-
isomorphism theorem dates from the 1930s and is due to H. Whitney, [57] (see
also [50, 54]), and Theorem 2.3 is a modern formulation in terms of matroids.

Our motivational question was whether a graph is determined by its spanning
trees or its cycle matroid. We restrict discussion here to characterising graphs that
have the same cycle matroid, ignoring the algorithmic question about constructing
the graphs from the cycle matroid. Discussion of the latter problem can be found
in [53] (for what will follow, the equivalent problem for quasi-trees can be answered
through the circle graph recognition methods of [30, 34, 46]).

H. Whitney introduced matroids in the 1930s (see [58]) to capture ideas of de-
pendence common to linear algebra and graph theory. There are many ways to define
matroids and Definition 2.1 provides their definition in terms of “bases.” The cycle
matroid C.G/ can also be defined through the cycles in a graph (using a “circuit
definition” of a matroid), hence the name. Matroid theory is a major topic of study in
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combinatorics. Our encounter with matroids here is extremely brief and we refer the
reader to the books [43, 55] for more on them.

A spectacular illustration of the mutually enriching relationship between graph
theory and matroid theory can be found in J. Geelen, B. Gerards, and G. Whittle’s
recent and, at the time of writing, unpublished result that, for any finite field, the class
of matroids that are representable over that field is well-quasi-ordered by the minor
relation. Their results generalise N. Robertson and P. Seymour’s graph minors pro-
ject where it is shown that graphs are well-quasi-ordered by the minor relation [45].
In [31] Geelen, Gerards, and Whittle wrote “it would be inconceivable to prove a
structure theorem for matroids without the Graph Minors Structure Theorem as a
guide.”

3. The appearance of topology

We want to make contact with topological graph theory, which is the study of graphs
embedded in surfaces. We shall do this by considering duals. Suppose M D .E;B/ is
a matroid. Define a collection of sets B� by taking the complement of each member
of B, so B� WD ¹E n B W B 2 Bº. It is not hard to check that the pair .E; B�/ also
forms a matroid. This is called the dual of M and is denoted by M �.

Example 3.1. The dual of the matroid in Example 2.2 has B� D ¹¹4; 6; 7º; ¹3; 6; 7º;

¹2; 6; 7º; ¹1; 6; 7º; ¹2; 4; 6º; ¹2; 3; 6º; ¹1; 4; 6º; ¹1; 3; 6ºº.

If G is a graph and C.G/ its cycle matroid, then the dual matroid C.G/� is always
a matroid. However, it is not always the cycle matroid of a graph. If C.G/ D .E; B/,
the graph G is connected, and C.G/� D .E; B�/, then B consists of the edge sets of
all the spanning trees of G. For C.G/� to be the cycle matroid of a graph we require
the existence of some graph H on the edge set E such that the sets in B� define
exactly the spanning trees of H . That is, we require H to have the property that T is
a spanning tree of G if and only if E n T is a spanning tree of H . Such a graph H , if
it exists, is called an algebraic dual (or abstract dual or combinatorial dual) of G. If
it does exist, it may or may not be unique.

The existence of algebraic duals is tied to the topological properties of a graph.
A connected plane graph consists of a connected graph drawn, or embedded, in the
sphere (or, equivalently, the plane) in such a way that vertices are distinct points and
edges only intersect at their ends. (So each vertex is a point on the sphere, each edge
is a simple curve between these points, and these curves do not intersect except when
their ends share a vertex.) Plane graphs are equivalent if there is a homeomorphism of
the sphere taking one graph drawing to the other (i.e., inducing a graph isomorphism).
A plane graph divides the sphere into regions called faces. For example, with the page
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representing a portion of the sphere, the left-hand image of Figure 2 shows a plane
graph with four faces. A connected graph is said to be planar if it can be drawn in
the sphere in the above way. (So a plane graph is drawn on the sphere, and a planar
graph can be drawn on the sphere.) Inequivalent plane graphs can be drawings of
the same planar graph. These definitions are extended to non-connected graphs by
drawing each graph component in its own copy of the sphere.

Plane graphs have another type of dual. If G is a plane graph, then its geometric
dual, denoted G�, is the plane graph obtained from G by placing one vertex in each
of its faces, and embedding an edge of G� between two of these vertices whenever
the faces of G they lie in meet at an edge. Edges of G� are embedded so that they
cross only the corresponding edge of G. An example is given in Figure 2.

For a plane graph G D .V; E/, Euler’s formula gives that jV j � jEj C jF j D 2,
where jF j is the number of faces. Thus if A is the edge set of a spanning tree in G,
then jV j � jAj D 1 and so jF j � jE n Aj D 1 giving that E n A is the edge set of a
spanning tree of G�. As .G�/� D G, it follows that geometric duals of plane graphs
are algebraic duals, and so for plane graphs C.G/� D C.G�/.

The converse is also true: if G and H are algebraic duals, then the correspondence
between their spanning tree structures guarantees that there are plane graphs G and H
that are embeddings (i.e., drawings) of G and H that are geometric duals, H D G�.
Collecting all this together gives the following result of Whitney [56].

Theorem 3.2. Let G be a connected graph with cycle matroid C.G/. Then the dual
matroid C.G/� is the cycle matroid of a graph if and only if G is planar. Moreover, if
G is planar, then

C.G/� D C.G�/;

where G is any plane embedding of G, and G� its geometric dual.

In this theorem we see how the spanning tree (or cycle matroid) structure of a
graph captures its topological properties. However, Theorem 3.2 illustrates that many
of these properties are tied to planarity. What if you do not want to restrict yourself to
plane or planar graphs? Let us examine what changes when you consider graphs on
surfaces other than the plane.

As noted above, for expositional simplicity we shall only consider orientable sur-
faces. However (almost) everything here extends to non-orientable surfaces (with
varying degrees of difficulty) and details of how to do this can be found in the refer-
ences. We will often omit the work “orientable”, although we shall add it when it is
crucial. We recall that the classification of surfaces states that every closed orientable
surface is homeomorphic to a sphere with handles (or n-torus). Every orientable sur-
face with boundary is homeomorphic to a sphere with handles with the interiors of
some discs removed from it. In both cases the number of handles is its genus.
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Figure 3. Realisations of the same embedded graph.

An embedded graph G is a graph drawn on a closed surface † in such a way
that edges only intersect at their ends, and the drawing divides † into regions that are
homeomorphic to discs. (As in the plane case, each vertex is a point on the surface,
each edge is a simple curve between these points, and these curves do not intersect
except when their ends share a vertex.) The regions of † determined by the graph
drawing are called faces of G. Thus a plane graph is a graph embedded in the sphere.
We note that if G has more than one component, then each component of the graph
lies in its own surface. Figure 3a shows a graph embedded in a torus. It has two faces.

The geometric dual G� of an embedded graph G is formed just as in the plane
case by placing vertices in the faces and drawing edges between these vertices when
the faces meet at an edge. Note that G and G� are embedded in the same surface.

Suppose G is a connected embedded graph and G� its geometric dual. Since the
edge sets of G and G� correspond, we may assume that a graph and its geometric
dual have the same edge set E. The operation � W A 7! E n A sends edge sets of G
to edge sets of G�, or equivalently the set of spanning subgraphs of G to the set of
spanning subgraphs of G�.1 (As an example, the bold edges in Figure 2 indicate a pair
of spanning trees identified under this map.) Theorem 3.2 and the characterisation of
planar graphs in terms of algebraic duals depend upon the fact that if G (and so G�)
is a plane graph, then � sends spanning trees to spanning trees, and this happens if
and only if G is a plane graph.

1At this point we are glossing over the issue of exactly how a subgraph of G should be
considered as an embedded graph. The difficulty is that restricting the drawing of G to the
edges and vertices in the subgraph may result in faces that are not discs, in which case the
surface will need to be altered, by removing any redundant handles, to obtain an embedded
graph. This issue will be resolved in the next section by switching to the language of ribbon
graphs. For the present discussion it is safe, although not quite correct, to think of restricting
the drawing of G to the edges and vertices in the subgraph.
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Figure 4. Neighbourhoods of the subgraphs on ¹2; 4; 6º, ¹1; 2; 4; 5; 6º, and ¹2; 3; 4; 5; 6º.

Suppose that G is embedded in an arbitrary closed surface † and A is the edge
set of one of its spanning trees T . Let �.T / be the spanning subgraph of G� on
the edge set �.A/. Then it is easy to see (e.g., by drawing a picture; as an example
consider the bold edges in the middle image of Figure 2) that † can be written as the
union of a neighbourhood of T and a neighbourhood of �.T /. Since T is a spanning
tree, its neighbourhood is a disc. Thus the neighbourhood of �.T / consists of a once-
punctured copy of †. In particular, it is a subgraph whose neighbourhood has exactly
one boundary component. This is the property that is important to us.

A spanning subgraph of an embedded graph G is said to be a spanning quasi-
tree if its neighbourhood has exactly one boundary component. Notice that every
spanning tree is a spanning quasi-tree, although in general an embedded graph will
have many other spanning quasi-trees. The genus of a quasi-tree is the genus of its
neighbourhood considered as a surface with boundary. (We shall reformulate these
definitions in the next section.) If G is in a surface † of genus n, then it will have
spanning quasi-trees of genus 0; 1; 2; : : : ; n, and the spanning trees are just those of
genus zero. The map � then sends a tree to a quasi-tree of maximal genus n. More
generally, � will send a spanning quasi-tree of genus g to a spanning quasi-tree of
genus n � g.

Example 3.3. For the embedded graph shown in Figure 3a, each of the sets ¹2; 4; 6º,
¹1; 2; 4; 5; 6º, and ¹2; 3; 4; 5; 6º induces a spanning quasi-tree. The neighbourhoods
are shown in Figure 4. The set ¹2; 4; 6º defines a spanning quasi-tree of genus zero,
and the other two sets induce spanning quasi-trees of genus one.

We started with the question of whether the spanning trees in a graph determine
the graph itself. Whitney’s theorem provided a complete answer to this question, and
Theorem 3.2 tied together duality, spanning tree structure, and planarity. If instead
we want to work with non-plane embedded graphs, rather than looking at spanning
trees, we should consider quasi-trees. Thus we are led to ask:

Is an embedded graph determined by its spanning quasi-trees?
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Just as in the spanning trees case we formalise this by asking: If you know the edge set
of each spanning quasi-tree of an embedded graph, as well as any edges that appear
in no quasi-trees, then do you then know the embedded graph?

Again the immediate answer is no. For example, if G is a plane graph, then its set
of spanning quasi-trees is exactly its set of spanning trees, and we already know that
these do not necessarily determine a plane embedding. In this plane case, however,
Whitney’s 2-isomorphism theorem will provide a way to characterise all plane graphs
that have the same set of spanning quasi-trees. What if G is not embedded in the
plane? In this case Whitney’s 2-isomorphism theorem does not help.

Bibliographic remarks. Dual matroids date back to H. Whitney’s foundational work
on matroids [58]. The construction of a geometric dual is classical and can be seen
in J. Kepler’s work on dual polyhedra (see p. 181 of his Harmonices mundi dating
from 1619). Algebraic duals, as well as their connection with planarity and geometric
duals, are due to H. Whitney [56]. Theorem 3.2 provides a modern statement of his
results.

Embedded graphs are standard objects in graph theory. They have several altern-
ative names and formulations including combinatorial maps, rotation systems, ribbon
graphs, graph encoded maps, and so on. Excellent introductions to embedded graphs
and topological graph theory are the works of J. Gross and T. Tucker [35], and
B. Mohar and C. Thomassen [40].

4. Partial duals

Duality tied spanning tree structure to planarity. For non-plane embedded graphs and
quasi-trees we consider a generalisation of geometric duality called partial duality.
For our discussion of partial duals it is convenient to describe embedded graphs as
ribbon graphs.

A ribbon graph is a structure that arises by taking a regular neighbourhood of a
graph embedded in a surface, but without throwing away the vertex-edge structure of
the graph; see Figure 3. We can think of them informally as “graphs whose vertices
consist of discs, and whose edges consist of ribbons,” as in Figure 3b. They can be
defined formally as follows.

Definition 4.1. A ribbon graph G D .V; E/ is a surface with boundary represented
as the union of two sets of discs, a set V of vertices, and a set E of edges such
that (1) the vertices and edges intersect in disjoint line segments; (2) each such line
segment lies on the boundary of precisely one vertex and precisely one edge; (3) every
edge contains exactly two such line segments.
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Ribbon graphs are equivalent to embedded graphs. Above we described how a
ribbon graph can be obtained from an embedded graph. In the other direction, given
a ribbon graph, the classification of surfaces with boundary ensures there is a unique
way (up to homeomorphism) to embed it in a closed surface by “filling in the holes.”
This gives an embedding of the ribbon graph in a closed surface from which it is
clear how to obtain the embedded graph. Two ribbon graphs are equivalent if there is
a homeomorphism from one to the other that sends vertices to vertices and edges to
edges. Thus ribbon graphs are equivalent precisely when their corresponding embed-
ded graphs are. Thus any result about ribbon graphs is a result about embedded
graphs, and vice versa.

Graph theory terminology is extended to ribbon graphs in the obvious way. A
ribbon subgraph H of G is a ribbon graph obtained from G by removing some of its
vertices and edges. It is spanning if it has the same vertices as G. The spanning ribbon
subgraph obtained from G by deleting an edge e is denoted by Gne. Ribbon graphs
have topological parameters in addition to their graph theoretic ones. Here we defined
ribbon graphs to be orientable meaning that they are orientable when considered as a
surface with boundary. (Recall that for expositional simplicity we restricted ourselves
to orientable surfaces, and therefore to orientable ribbon graphs.) In general, ribbon
graphs may be non-orientable as well, and at times we will comment on this case. The
genus of a ribbon graph is its genus as a surface. A connected ribbon graph is plane
if it has genus 0 (i.e., if it corresponds to a graph on a sphere). We are often interested
in the boundary components of a ribbon graph, which are just the components of
its boundary when it is considered as a surface with boundary. A ribbon graph that
has exactly one vertex is called a bouquet. These form an important class of ribbon
graphs.

Geometric duality has a very neat description in terms of ribbon graphs. If G D
.V; E/ is a ribbon graph, then its geometric dual G� is the ribbon graph formed by
taking one disc for each boundary component of G (these will form the vertices of the
dual); for each boundary component of G (which is topologically a circle), identify
it with the boundary of one of these discs (resulting in a surface without boundary);
finally, in the resulting surface, delete the interiors of the vertex discs in V . This
results in the ribbon graph G�. The discs that were added during the construction
form the vertices of G�, and the edges of G form the edges of G� but the parts of
their boundary that are and are not attached to vertices are switched. This construction
is illustrated in Figure 5.

It is not too hard to see our two constructions for geometric duals agree. The
construction of G� in terms of embedded graphs is a global construction in the sense
that it applies to the whole of G at the same time. However, once you have switched
to the language of ribbon graphs, the construction is easily adapted to give a local
construction, where local here means that you can form the geometric dual G� at
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(a) G (b) Sewing in discs (c) Removing original
vertices to get G�

(d) Redrawing G�

Figure 5. Forming the geometric dual of a ribbon graph.

(a) G D .V; E/ with
the boundary of .V;A/

highlighted

(b) Adding discs to the
boundary of .V; A/

(c) Deleting vertices in
V gives GA

(d) Redrawing
GA

Figure 6. Forming a partial dual GA where A consists of the two non-loop edges of G.

individual edges. Then, with this local construction in hand, we can form the dual at
just some of edges while leaving the remaining edges alone. This observation leads
to the surprising idea of partial duals.

Partial duals arise by modifying the description of geometric duality for ribbon
graphs so that the dual is formed with respect to only a subset of edges. Let G D
.V;E/ be a ribbon graph and A�E. The partial dual of G with respect to A, denoted
by GA, is the ribbon graph formed as follows. Consider the spanning ribbon subgraph
.V; A/ as a subset of G. The boundary of .V; A/ defines a set of closed curves on G.
For each of these closed curves, take a disc (which will form a vertex of GA) and
identify the curve and the boundary of this disc. Finally, delete the interior of each
vertex disc in V . The resulting ribbon graph is GA. This construction is illustrated in
Figure 6.
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The following properties of partial duals follow directly from the definition: G�D

GE.G/; G; D G; .GA/B D G.A[B/n.A\B/ and so partial duals can be formed one
edge at a time; partial duality acts disjointly on the connected components of a ribbon
graph; and GA is orientable if and only if G is. Another useful fact for us is that if
H is a spanning ribbon subgraph of G with exactly one boundary component (for
example, if H is a spanning tree) and A is the edge set of H, then GA is a bouquet
(i.e., has exactly one vertex). This is because the vertices of GA correspond to the
boundary components of H (just as the vertices of G� correspond to the boundary
components of G).

Bibliographic remarks. As with embedded graphs, ribbon graphs are standard ob-
jects in graph theory. They arise in several settings and under different names includ-
ing fat graphs, dessins d’enfants, and reduced band decompositions. However, it
should be remembered that they are just one of the many descriptions of embed-
ded graphs. J. Ellis-Monaghan and I. Moffatt’s book [29] offers an introduction to
ribbon graphs and partial duals. Although we described partial duals in terms of
ribbon graphs here, they can, of course, be described in other the models for embed-
ded graphs. In particular, their local nature is prominent when they are defined in
the languages of arrow presentations [18], graph encoded maps [28], or permutation
models [20].

Partial duality was introduced by S. Chmutov in [18] in order to reconcile the
various results in [19, 20, 26] which constructed the Jones polynomial of a knot or
link as an evaluation of the Bollobás–Riordan polynomial of a ribbon graph. The
Bollobás–Riordan polynomial of [4, 5] is a graph polynomial that offers an analogue
of the Tutte polynomial [52] for embedded graphs. The connections between ribbon
graphs and knot theory extend Thistlethwaite’s well-known connection [48] between
the Tutte polynomial of a plane graph and the Jones polynomial of an alternating link;
a connection that was integral to his proof of the Tait conjectures. Chmutov used the
term “generalized duality” in his original paper. Its adopted name ‘partial duality’ was
suggested to the author of the present article by D. Archdeacon and has been used in
all subsequent papers. Partial duality has since entered topological graph theory as
a topic of study in its own right and is proving to be a fundamental operation on
embedded graphs.

5. Ribbon graphs and their spanning quasi-trees
In the language of ribbon graphs, a quasi-tree is a ribbon graph that has exactly one
boundary component. A ribbon subgraph H is a spanning quasi-tree of G if it is
a quasi-tree that contains all of the vertices of G. A ribbon graph of genus g has a
spanning quasi-tree of genus 0;1; : : : ;g, and its spanning trees are exactly its spanning
quasi-trees of genus zero.
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Recall from Section 2 that the set of spanning trees in a graph satisfies an ex-
change property: if T and T 0 are spanning trees and e is an edge in T but not T 0,
then there is always some edge f in T 0 but not T such that removing e from T then
adding f results in another spanning tree. This exchange property does not hold for
spanning quasi-trees in general.

However, spanning quasi-trees satisfy a more general symmetric exchange prop-
erty. If H and H0 are spanning quasi-trees and e is an edge that is in exactly one of
H or H0, then there is always an edge f that is in exactly one of H0 or H such that
adding or removing each of e and f from H results in a spanning quasi-tree. Proving
that this symmetric exchange property holds does require a little work. A proof can be
found in [22] or implicitly in [12], or see [38, Figure 16] for a pictorial explanation.
We shall return to this symmetric exchange property in the next section.

In Section 2 we used matroids to capture the spanning tree structure of a graph. A
minor modification of the definition of a cycle matroid gives a way to similarly record
the spanning quasi-trees in a ribbon graph.

Definition 5.1. Let G D .V; E/ be a connected ribbon graph, and let

F WD ¹F � E W F is the edge set of a spanning quasi-tree of Gº:

We call D.G/ WD .E; F / the delta-matroid of G.

Example 5.2. Let G be the ribbon graph of Figure 3b. Then D.G/ D .E; F / where
ED¹1;2; : : : ;6º and F D¹¹2;4;5º;¹2;4;6º;¹3;4;5º;¹3;4;6º;¹4;5;6º;¹1;2;3;4;5º;

¹1; 2; 3; 4; 6º; ¹1; 2; 4; 5; 6º; ¹2; 3; 4; 5; 6ºº.

Euler’s formula gives that if H is an orientable quasi-tree with v vertices and
e edges, then .1 � v C e/=2 gives the genus of H (or half its genus if H is non-
orientable). As the spanning quasi-trees of G have the same number of vertices, this
relates the sizes of the sets in F to the topology of the spanning quasi-trees. In partic-
ular, it follows that every set in F has the same parity (i.e., is of odd or even size) if
and only if G is orientable, that the genus of G is one half of the differences in sizes
between the largest and smallest sets in F , and that for G connected, D.G/ D C.G/

if and only if G is plane.
Rephrased in terms of ribbon graphs, the map � from Section 3 sends a spanning

ribbon subgraph .V; A/ of G D .V; E/ to the spanning ribbon subgraph .V �; E n A/

of G�. Moreover, this map sends a spanning quasi-tree of genus g to a spanning
quasi-tree of genus n � g where n here is the genus of G. Thus if D.G/ D .E; F /

and we define F � WD ¹E n F W F 2 F º, then for any ribbon graph G we have that
D.G�/ D .E; F �/. The main insights for quasi-tree structure, however, come from
partial duals rather than geometric duals.
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Partial duality preserves the quasi-tree structure of a ribbon graph. Let GD .V;E/

be a ribbon graph and B � E. We shall relate the quasi-trees of G to those of its
partial dual GB . For this recall that the symmetric difference X 4 Y of sets X and Y

is .X [ Y / n .X \ Y /. Then A � E is the edge set of a quasi-tree of G if and only if
A4B is the edge set of a quasi-tree of GB . It is not hard to see why this is the case—
essentially it follows from the observation that the boundary components of G¹eº and
Gne correspond. In terms of the delta-matroids, this means that if D.G/ D .E; F /

and we set F B WD ¹B 4 F W F 2 F º, then D.GB/ D .E; F B/.
The significance of this result is that if we wish to study the spanning quasi-

trees of G, we may equivalently study the spanning quasi-trees of any of its partial
duals GB . The partial duals of a ribbon graph can have quite different properties
from each other and from the original ribbon graph. This means that we have some
ability to choose the ribbon graphs to work with without losing any generality, which
is something we did not have much scope to do when working with geometric duals
alone. A specific instance of this principle, and one that we shall make much use of
here, is that every ribbon graph has a partial dual that is a bouquet (i.e., a one-vertex
ribbon graph). Thus we only ever need to consider the spanning quasi-tree structure
of bouquets. But to make use of this, we need a better understanding of D.G/.

Bibliographic remarks. The definition and approach to the delta-matroids of ribbon
graphs that we follow here is due to C. Chun, I. Moffatt, S. Noble, and R. Rueck-
riemen [22, 23]. However, these delta-matroids are equivalent to A. Bouchet’s delta-
matroids of maps from [12]. There Bouchet associated a delta-matroid with the
4-regular medial graph of an embedded graph. The delta-matroid arises from its
Eulerian circuits, and the Eulerian circuits correspond to the quasi-trees of the embed-
ded graph. That D.G/ determines genus and orientability can be deduced from [12]
through the correspondence ([22] gives the form stated here). The behaviour of D.G/

under partial duals is from [22].

6. Delta-matroids and quasi-tree structure

Recall from Section 3 that the dual of a matroid M D .E; B/ is M � D .E; B�/

where B� D ¹E n B W B 2 Bº. We can write B� as ¹E 4 B W B 2 Bº, and, in light
of the above, it becomes obvious that we can form a partial dual of a matroid by
replacing E with a subset X of E. So we can define a partial dual of M D .E; B/ as
M X WD .E; BX /, where, as above, BX WD ¹X 4 B W B 2 Bº.

For example, if M D .¹1;2º; ¹¹1º; ¹2ºº/ and X D ¹1º, then a partial dual is M X D

.¹1; 2º; ¹¹;º; ¹1; 2ºº/. The difficulty, as can be seen in this example, is that M X may
no longer be a matroid. Instead it is an example of a more general structure called a
delta-matroid.
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Definition 6.1. A delta-matroid D consists of a pair .E; F / where E is a finite set
and F a non-empty collection of subsets of E. Furthermore, F is required to satisfy
the symmetric exchange axiom which states that

.8X; Y 2 F / .8u 2 X 4 Y / .9 v 2 X 4 Y /
�
X 4 ¹u; vº 2 F

�
:

Since the collection of spanning quasi-trees of a ribbon graph G satisfies the sym-
metric exchange property, it follows that D.G/, as introduced in Definition 5.1, is a
delta-matroid (and so the name we gave D.G/ is an honest one). Not every delta-
matroid arises in this way, as the following example shows. In fact, almost all delta-
matroids do not come from ribbon graphs, however those that do play an important
role.

Example 6.2. Let E D ¹1;2; 3; 4º, F D ¹;; ¹1;2º; ¹1;3º; ¹1;4º; ¹2;3º; ¹2;4º; ¹3;4ºº,
and F 0 D ¹;; ¹1; 2º; ¹1; 4º; ¹2; 3º; ¹3; 4º; ¹1; 2; 3; 4ºº. Then .E; F / and .E; F 0/ are
both delta-matroids but neither is the delta-matroid of a ribbon graph. This can be
verified by calculating the delta-matroids of the bouquets on four edges.

Matroids are also examples of delta-matroids: M is matroid if and only if it is a
delta-matroid in which every member of F has the same size. Most delta-matroids
are not matroids though.

While the class of matroids is not closed under partial duals, the class of delta-
matroids is. Let D D .E; F / be a delta-matroid and B � E. The partial dual (or
twist) DB of D is defined as the pair .E; F B/ where F B WD ¹F 4B W F 2 F º. The
dual D� of D is DE .

Example 6.3. If D is the delta-matroid from Example 5.2, then D¹3;4ºD .E;F ¹3;4º/

where E D ¹1; : : : ; 6º and F ¹3;4º D ¹¹2; 3; 5º; ¹2; 3; 6º; ¹5º; ¹6º; ¹3; 5; 6º; ¹1; 2; 5º;

¹1; 2; 6º; ¹1; 2; 3; 5; 6º; ¹2; 5; 6ºº.

Matroid duality captures the way that the spanning trees of a plane graph G
are transformed into the spanning trees of its geometric dual G�, giving the identity
C.G�/ D C.G/� for plane graphs. Delta-matroid duality captures that the spanning
quasi-trees of any ribbon graph G are transformed into the spanning quasi-trees of any
partial dual GB . Indeed the following results follow from our previous discussion.

Theorem 6.4. Let G be a connected ribbon graph. Then

(1) C.G�/ D C.G/� if and only if G is a plane ribbon graph,

(2) D.G�/ D D.G/� for any ribbon graph G, and

(3) D.GB/ D D.G/B for any ribbon graph G and any subset of its edges B .

Just as with ribbon graphs, we can use partial duality to transform a delta-matroid
into one with desirable properties. A delta-matroid D D .E; F / is said to be normal
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if ; 2 F . Every delta-matroid has a normal partial dual: if D D .E; F / and F is any
element of F , then DF is normal. On the other hand, some properties are preserved
by partial duals. For example, a delta-matroid D D .E; F / is said to be even if every
set in F has the same parity (i.e., they are all of odd size or all of even size). If a
delta-matroid is even, then so is each of its partial duals.

By making use of the properties of spanning quasi-trees we observe that for a
connected ribbon graph G, the delta-matroid D.G/ is even if and only if G is orient-
able, and that D.G/ is normal if and only if G is a bouquet. As we are restricting to
orientable ribbon graphs here, we shall focus on even delta-matroids.

Bibliographic remarks. Delta-matroids were introduced in the mid-1980s, inde-
pendently, by A. Bouchet in [6]; R. Chandrasekaran and S. Kabadi, under the name
of pseudo-matroids, in [17]; and A. Dress and T. Havel, under the name of metroids,
in [27]. Delta-matroids are related to many different matroidal-objects, including
É. Tardos’ g-matroids [47], J. Kung’s Pfaffian structures [37], L. Qi’s ditroids [44],
A. Bouchet’s symmetric matroids [6], L. Traldi’s transition matroids [49], Bouchet’s
isotropic systems [7], jump systems [15], and Bouchet’s multimatroids [13]. This list
is indicative, not exhaustive.

The discipline has adopted Bouchet’s terminology and notation (most of the early
development of the topic is due to Bouchet and his collaborators) and it is that we
follow here except in the following instance. What we have called the “partial dual”
and denoted by DB is usually called a “twist” and denoted by D � A, but here we
prefer to keep close to the ribbon graph terminology.

Bouchet, in [6], showed that the partial dual of a delta-matroid is indeed a delta-
matroid. That D.G�/ D D.G/� is implicit in [12] (it was translated into this form
in [22]), and that D.GB/ D D.G/B is from [22].

Additional background on delta-matroids can be found in the survey [38] or in
the source papers.

7. Matrices and representability
We are interested in the spanning quasi-trees of a connected orientable ribbon graph
G. Since D.GB/ D D.G/B , partial duality preserves the spanning quasi-tree struc-
ture and so, without loss of generality, we may assume that G is a bouquet. Then the
ribbon subgraph of G induced by any two of its edges forms either a genus one or
a genus zero ribbon graph. We say that two edges of G are interlaced if the ribbon
subgraph G they induce has genus one.

There is a method from algebraic topology (e.g., see [3, Theorem 3] and its sub-
sequent exercises) for determining via a matrix if an orientable bouquet is a quasi-tree.
Let G D .V; E/ be an orientable bouquet. Number the edges of G by travelling
around the boundary of the vertex from an arbitrary starting point in either direction
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and assigning the numbers 1; 2; : : : ; jEj in the order that you first encounter one of
their ends. Now construct an jEj � jEj-matrix IMO

G by setting the .i; j /-entry to be
sgn.i � j / if the edges labelled i and j are interlaced, and 0 otherwise. (Here sgn is
the signum function.) Then det.IMO

G/ D 1 if G is a quasi-tree and is 0 otherwise.
This construction can be simplified by working over the field of two elements,

GF.2/. In this case, as we are forgetting the signs, we can construct an jEj � jEj-
matrix IMG whose rows and columns are indexed by the edges of G by setting the
.e; f /-entry to be 1 if edges e and f are interlaced, and to be 0 otherwise. Again
det.IMG/ D 1 if G is a quasi-tree and is 0 otherwise, where here we compute the
determinant over GF.2/.

The matrices IMO
G and IMG in fact determine the whole spanning quasi-tree

structure of G (although not G itself). This is since we can test if a ribbon subgraph
H of G is a quasi-tree by computing the determinant of the principal submatrix given
by the edges of H (delete any rows and columns of IMO

G or IMG that correspond to
edges not in H).

Thus the delta-matroid D.G/ can be recovered from the matrices IMO
G or IMG by

computing determinants of their principal submatrices over R or GF.2/, respectively.
These matrices provide what is known as a representation of the delta-matroid D.G/.

Before continuing let us highlight one issue with this approach to studying span-
ning quasi-trees via matrices. As the matrices are only defined on bouquets, if we are
interested in a ribbon graph G that has more than one vertex, then we can obtain a
matrix by choosing a one-vertex partial dual of G and computing a matrix from that.
However, different choices of partial dual will result in different matrices, so we will
need to understand how the matrices change under this choice.

A matrix A is symmetric if At D A and is skew-symmetric if At D �A and the
diagonal entries are zero. (The condition on the diagonal is there for fields of charac-
teristic 2.) Suppose that A is a symmetric or skew-symmetric matrix over a field k,
and that a set E labels its rows and columns (in the same order). For X � E, let AŒX�

denote the principal submatrix of A given by the rows and columns indexed by X .
Define a collection F of subsets of E by

X 2 F , AŒX� is non-singular;

where AŒ;� is considered to be non-singular. Then the pair D.A/ WD .E; F / forms a
delta-matroid. (This result is due to A. Bouchet [11].)

Since the principal submatrices of IMO
G or IMG are non-singular precisely when

the corresponding edge sets of G define a quasi-tree, it follows that when G is an
orientable bouquet,

D.G/ D D.IMO
G/ D D.IMG/;

where we work over R for the middle expression and GF.2/ for the one on the right.
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Since AŒ;� is non-singular, such a delta-matroid D.A/ is necessarily normal. We
say a normal delta-matroid is representable if it can be obtained as the delta-matroid
of a matrix. Every delta-matroid is a partial dual of a normal delta-matroid, so we can
extend representability to non-normal delta-matroids by saying that a delta-matroid
is representable if one of its partial duals is the delta-matroid of a matrix.

Definition 7.1. Let D D .E; F / be a delta-matroid. We say that D is representable
over k if there exists some X �E and a symmetric or skew-symmetric matrix A over
a field k such that

DX
D D.A/:

A delta-matroid is binary if it is representable over GF.2/, and is regular if it is
representable over R. Delta-matroids of orientable ribbon graphs are binary since

D.G/X
D D.GX / D D.IMGX /;

where X is the edge set of any spanning quasi-tree of G. Similarly, the matrix IMO
GX

shows that they are regular. (We note that orientability matters here as delta-matroids
of non-orientable ribbon graphs are not regular, although they are binary.)

The definition of representability for delta-matroids requires a choice of a set X

to make DX normal. In general, there are many such sets to choose from, and there-
fore a delta-matroid D will have many representing matrices. How do the different
representing matrices of a delta-matroid relate? That is, if D.A/ D D.B/X what can
you say about the matrices A and B?

The relevant matrix operation predates delta-matroids and can be found in the
work of A. Tucker [51] that appeared in 1960. Let A be a square matrix over a field k,
whose rows and columns are labelled (in the same order) by a set E. Let X � E.
Without loss of generality (reordering if necessary), suppose that X labels the first
jX j rows and columns of the matrix. Then A has a block form

X E nX� �
X ˛ ˇ

E nX  ı
:

Suppose that AŒX� is non-singular. Then the principal pivot transform of A with
respect to X is the matrix A �X with block form

X E nX� �
X ˛�1 ˛�1ˇ

E nX � ˛�1 ı � ˛�1ˇ
:
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A. Bouchet, in [11], proved that principal pivot transformations correspond to
partial duals of delta-matroids.

Theorem 7.2. Let A be a symmetric or skew-symmetric matrix over a field k, whose
rows and columns are labelled (in the same order) by a set E. Let X � E be such
that AŒX� is non-singular. Then A � X is a symmetric or skew-symmetric matrix (of
the same type as A), and

D.A �X/ D D.A/X : (7.1)

Thus if A is a representing matrix for a delta-matroid D, then B is also a rep-
resenting matrix for D if and only if B is a principal pivot transform of B. Thus we
have our answer to the problem in this section: all of the representing matrices for an
orientable ribbon graph G are principal pivot transformations of one another.

Bibliographic remarks. That D.A/ is a delta-matroid, that D.A � X/ D D.A/X ,
and the definition of representability is due to A. Bouchet and from [11]. The repres-
entations for D.G/ can also be deduced from this reference (see also [9] for IMO

G),
although changes in language are needed (the interpretation in ribbon graph lan-
guage is from [22]). However, a different route to showing that D.G/ D D.IMO

G/ D

D.IMG/ was taken in this section. Here we deduced the result from a theorem on
weight systems of Vassiliev invariants due to D. Bar-Natan and S. Garoufalidis [3].
This knot theory work seems to be entirely independent of Bouchet’s work.

8. The reappearance of graphs

So far we have seen that the spanning quasi-tree structure of an orientable ribbon
graph G is described by its delta-matroid D.G/, and also by a binary representing
matrix IMH, where H is any one-vertex partial dual of G. The matrix IMH is a
skew-symmetric 0-1 matrix. (Recall that skew-symmetric matrices here must have
zeros on their diagonal.) Thus we can consider it as the adjacency matrix of a simple
graph G. (A graph is simple if it does not have multiple edges or loops.) In this section
we consider the properties of these simple graphs and what they tell us about ribbon
graphs.

The adjacency matrix, AMG , of a simple graph G is the matrix over GF.2/ whose
rows and columns correspond to the vertices of G; and whose .u;v/-entry is 1 if there
is an edge uv in G and is 0 otherwise.

Adjacency matrices are skew-symmetric, and every skew-symmetric matrix over
GF.2/ is an adjacency matrix of some simple graph. This results in a 1-1 corres-
pondence between skew-symmetric binary matrices and simple graphs. Every skew-
symmetric binary matrix A gives rise to a normal even binary delta-matroid D.A/.
(The delta-matroid must be even since odd order skew-symmetric matrices are always
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u v

Suv

Su Sv

toggle

(a) G

v u

Suv

Su Sv

(b) G ^ uv

Figure 7. Pivoting (edges between the three sets, Su, Sv , and Su;v , are “toggled,” and the
names of u and v are switched).

singular.) On the other hand, a normal even binary delta-matroid D determines a
unique skew-symmetric matrix A such that D D D.A/. (If D D .E; F / is binary,
then it must come from a binary matrix, and the sets of size two in F determine
which entries of this matrix are zero and which are one.) This means that there is a
1-1 correspondence between simple graphs and normal even binary delta-matroids.

However, we want to work with all even binary delta-matroids not just normal
ones. Obtaining a representing matrix for an arbitrary binary even delta-matroid D

requires choosing a normal partial dual of it. Different choices will result in different
matrices, however, from the results of Section 7, we know that these matrices will
be related through principal pivot transforms. How are the simple graphs correspond-
ing to these two matrices related? Once again we can find the relevant operation in
the literature in a move introduced by A. Bouchet in [10, 14] and rediscovered by
R. Arratia, B. Bollobás, and G. Sorkin in [1, 2].

Definition 8.1. Let G be a simple graph and uv an edge. Partition the vertices other
than u and v into four classes: (1) vertices adjacent to u but not v, (2) vertices adjacent
to v but not u, (3) vertices adjacent to both u and v, (4) vertices adjacent to neither u

nor v. The pivot of the edge uv is the graph, G ^ uv, constructed from G as follows.
For any vertex pair x, y where x is in one of the classes (1)–(3), and y is in a different
class (1)–(3), “toggle” the pair xy in the edge set (so if xy was an edge, make it a
non-edge; and if xy was a non-edge, make it an edge). Finally, switch the names of
the vertices u and v; see Figure 7.

Suppose G is a simple graph with adjacency matrix AMG , and uv is an edge of
G. Then the principal submatrix AMG Œ¹u; vº� defined by the edge has zeros on the
diagonal and ones elsewhere and is hence non-singular. This means we can form the
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(a) G
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3
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(b) H

Figure 8. Two bouquets.

principal pivot transform AMG � ¹u; vº of AMG . This changes the matrix in a very
nice way and it is not too hard an exercise (remembering we are working over GF.2/)
to track this change through to the corresponding simple graphs: the graphs will be
pivots of one another. Passing to delta-matroids, for an edge uv of G we have that

D.AMG/¹u;vº
D D

�
AMG � ¹u; vº

�
D D.AMG^uv/:

Thus we can identify even binary delta-matroids up to partial duals with simple graphs
up to pivoting:²

even binary delta-matroids
up to partial duals

³
1-1
 !

²
simple graphs

up to edge pivots

³
:

As edge pivoting is of interest in graph theory in its own right, this identification
opens up a new body of graph theory for studying delta-matroids, and vice versa.
However, there is a catch when we want to use simple graphs and edge pivots to study
ribbon graphs and their spanning quasi-trees. Although the delta-matroid D.G/ of an
orientable ribbon graph is even and binary, not all even and binary delta-matroids arise
from ribbon graphs. This means that the delta-matroids of ribbon graphs correspond
with a proper subclass of simple graphs. We turn our attention to this class in the next
section.

Example 8.2. As an illustration of the discussion from Section 6 onwards, consider
the bouquets G and H of Figure 8. Both are on the edge set E D ¹1; 2; 3; 4º. Their
binary representing matrices are

IMG D

1 2 3 42664
3775

1 0 1 1 1

2 1 0 1 0

3 1 1 0 0

4 1 0 0 0

and IMH D

1 2 3 42664
3775

1 0 1 1 0

2 1 0 1 1

3 1 1 0 1

4 0 1 1 0

:
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1 2

34

(a) G

2 1

34

(b) H

Figure 9. Two simple graphs.

Now let G and H be the simple graphs in Figure 9. It is readily checked that AMG D

IMG and AMH D IMH.
By direct computation from the bouquets and matrices we see that D.G/ D

D.IMG/D .E;FG/ and D.H/DD.IMH/D .E;FH/ where FG D ¹;;¹1;2º;¹1;3º;

¹2; 3º; ¹1; 4º; ¹1; 2; 3; 4ºº and FH D ¹;; ¹1; 2º; ¹1; 3º; ¹2; 3º; ¹2; 4º; ¹3; 4ºº.
The bouquets G and H are partial duals with HDG¹1;2º. In addition, the matrices

IMG and IMH can be verified as principal pivot transforms with IMH D IMG �

¹1; 2º, and G and H are pivots with H D G ^ 12. Thus we can see that

D
�
G¹1;2º

�
D D.G/¹1;2º

D D
�
IMG � ¹1; 2º

�
D D.AMG^12/;

and we can work with spanning quasi-trees in any of the settings.

Bibliographic remarks. Pivoting is a graph operation related to A. Kotzig’s trans-
formations on Eulerian circuits [36]. It was introduced by A. Bouchet in the context
of isotropic systems [10] and multimatroids [14], and rediscovered by R. Arratia,
B. Bollobás, and G. Sorkin when they introduced the interlace polynomial in [1, 2].

Further information on binary delta-matroids can be found in [16]. In particu-
lar, this reference contains the result that a normal binary delta-matroid .D; F / is
completely determined by the members of F of size at most two.

The identification of even binary delta-matroids considered up to partial duals
with simple graphs considered up to edge pivots can be extended to all binary delta-
matroids. They can be identified with looped simple graphs considered up to ele-
mentary pivots which are pivots on edges not adjacent to loops, and a local com-
plementation move (toggle the edges and non-edges, and loops and non-loops in
the neighbourhood of a looped vertex). This identification was first written down by
J. Geelen in [33] (see also [32]) although he has said that the graph-theoretical point
of view was used by both A. Bouchet and W. Cunningham in their discussions with
him at the time of writing that paper.
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Figure 10. A circle graph and a corresponding chord diagram.

9. Bringing it all together

A chord diagram consists of a circle in the plane and a number line segments, called
chords, whose end-points lie on the circle. The end-points of chords should all be
distinct. The intersection graph of a chord diagram is the graph G D .V; E/ where
V is the set of chords, and where uv 2 E if and only if the chords u and v intersect.
A graph is a circle graph if it is the intersection graph of a chord diagram. Figure 10
shows a circle graph and a corresponding chord diagram.

Now suppose that G is an orientable bouquet. We may regard G as a chord dia-
gram with the vertex boundary forming the circle and chords defined by where the
edges touch this circle. Let IG denote the corresponding intersection graph. There is
an edge ef of IG whenever the edges e and f are interlaced in G. In terms of the
delta-matroid D.G/ D .E; F / this means that there is an edge ef of IG whenever
¹e;f º is in F . Thus, since D.G/ is binary, we can obtain a binary representing matrix
A for D.G/ by setting the .e; f /-entry to be 1 if ef is an edge in IG and 0 otherwise,
so A is the adjacency matrix of IG . Thus the intersection graph IG of G is exactly
the simple graph corresponding to the delta-matroid D.G/. (As an example, it can be
checked that G D IG and H D IH in Example 8.2.)

We can then conclude that circle graphs are exactly the simple graphs that repres-
ent the delta-matroids of orientable ribbon graphs:²

Delta-matroids of orientable ribbon graphs
up to partial duals

³
1-1
 !

²
circle graphs

up to edge pivots

³
:

Circle graphs are well studied in graph theory and their appearance in the present
setting provides access to a large body of work that we can apply to ribbon graphs.
Let us take advantage of this to characterise the delta-matroids that arise from ribbon
graphs.

A minor of a graph is any graph that can be obtained from it by edge deletion
(remove an edge), vertex deletion (remove a vertex and the edges it meets), and edge
contraction (delete the edge then identify its ends). An excluded minor characterisa-
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Figure 11. Excluded pivot-minors for circle graphs.

tion of a class of graphs is a result that states that a graph belongs to the class if
and only if it has no minor in a given finite list. Possibly the best known example
of an excluded minor characterisation is Wagner’s theorem which states that a graph
is planar if and only if it has no minor isomorphic to K5 (the graph of five vertices
and one edge between each pair of vertices) or K3;3 (the graph with two sets of three
vertices and an edge between all pairs of vertices in different sets). (The name Kur-
atowski’s theorem, which uses a different type of minor, is often associated with this
result.) The spectacular Robertson–Seymour theorem gives that every minor-closed
class of graphs has an excluded minor characterisation [45].

Circle graphs, however, are not closed under the usual graph minor operations,
and so it does not make sense to ask for an excluded minor characterisation of them
with the usual type of graph minor. However, the set of circle graphs is closed under
edge pivots and vertex deletions which leads to a different type of graph minor.

A pivot-minor of a graph is any graph that can be obtained from it by edge pivots
and vertex deletions. Circle graphs have an excluded pivot-minor characterisation.
J. Geelen and S. Oum [32] proved that a graph is a circle graph if and only if it has
no pivot-minor isomorphic to any of the graphs shown in Figure 11.

We can use the correspondence between delta-matroids and simple graphs to
derive an excluded minor characterisation for the class of delta-matroids that arise
from ribbon graphs. For this we need delta-matroid versions of the vertex minor oper-
ations. We know from Section 8 that the delta-matroid version of an edge pivot is a
partial dual. Vertex deletion corresponds to the standard idea of deletion for delta-
matroids.
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Let D D .E; F / be a delta-matroid, and let e 2 E. Then D delete e, denoted by
Dne, is defined as Dne WD .Ene; F 0/, where F 0 D ¹F W F 2 F and e … F º when
e is not in every member of F ; and F 0 D ¹F ne W F 2 F and e 2 F º e is in every
member of F . Although we do not use the fact here, it is worth noting that D.Gne/D

D.G/ne. A delta-matroid D0 is said to be a minor of a delta-matroid D if it can be
obtained from D through the operations of deletion and partial duality.

By translating the excluded pivot-minor characterisation of circle graphs we
obtain the following characterisation of the even delta-matroids that arise from ribbon
graphs.

Theorem 9.1. Let D be an even delta-matroid. Then D D D.G/ for some ribbon
graph G if and only if it has no minor isomorphic to D.AMG/ where G is one of the
graphs shown in Figure 11, or to one of the delta-matroids given in Example 6.2.

The excluded minors from Example 6.2 are included to ensure that an even delta-
matroid is binary and hence comes from a simple graph.

Finally we come to the question from which our journey into delta-matroids
began: Do the spanning quasi-trees of an embedded graph determine it? In terms
of delta-matroids we are asking:

If D.G/ D D.H/, then how are the ribbon graphs G and H related?

So we are looking for a version of Whitney’s theorem that applies to ribbon graphs
and their delta-matroids.

Again we can make use of the circle graph literature. There has been extensive
work on recovering chord diagrams from circle graphs, and on determining which
chord diagrams correspond to the same circle graph. Appearing implicitly in [8, 24,
30], and explicitly in [21], is an operation on chord diagrams called mutation that
relates all chord diagrams that have the same intersection graph. This operation cuts
out a certain substructure in a chord diagram, rotates it then glues it back in (we omit a
definition of the move as we do not use its details here). The result uses Cunningham’s
theory of graph decompositions from [25] to decompose an intersection graph into
“prime” graphs that have unique intersection graphs. Mutation then corresponds to
the choices that are made when reassembling a corresponding chord diagram from
these prime graphs.

In the present setting, if two ribbon graphs G and H have equal delta-matroids,
then there must be some set of edges X such that the partial duals GX and HX are
both bouquets with the same delta-matroid. The delta-matroids D.GX / and D.HX /

therefore correspond to the same simple graph. As this simple graph can be con-
sidered as the intersection graphs of GX and HX , it follows that GX and HX must
be related by mutation (technically, a version of mutation for bouquets). Then by ana-
lysing how mutation changes under partial duality, we can pull back the operations
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G1 G2

vertex split
������!

 �����
vertex cut

G

Figure 12. Vertex joins and vertex splits.

to the original ribbon graphs G and H. This approach results in a characterisation of
ribbon graphs that have the same delta-matroid. We describe the relevant moves then
the characterisation. The first move is the analogue of the vertex identification and
vertex cleaving that are used in Whitney’s theorem and illustrated in Figure 1.

Suppose that G1 and G2 are ribbon graphs. For i D 1; 2, suppose that ˛i is an
arc that lies on the boundary of Gi and entirely on a vertex boundary. If a ribbon
graph G can be obtained from G1 and G2 by identifying the arc ˛1 with ˛2 (where
the identification merges the vertices), then we say that G is obtained from G1 and
G2 by a vertex join, and that G1 and G2 are obtained from G by a vertex split. The
operations are illustrated in Figure 12 and are standard operations in ribbon graph
theory. It is important to observe that the definition of a vertex join does not allow for
any “interlacing” of the edges of G1 and G2.

The next operation we need is called mutation. It is illustrated in Figure 13. The
figure shows a local change in a ribbon graph (so the ribbon graphs are identical
outside of the region shown) and the two parts of vertices that are shown in it may
come from the same vertex. To define the move, let G1 and G2 be ribbon graphs. For
i D 1; 2, let ˛i and ˇi be two disjoint directed arcs that lie on the boundary of Gi

and lie entirely on boundaries of (one or two) vertices. Furthermore, suppose that G
is a ribbon graph that is obtained by identifying the arcs ˛1 with ˛2, and ˇ1 with ˇ2,
where both identifications are consistent with the direction of the arcs. (The identific-
ation merges the vertices.) Suppose further that H is a ribbon graph obtained by either
(1) identifying ˛1 with ˛2, and ˇ1 with ˇ2, where the identifications are inconsistent
with the direction of the arcs, (2) identifying ˛1 with ˇ2, and ˇ1 with ˛2, where the
identifications are consistent with the direction of the arcs or (3) identifying ˛1 with
ˇ2, and ˇ1 with ˛2, where the identifications are inconsistent with the direction of the
arcs. Then we say that G and H are related by mutation.

With these definitions in hand, we can complete our tour with an answer (due
to I. Moffatt and J. Oh [39]) to our original question as to what extent the spanning
quasi-trees determine the ribbon graph.

Theorem 9.2. Let G and H be connected orientable ribbon graphs, and let D.G/

and D.H/ be their delta-matroids. Then D.G/DD.H/ if and only if G can be ob-
tained from H by ribbon graph isomorphism, vertex joins, vertex splits or mutation.
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Figure 13. Mutation for ribbon graphs.

As an example of Theorem 9.2, the two non-equivalent ribbon graphs in Fig-
ure 14 can be obtained from each other by isomorphism, vertex joins, vertex splits,
and mutation. Therefore their delta-matroids are isomorphic.

Bibliographic remarks. The excluded minor characterisation for the delta-matroids
of orientable ribbon graphs stated in Theorem 9.1 is implicit in J. Geelen and S. Oum’s
paper [32]. There it was stated for even Eulerian delta-matroids which, from [22], are
equivalent to the delta-matroids of ribbon graphs. The ribbon graph formulation given
here is from [22]. The characterisation extends to non-orientable ribbon graphs. Again
this was given in for Eulerian delta-matroids in [32] and translated to the ribbon graph
setting in [22]. There are 171 excluded minors in this case.

The excluded minor characterisation of binary delta-matroids alluded to after the
statement of Theorem 9.1 is due to A. Bouchet and A. Duchamp [16]. There are five
excluded minors for binary delta-matroids, and the two appearing in Example 6.2 are
the even ones.

Theorem 9.2 is due to I. Moffatt and J. Oh, and from [39]. It is given there
more generally for non-orientable and non-connected ribbon graphs. Extending to
the non-connected case is straightforward, but additional work is required for the
non-orientable case.
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Figure 14. Two ribbon graphs with the same delta-matroid.

10. Now we can get started . . .

We set out with the classical question of whether the spanning trees in a graph determ-
ine the graph itself. This led to a topological version of it, if the spanning quasi-trees
in a ribbon graph determine it. In answering this question we were guided by the
idea of partial duality which appeared in different forms and settings. This took us
to ribbon graphs, matroids and delta-matroids, matrices, as well as simple and circle
graphs. Moreover, we saw that delta-matroids provided the central unifying frame-
work for all of these ideas. It is this common framework that we should really take
away from our journey.

As mentioned earlier, there is a well-known and successful symbiotic relationship
between graph theory and matroid theory, with each area informing the other. As
reported in [42], W. Tutte famously observed that, “If a theorem about graphs can be
expressed in terms of edges and circuits alone it probably exemplifies a more general
theorem about matroids.” An analogous correspondence between embedded graphs
and delta-matroids was proposed in [22,23]. This view of delta-matroid is proving to
be successful. It has led implicitly and explicitly to advances in, especially, the topics
of graph polynomials, and the structural theory of both delta-matroids and ribbon
graphs. But we really are only at the beginning of this journey. Many fundamental
questions remain unanswered and directions remain unexplored, but our knowledge
is rapidly advancing.
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