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Positive harmonic functions on the Heisenberg group I

Yves Benoist

Abstract. We present the classification of positive harmonic functions on the Heisenberg group
in the case of the southwest measure.

1. Introduction

In this self-contained paper, we present the classification of the positive harmonic
functions on the Heisenberg group H3.Z/ in the special case of the southwest mea-
sure. This example is striking because the famous partition functions occur as positive
harmonic functions. In this case, our main result tells us that roughly all positive
harmonic functions are combinations of characters and partition functions (Theo-
rem 1.1).

We will also explain with no proof how this result can be extended to finite pos-
itive measures on H3.Z/ (Theorem 3.8). The proof of this extension can be found
in [2].

1.1. The partition function p.x; y; z/ as a potential

We first introduce the “partition function” p.x; y; z/ for any integers x, y, z in Z.

1.1.1. The partition function. This function counts the “number of Young diagrams
of area z,” also called “partitions of z,” included in a rectangle with side lengths x
and y (see Figure 1). More precisely, when x, y, and z are non-negative, one has that

p.x; y; z/ D
ˇ̌®
.n1; : : : ; ny/ 2 Zy

j x � n1 � � � � � ny � 0

and n1 C � � � C ny D z
¯ˇ̌
; (1.1)

and p.x; y; z/ D 0 otherwise. The integers ni are the lengths of the rows of the
partition. By convention, for x � 0, one has that p.x; 0; z/ D 0 when z ¤ 0, and

2020 Mathematics Subject Classification. Primary 31C05; Secondary 20F18.
Keywords. Nilpotent group, potential theory, partition function, random walk.

https://creativecommons.org/licenses/by/4.0/


Y. Benoist 182

= 4 area

= 5

= 12y

x

z

Figure 1. The partition 12 D 5C 4C 2C 1 is included in a 5 � 4 rectangle.

+

Figure 2. The 11 partitions in the equality p.5; 4; 12/ D p.4; 4; 8/C p.5; 3; 12/.

that p.x; 0; 0/ D 1. This partition function satisfies the functional equation, for all
g D .x; y; z/ in Z3, g ¤ .0; 0; 0/,

p.x; y; z/ D p.x � 1; y; z � y/C p.x; y � 1; z/: (1.2)

One checks it by splitting this set of partitions according to the color of the lower-left
case of the rectangle as in Figure 2.

1.1.2. The Heisenberg group. Recall that the Heisenberg group G WDH3.Z/ is the
set Z3 of triples seen as matrices

.x; y; z/ WD
� 1 x z

0 1 y

0 0 1

�
:

It is endowed with the product

.x0; y0; z0/.x; y; z/ D .x0 C x; y0 C y; z0 C z C x0y/: (1.3)

Let �0 be the southwest measure on G. It is given by

�0 D ıa�1 C ıb�1 ; where a WD .1; 0; 0/ and b D .0; 1; 0/. (1.4)

Let e WD .0; 0; 0/ be the unity of G and let 1¹eº be the characteristic function of ¹eº.
Equation (1.2) can be rewritten as, for all g D .x; y; z/ in G,

p.g/ D p.a�1g/C p.b�1g/C 1¹eº.g/: (1.5)
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Figure 3. The partition 12 D 5C 4C 2C 1 associated to the word w D ababaabab gives the
element g D gw D ababaabab D .5; 4; 12/ 2 H3.Z/.

In particular, the function f D p satisfies

f .g/ � P�0
f .g/; where P�0

f .g/ WD f .a�1g/C f .b�1g/: (1.6)

This inequality (1.6) tells us that the function f is a �0-superharmonic function
on the Heisenberg group G.

1.1.3. The potential. More precisely, the partition function p.g/ is the potential of
�0 at e. This means that one has the equality

p D

X
n�0

P n
�0

1¹eº:

Indeed, as can be seen in Figure 3, for g in G,

p.g/ is the number of ways to write g as a word in a and b. (1.7)

A function h on G is said to be �0-harmonic if it satisfies

h.g/ D P�0
h.g/; for all g in G, or equivalently (1.8)

h.x; y; z/ D h.x � 1; y; z � y/C h.x; y � 1; z/; for all .x; y; z/ in Z3: (1.9)

1.2. Construction of positive harmonic functions

We want to classify all the positive1 solutions of (1.6), i.e., all the positive �0-
superharmonic functions h on G. We begin with five remarks.

1.2.1. Choquet theorem. By a theorem of Choquet in [5], every positive superhar-
monic function h is an average of extremal2 positive superharmonic functions h˛ .
Moreover, when h is harmonic, the h˛ are harmonic. By Riesz decomposition theo-
rem [13, Thm. 2.1.4], every positive �0-superharmonic function can be written in a
unique way as the sum of a potential3 and a positive�0-harmonic function. Therefore,
it is enough to describe the extremal positive �0-harmonic functions on G.

1A function f on G is said to be positive if f .g/ � 0 for all g in G and f ¤ 0.
2A positive (super)harmonic function is said to be extremal if it cannot be written as the

sum of two non-proportional positive (super)harmonic functions.
3A potential is a function of the form f D

P
n�0 P

n
�0
F for a positive function F on G.
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0 0 1 4 8 11 13 14 15 15
0 0 1 4 7 9 10 11 11 11
0 0 1 3 5 6 7 7 7 7
0 0 1 3 4 5 5 5 5 5
0 0 1 2 3 3 3 3 3 3
0 0 1 2 2 2 2 2 2 2
0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 ! y
0 0 0 0 0 0 0 0 0 0

Figure 4. The function py.z/ satisfies py.z/ D py.z � y/C py�1.z/.

1.2.2. Choquet–Deny theorem. If we look for a �0-harmonic function h which
does not depend on z, then (1.9) becomes

h.x; y/ D h.x � 1; y/C h.x; y � 1/; for all .x; y/ in Z2. (1.10)

This equation tells us that the function h is �0-harmonic on the abelian quotient Z2

of G. According to a theorem of Choquet and Deny in [6], since the support of the
measure �0 spans the group Z2, every extremal positive �0-harmonic function on
this abelian group is proportional to a character4:

�.x; y; z/ D rxsy with r; s > 0 and
1

r
C
1

s
D 1: (1.11)

1.2.3. The partition function as a harmonic function. If we look for a �0-har-
monic function h which does not depend on x, then (1.9) becomes

h.y; z/ D h.y; z � y/C h.y � 1; z/; for all .y; z/ in Z2. (1.12)

A nice example is given in Figure 4 by the partition function .y; z/ 7! py.z/, where

py.z/ D sup
x2Z

p.x; y; z/ D lim
x!1

p.x; y; z/ D p.z; y; z/

D the number of partitions of z with at most y rows. (1.13)

Hence the function h0.x; y; z/ WD py.z/ is a �0-harmonic function on G.

4The proof is very short. One notices that equality (1.10) gives a decomposition of h as a
sum of two positive harmonic functions and hence both of them are proportional to h.
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1.2.4. Margulis first theorem. According to the first theorem of Margulis, a theo-
rem he proved in [10] when he was not yet twenty, the Choquet–Deny theorem is
still true on a finitely generated nilpotent group G as soon as the support of the mea-
sure spans G as a semigroup (see Fact 3.7). This is why it might look surprising at
first glance that there exists a positive �0-harmonic function h0 on H3.Z/ which is
not invariant by the center. The reason it exists is that the support of �0 spans G as
a group but not as a semigroup. What is more surprising is that this “new” positive
harmonic function h0 is given by the famous partition function py.z/.

1.2.5. Switching and translating harmonic functions. We denote by � the auto-
morphism of G exchanging a and b. It is given by

�.x; y; z/ D .y; x; xy � z/:

Since the function h0 is �0-harmonic, the function

h1 WD h0 ı � W .x; y; z/ 7! px.xy � z/

is also �0-harmonic. For g0 inG, we denote by �g0
W g 7! gg0 the right translation by

g0 onG. The translated functions h0 ı �g0
W g 7! h0.gg0/ and h1 ı �g0

W g 7! h1.gg0/

are also �0-harmonic.

1.3. Classification of positive harmonic functions

We can now state our main result for the southwest measure �0 introduced in (1.4).

1.3.1. Main result and strategy.

Theorem 1.1. Let h be an extremal positive �0-harmonic function on the Heisenberg
group G WD H3.Z/. Then, up to a multiplicative scalar,

� either h D � is a �0-harmonic character �.x; y; z/ D rxsy as in (1.11)

� or h D h0 ı �g0
is a translate of the function h0.x; y; z/ WD py.z/

� or h D h1 ı �g0
is a translate of the function h1.x; y; z/ WD px.xy � z/.

This classification has been announced on May 28th 2019 in a short informal
videotaped speech at the Cetraro conference “Dynamics of group actions.” This video
can be found on the author’s web page.

As we will see, the partition function p.x; y; z/ will play a crucial role in the
proof of Theorem 1.1. Indeed, in Chapter 2, we will prove a ratio limit theorem for
the partition function p.x; y; z/. In Chapter 3, we will deduce from this ratio limit
theorem the proof of Theorem 1.1.

Notice that the positive �0-harmonic function h0 vanishes. In particular, it does
not satisfy the Harnack inequality. This contrasts with the case studied in [10], where
the support of � spans G as a semigroup.
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In the last section (Section 3.4), we will present the classification of the positive
�-harmonic functions, for all finitely supported measures � on G.

1.3.2. Dealing with a probability measure. At first glance it might look a little bit
weird to deal with a�0-harmonic function for a measure�0 which is not a probability
measure. We could have worked instead with the probability measure

z�0 D
1

2
.ıa�1 C ıb�1/; where a WD .1; 0; 0/ and b D .0; 1; 0/

which is the law for the southwest random walk on H3.Z/. The z�0-harmonic func-
tions Qh on G are the functions satisfying

Qh D P z�0
h; where P z�0

h.x; y; z/ D
1

2

�
Qh.x � 1; y; z � y/C Qh.x; y � 1; z/

�
is the expected value of the function h after one step of the random walk.

It is easy to see that

h.x; y; z/ is �0-harmonic if and only if 2�x�yh.x; y; z/ is z�0-harmonic:

Therefore, classifying positive �0-harmonic functions is equivalent to classifying
positive z�0-harmonic functions. The main reason we are using �0 instead of z�0 is to
get rid of all these factors 2�x�y .

1.3.3. Extremal superharmonic functions. We have seen in (1.5) that the parti-
tion function p is �0-superharmonic and more precisely that it is the potential of
�0 at e. For every g0 in G, the function p ı �g0

is also a potential of �0 at g�1
0 .

By Riesz decomposition theorem, those potentials are exactly the extremal positive
�0-superharmonic functions on G which are not harmonic. Therefore,

every extremal positive �0-superharmonic function f on G which is not har-
monic is a translate f D p ı �g0

of the function p.x; y; z/.

We would like to end this introduction by pointing out other limit theorems for
random walks on the Heisenberg group and other nilpotent groups as [3, 4, 7, 8] even
though we will not use them here.

2. The partition function

The aim of this chapter is to prove the ratio limit theorem (Proposition 2.2) for the
partition function p.x; y; z/.
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2.1. The unimodality of the partition functions

We recall that, for x; y; z � 0, the partition function p.x; y; z/ counts the number of
partitions of z included in a rectangle with side lengths x and y. See definition (1.1)
and Figure 1.

This function is non-zero for 0 � z � xy and satisfies the equalities

p.x; y; z/ D p.y; x; z/ D p.x; y; xy � z/: (2.1)

This function is well studied. For instance, one has the following fact.

Fact 2.1 (Cayley, Sylvester 1850). The sequence z 7! p.x; y; z/ is unimodal; i.e., it
is increasing for z � xy=2.

The proof below relies on the theory of finite dimensional representations of the
Lie algebra sl.2;R/. This proof is due to Hughes in [9]. See [12] for an elementary
proof and [14, p. 522] for a survey of various generalizations.

Sketch of proof of Fact 2.1. Let n WD x C y and let .Y; H; X/ be the principal sl2-
triple in the Lie algebra g WD sl.n;R/ so that H D diag.n � 1; n � 3; : : : ;�nC 1/.
This Lie algebra g has a natural representation in the space V WDƒx.Rn/. One checks
that p.x; y; z/ D dim Vxy�2z , where V� denotes the eigenspace of H in V for the
eigenvalue �. The theory of representations of sl.2;R/ tells us that for � > 0, one
always has that dimV� � dimV��2.

2.2. The ratio limit theorem

Here is the ratio limit theorem for p.x; y; z/.

Proposition 2.2. One has that

lim
z!1

xy�z!1

p.x; y; z � 1/

p.x; y; z/
D 1:

This limit is taken along sequences of positive triples .x; y; z/ such that z ! 1

and xy � z ! 1.
With this generality this theorem seems to be new, even though there already exist

very precise estimates of p.x; y; z/ in certain ranges. For instance, when x; y � z,
the partition function p.x; y; z/ D p.z; z; z/ depends only on z. It is the classical
partition function p.z/ which admits a famous asymptotic expansion due to Hardy
and Ramanujan in 1920 (see [1, Chap. 5]). These estimates have been extended to
larger ranges of .x; y; z/ as in [11, 15]. We will not use them.

The proof of Proposition 2.2 is tricky but elementary. The rough idea is to intro-
duce a relation between the set of partitions w of z and the set of partitions w0 of
z � 1 such that “most of the time” when w and w0 are related, they are related to
approximately the same number of partitions (see Lemma 2.5).
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Because of (2.1), we can assume that y � x and z � xy=2.

2.3. When the height of the rectangles is bounded

In this section, we deal with the easy case when the height y remains bounded.

Lemma 2.3. For all y � 1, one has that

lim
x;z!1

z�xy=2

p.x; y; z � 1/

p.x; y; z/
D 1:

Note that in this limit y is fixed, and x, z go to 1 with z � xy=2.

Proof of Lemma 2.3. This follows from Lemma 2.4 and the inequalities

0 � p.x; y; z/ � p.x; y; z � 1/ � p.x; y � 1; z/:

The first inequality is the unimodality of the partition function.
For the second inequality, just notice that one can inject the set of partitions of z of

height exactly y inside the set of partitions of z � 1 of height at most y by removing
the last square in the bottom row of each partition.

We have used the following lemma.

Lemma 2.4. (a) For all x; y; z � 1, one has that p.x; y; z/ � zy�1.

(b) For all y � 1, there exists ˛y > 0 such that, for all x; z � 1 with z � xy=2,
one has that p.x; y; z/ � ˛yz

y�1.

Proof of Lemma 2.4. (a) The lengths of the last y�1 rows of the partition are bounded
by z � 1 and the first row is deduced from the others.

(b) Choose y � 1 integers m1; : : : ; my�1 in the interval Œ0; z
y2 � and keep only

those for which the system

n1 � n2 D m1; : : : ; ny�1 � ny D my�1 and n1 C � � � C ny D z

has a solution .n1; : : : ; ny/ in Zy . But then one has that

ny D
1

y

�
z �m1 � 2m2 � � � � � .y � 1/my�1

�
� 0;

n1 D ny Cm1 C � � � Cmy�1 �
z

y
C
z

y
� x:

This gives about 1
y
. z

y2 /
y�1 partitions of z with x � n1 � � � � � ny � 0.

2.4. Inner and outer corner of a partition

We now introduce notations that will strengthen the connection between partitions
and words in the Heisenberg group.
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Figure 5. The fiber ��1.w/ of the word w D ababaabab has size fw D 4.

We recall that a D .1; 0; 0/ and b D .0; 1; 0/ are the generators of the Heisenberg
group G D H3.Z/. Let

GC
WD

®
g D .x; y; z/ 2 G j x; y � 0 and 0 � z � xy

¯
be the semigroup generated by a and b and let

c D aba�1b�1
D .0; 0; 1/ (2.2)

be the generator of the center Z of G.
Let Bn WD ¹a; bºn be the set of finite words w in a, b of length `w D n and let

B WD
S

n�0 Bn. Using the product law in G, to each word w 2 B , we can associate
an element gw in GC. The partition function gives the size of the fibers of this map:

p.g/ D jBg j; where Bg WD ¹w 2 B j gw D gº: (2.3)

Indeed, as explained in Figure 3, when g D .x; y; z/, each word w in Bg corresponds
uniquely to a partition of z included in a rectangle with side lengths x and y. We
introduce now the following relation R on B:

R WD
®
.w;w0/ 2 B � B j w D w0abw1 and w0

D w0baw1

for some w0; w1 in B
¯
:

Let � W R ! B and � 0 W R ! B be the two projections

�.w;w0/ D w and �.w;w0/ D w0:

For w, w0 in B , the cardinality of the fiber fw WD j��1.w/j is the number of pairs
ab occurring in the word w. The size fw is also the number of inner corners of
the partition associated to w (see Figure 5). Similarly the cardinality of the fiber
f 0

w0 WD j� 0�1.w0/j is the number of pairs ba occurring in the word w0. It is equal to
the number of outer corners of the partition associated to w0.

The following lemma compares the size of these fibers.

Lemma 2.5. (a) For all .w;w0/ 2 R, one has that gw D gw0c.

(b) For all .w;w0/ 2 R, one has that jfw � f 0
w0 j � 2.

In particular, one also has that fw � 3f 0
w0 .
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Proof of Lemma 2.5. (a) This follows from the equality c D aba�1b�1.
(b) Comparing the number of pairs ab and pairs ba occurring in w and in w0, one

gets jfw � fw0 j � 1 and jfw0 � f 0
w0 j � 1.

2.5. Partitions with bounded number of corners

We will need to control the number p�i .x; y; z/ of partitions of z included in a
rectangle with side length x, y that have at most i inner corner.

The following Lemma 2.6 tells us that p�i .x; y; z/ is negligible compared to the
total number of partitions p.x; y; z/.

Lemma 2.6. For all i � 0, one has that

lim
x;y;z!1

z�xy=2

p�i .x; y; z/

p.x; y; z/
D 0:

The limit is taken along sequences where all coordinates x, y, z go to 1 and
z � xy=2.

Proof of Lemma 2.6. Use the following slight upgrade of Lemma 2.4.

Lemma 2.7. (a) For all x; y; z; i � 1, one has that p�i .x; y; z/ � .2z/2i .

(b) For all j > 1, there exists z0 D z0.j / � 1 such that, for all x; y; z � 1 with
4j � y � x and z0 � z � xy=2, one has that p.x; y; z/ � zj .

Proof of Lemma 2.7. It is similar to Lemma 2.4.
(a) We can assume that x D y D z. We want to choose integers a1; : : : ; ai � 1

and m1; : : : ; mi � 0, bounded by z such that a1m1 C � � � C aimi D z. There are at
most .2z/2i possibilities.

(b) We give a rough count. Choose Ly � y as large as possible such that, setting
`y D ŒLy=2� and `x D Œz=Ly �, one has that `y � `x � x=2. There exists a partition
w0 of z with Ly rows and all of whose rows have length `x or `x C 1. For every
sequence `x > m1 � � � � � m`y

� 0, we can modify this partition w0 by adding mj

spots to the j th highest row of w0 and removing mj spots to the j th lowest row of
w0, for all j � `y . This gives N different partitions of z, where N WD

�`xC`y�1

`y

�
�

max.2; `x=`y/
`y . Hence, one has that p.x; y; z/ � N .

First case: when z � y2=2. In this case, we have that Ly D Œ
p
2z�.

One gets N � 2`y � 2
p

z=2 � zj .

Second case: when z � y2=2. In this case, we have that Ly D y.
If z � y4, one gets N � 2`y � 2

4
p

z=4 � zj .
If z � y4, one gets N � . `x

`y
/`y � . z

y2 /
`y �

p
z

`y
� zy=4 � zj .
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2.6. When the height of the rectangles is unbounded

We can now explain the proof of the ratio limit theorem.

Proof of Proposition 2.2. By (2.1) and Lemma 2.3, we can assume that the three
positive integers x, y, z are going to 1 with y � x and z � xy=2. For g D .x; y; z/

in GC, one sets Rg WD ¹.w;w0/ 2 R j gw D gº, and one computes

p.g/ D jBg j D "g C

X
.w;w0/2Rg

1

fw

; (2.4)

where "g D 1 if Rg D ; and "g D 0 otherwise. Similarly, by Lemma 2.5 (a), one has
that

p.gc�1/ D jBgc�1 j D "0g C

X
.w;w0/2Rg

1

f 0
w0

; (2.5)

where "0g D 0 or 1. Combining (2.4), (2.5), and Lemma 2.5 (b), one getsˇ̌
p.g/ � p.gc�1/

ˇ̌
� 2C

X
.w;w0/2Rg

2

fwf
0

w0

� 2C
X

.w;w0/2Rg

6

f 2
w

� 2C
X

w2Bg

fw¤0

6

fw

:

We recall that p�i .g/ is the number of w with fw � i . Therefore, one has thatˇ̌
p.g/ � p.gc�1/

ˇ̌
� 2C 6p�i .g/C

6

i
p.g/ for all i � 1:

We let x; y; z go to infinity with z � xy=2. According to Lemma 2.6, for all i � 1,
the ratios p�i .g/=p.g/ converge to 0. Therefore,

lim sup
ˇ̌̌̌
p.gc�1/

p.g/
� 1

ˇ̌̌̌
�
6

i
;

and therefore the sequence p.gc�1/
p.g/

converges to 1 as required.

3. Positive harmonic functions

We now start the classification of extremal positive �0-harmonic functions h. In Sec-
tion 3.1, we deal with the case where h has a non-zero limit along an orbit of a�1 or
b�1. In Sections 3.2 and 3.3, we deal with the case where h goes to zero along all
orbits of a�1 and b�1. In Section 3.4, we present the generalization of this classifica-
tion to any finitely supported measure � on G.
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3.1. The partition function as a harmonic function

In this section, we characterize the functions h0 ı �g0
and h1 ı �g0

among extremal
positive �0-harmonic functions by their behavior along the orbits a�Ng0 and b�Ng0

of G.
We recall that a D .1; 0; 0/ and b D .0; 1; 0/ are the generators of the Heisenberg

group G D H3.Z/, that �0 D ıa�1 C ıb�1 , and that h0 and h1 are the �0-harmonic
functions h0.x; y; z/ D py.z/ and h1.x; y; z/ D px.xy � z/.

We first begin by an alternative construction of the function h0. Let H0 be the
abelian subgroup ofG generated by a and let 0 WD 1H0

be the characteristic function
of H0. One has that

 0.x; y; z/ D

´
1 when y D z D 0;

0 otherwise:

Lemma 3.1. One has the equality h0 D limn!1 P n
�0
 0.

Remark. Since the function  0 is �0-subharmonic, i.e.,  0 � P�0
 0, the sequence

n 7! P n
�0
 0 is increasing.

Proof of Lemma 3.1. One can compute explicitly this function P n
�0
 0. It does not

depend on x. Indeed, P n
�0
 0.x; y; z/ is the number of ways of writing the element

.n � y; y; z/ as a word w of length n in a and b. This proves the equality, involving
the partition function,

P n
�0
 0.x; y; z/ D p.n � y; y; z/:

Letting n go to 1, we conclude using (1.13).

Lemma 3.2. Let g0 2 G and let h be an extremal positive �0-harmonic function on
G such that lim supn!1 h.a�ng0/ > 0. Then one has that hD �h0 ı �g0

with � > 0.
In particular, the positive �0-harmonic function h0 ı �g0

is extremal.

Proof of Lemma 3.2. We can assume that g0 D e. Since the function h is positive and
�0-harmonic, the sequence n 7! h.a�n/ is decreasing. Hence it has a limit �. By
assumption, this limit � is positive. By construction, one has the equality h � � 0.
Since h is �0-harmonic, one also has the inequality h� �P n

�0
 0 for all n � 0. There-

fore, by Lemma 3.1, one gets h � �h0. Since h is extremal, it has to be proportional
to h0 and therefore one has that h D �h0.

It remains to check that h0 is extremal. If one can write h0 D h00 C h000 with both h00
and h000 positive �0-harmonic, for at least one of them, say h00, the sequence h00.a

�n/

does not converge to 0 for n! 1. Hence, by the previous discussion, h00 is propor-
tional to h0. This proves that h0 is extremal.
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Exchanging the role of a and b we get the following corollary.

Corollary 3.3. Let h be an extremal positive �0-harmonic function on G such that
lim supn!1 h.b�ng0/ > 0. Then one has that h D �h1 ı �g0

for some � > 0.
In particular, the positive �0-harmonic function h1 ı �g0

is extremal.

3.2. Harmonic functions that decay on cosets

We now discuss positive harmonic functions on G that decay to 0 along the orbits
a�Ng0 and b�Ng0.

Let Gn be the subset of G consisting of elements of “degree” n,

Gn D
®
g D .x; y; z/ 2 G j x C y D n

¯
:

By definition and by (1.7), a positive�0-harmonic function h onG satisfies the equal-
ity, for all n � 1,

h.g0/ D
X

w2Bn

h.g�1
w g0/ D

X
g2Gn

p.g/h.g�1g0/: (3.1)

For an integer A > 0, we set

Gn;A D
®
g D .x; y; z/ 2 Gn j z � A

¯
; (3.2)

G�
n;A D

®
g D .x; y; z/ 2 Gn j xy � z � A

¯
:

The following lemma tells us when the contributions of Gn;A and G�
n;A in formula

(3.1) are negligible.

Lemma 3.4. Let h be a positive �0-harmonic function on G such that

lim
n!1

h.a�ng0/ D 0 and lim
n!1

h.b�ng0/ D 0 for all g0 in G. (3.3)

Then, for all A > 0 and g0 in G, one has that

lim
n!1

X
g2Gn;A[G�

n;A

p.g/h.g�1g0/ D 0: (3.4)

Proof of Lemma 3.4. It is enough to prove (3.4) with g0 D e. Moreover, since G�
n;A

is the image of Gn;A by the involution � which exchanges a and b, it is enough to
prove (3.4) with g 2 Gn;A. Equivalently, it is enough to prove that

lim
n!1

X
w2Bn;A

h.g�1
w / D 0; where Bn;A WD ¹w 2 Bn j g�1

w 2 Gn;Aº: (3.5)
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Figure 6. The decomposition w D bmsak for a word w 2 Bn;A.

Note that, when n > A, every word w 2 Bn;A can be written as

w D bmsak

with s 2 BAC1 a word of length AC 1 (see Figure 6). One splits the set Bn;A accord-
ing to m � A or m < A. Therefore, for n � 2A, one has the inclusion

Bn;A � bABn�A [ B2Aa
n�2A:

Therefore, using (3.1), one gets the inequalitiesX
w2Bn;A

h.g�1
w / �

X
w2Bn�A

h.g�1
w b�A/C

X
w2B2A

h.a�.n�2A/g�1
w /

D h.b�A/C
X

w2B2A

h.a�.n�2A/g�1
w /:

For all " > 0, we choose A large enough so that, by the second assumption (3.3), one
has that h.b�A/ � ". Then the last sum is a sum over the fixed finite set B2A, and, by
the first assumption (3.3), this last sum converges to 0 when n goes to infinity. This
proves (3.5) as required.

3.3. Using the ratio limit theorem

Combining Lemma 3.4 with the ratio limit theorem, we can finish the last case of the
proof of Theorem 1.1.

Lemma 3.5. Let h be a positive �0-harmonic function on G such that, for all g0 in
G, limn!1 h.a�ng0/ D limn!1 h.b�ng0/ D 0. Then h is invariant by the center
Z D cZ of G.

Proof of Lemma 3.5. Using (3.1) with g0 and g0c, we compute

h.g0/ � h.g0c/ D
X

g2Gn

�
p.g/ � p.gc/

�
h.g�1g0/: (3.6)
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We fix " > 0. According to the ratio limit theorem (Proposition 2.2), there exists
an integer A > 0 such that, for all g D .x; y; z/ in GC with z � A and xy � z � A,
one has that ˇ̌

p.g/ � p.gc/
ˇ̌
� "p.g/: (3.7)

Therefore, using (3.6), (3.7), and definition (3.2), one getsˇ̌
h.g0/�h.g0c/

ˇ̌
�

X
g2Gn

"p.g/h.g�1g0/C
X

g2Gn;A[G�
n;A

p.g/
�
h.g�1g0/Ch.g

�1g0c/
�
:

By (3.1), the first term is equal to "h.g0/. Therefore, using twice Lemma 3.4 and
letting n go to infinity, one gets jh.g0/� h.g0c/j � "h.g0/. Since " is arbitrary small,
this proves that h.g0/ D h.g0c/ as required.

Corollary 3.6. Let h be an extremal positive �0-harmonic function on G such that,
for all g0 in G, limn!1 h.a�ng0/ D limn!1 h.b�ng0/ D 0. Then h is a character
of G.

In particular, every �0-harmonic character of G is an extremal positive �0-
harmonic function.

Proof of Corollary 3.6. By Lemma 3.5, the function h is �0-harmonic on the abelian
group G=Z. By Choquet–Deny theorem, it is a character.

It remains to check that a �0-harmonic character � is extremal. Assume that
�D h0 C h00 with both h0 and h00 positive �0-harmonic. For all g0 inG, the sequences
h0.a�ng0/ and h0.b�ng0/ converge to 0 for n! 1. Hence, by the previous discus-
sion and by Choquet’s theorem, the function h0 is an integral h0 D

R
C
�0 d�.�0/, where

� is a finite positive measure on the set C of (harmonic) character �0 of G. Since
h0 � �, the measure � must be supported by �. This proves that � is extremal.

This ends the proof of Theorem 1.1.

3.4. Extension to finitely supported measures

In this section, we give the classification of the positive �-harmonic functions on the
Heisenberg group for all finitely supported measure �.

Let G D H3.Z/ be the Heisenberg group and let S be a finite subset of G. We
denote by GS the subgroup of G generated by S . Let � D

P
s2S �sıs be a positive

measure on G with support S .
We recall that a function h on G is said to be �-harmonic if

h D P�h; where P�h.g/ WD
X
s2S

�sh.sg/: (3.8)
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We want to describe the cone HC of positive �-harmonic functions h on G. By
Choquet’s theorem, it is enough to describe the extremal rays of this cone HC.

There are two constructions of extremal positive �-harmonic functions.

3.4.1. The harmonic characters �. By definition, the �-harmonic characters are
the characters � WG! R>0 ofG such that

P
s2S �s�.s/D 1. Such a function hD �

is an extremal positive �-harmonic function on G which is invariant by the center Z
of G.

We now recall Margulis’s theorem which tells us that this first construction is the
only possible when GC

� D G.

Fact 3.7 (Margulis). Let � be a finite positive measure on a finitely generated nilpo-
tent group G. If the semigroup GC

� generated by the support of � is equal to G, then
every extremal positive �-harmonic function h on G is a character.

Sketch of proof of Fact 3.7 for G D H3.Z/. Because of the assumptionGC
� DG, we

can assume that �c > 0 and �a > 0. The first part of the argument is as in the abelian
case: since h.x; y; z/ � �ch.x; y; z C 1/, these two �-harmonic functions are pro-
portional and we get that, for some t > 0, one has that h.x; y; z/ D h.x; y; 0/tz . We
now want to prove that t D 1.

Let Kt be the set of positive harmonic functions h0.x; y; z/ D  0.x; y/t
z with

h0.e/ D 1. Since GC
� D G, the convex set Kt is compact for the pointwise conver-

gence. The element a 2 G acts continuously by “right-translation and renormaliza-
tion” on Kt . By Schauder’s fixed point theorem, this action has a fixed point h0 in
Kt . It can be written as h0.x; y; z/ D rx'0.y/t

z with r > 0. But then one writes
h0.g/ � �ah0.ag/ for all g inG, or equivalently '0.y/ � �ar'0.y/t

y for all y 2 Z.
This proves that t D 1.

When GC
� ¤ G, a second construction is possible.

3.4.2. The functions hS0;�0
induced from a harmonic character. Let S0 � S be

an abelian subset. Denote by �S0
WD

P
s2S0

�sıs the measure restriction of � to S0.
Let �0 be a �S0

-harmonic character of GS0
. We extend �0 as a function

 0 WD �01GS0

onG which is 0 outsideGS0
. This function 0 is�-subharmonic, so that the sequence

P n
� 0 is increasing. We set

hS0;�0
D lim

n!1
P n

� 0:

We can tell exactly for which pairs .S0; �0/ the function hS0;�0
is finite (see [2]). In

this case, the function hS0;�0
is an extremal positive �-harmonic function on G.
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We can now state the extension of Theorem 1.1 to a more general finitely sup-
ported measure � on G.

Theorem 3.8. Let G D H3.Z/ and � a positive measure on G whose finite support
S generates the group G. Then every extremal positive �-harmonic function h on G
is proportional either to a character � ofG or to a translate hS0;�0

ı �g0
of a function

induced from a harmonic character.

Corollary 3.9. Let G D H3.Z/, Z its center, and � a probability measure on G
whose finite support S generates the group G. The following are equivalent.

(i) Every positive �-harmonic function on G is Z-invariant.

(ii) GC
� contains two non-central elements whose product is in Z X ¹0º.

Theorem 3.8 and Corollary 3.9 are proven in the sequel paper [2].
We will also see in [2] that on the nilpotent group of rank 4 with cyclic center,

there exist extremal positive harmonic functions which are neither a harmonic char-
acter nor a function induced from a harmonic character.
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