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Variational regularization in inverse problems and machine
learning

Martin Burger

Abstract. This paper discusses basic results and recent developments on variational regulariza-
tion methods, as developed for inverse problems. In a typical setup we review basic properties
needed to obtain a convergent regularization scheme and further discuss the derivation of quan-
titative estimates respectively the needed ingredients such as Bregman distances for convex
functionals.

In addition to the approach developed for inverse problems, we will also discuss variational
regularization in machine learning and work out some connections to the classical regular-
ization theory. In particular we will discuss a reinterpretation of machine learning problems
in the framework of regularization theory and a reinterpretation of variational methods for
inverse problems in the framework of risk minimization. Moreover, we establish some pre-
viously unknown connections between error estimates in Bregman distances and generalization
errors.

1. Introduction

Regularization methods are an approach of fundamental importance in the solution of
ill-posed problems. Their main paradigm is to approximate an ill-posed problem by a
parametrized family of well-posed problems, with appropriate convergence properties
as the regularization parameter and the so-called noise level tend to zero. The noise
level is a measure for the size of deterministic and stochastic errors in the data, which
are usually the main cause of concern due to the ill-posedness.

A detailed theory of regularization has been developed in the typical setting of
inverse problems, obviously with more precise results in the case of linear forward
models than for nonlinear ones (cf. [3, 20, 24, 54, 56] and references therein). Reg-
ularization is however not only relevant in inverse problems, similar methods are
now routinely used in machine learning, mainly from a practical point of view, with
theoretical results often hidden in the statistical theory of generalization (cf. e.g.
[27, 33, 40]). The role and objective of regularization is less clear and less developed
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in the machine learning domain. In this paper we will thus aim to give a unified
overview and present some links between the formulations and questions in inverse
problems and those in machine learning. We will concentrate on the prominent class
of variational regularization methods, which we interpret in a rather broad way.

2. Regularization theory

In order to present the basic ideas of regularization methods in a rather unified way
for inverse and machine learning problems, we will first adopt a high-level point of
view. Regularization theory is based on the following ingredients.

� An ideal problem respectively an ideal solution u�. We can assume that the ideal
problem is given by a map ˆ W VD ! U, where VD is the space of ideal data and
U is the space of admissible solutions. The typical analysis is confined to Banach
or at least metric spaces.

� A space V � VD of possible data and a measure of noise between the ideal data
v� Dˆ�1.u�/2VD and noisy data v 2V . In the case of an ill-posed problem, the
operator ˆ is not continuous when considered from (a subset of) V to U; it may
be continuous on bounded subsets of VD however. The latter leads to the concept
of conditional stability (cf. [57, 58]) and corresponding stability estimates.

� A family of continuous, possibly multivalued, maps ˆ˛ W V ! P .U/, ˛ 2 A,
such that for a sequence .vn/ � V converging to v� 2 VD , there exists a param-
eter sequence ˛n such that there is un 2 ˆ˛n

.vn/ converging to u� (in a suitable
metrizable topology, possibly weak or weak-star on bounded sets in the Banach
space case). Sometimes the notion of convergence is restricted to subsequences.

To make these notions more concise we will discuss them in the setting of inverse
problems as well as machine learning subsequently.

2.1. Inverse problems

In the typical case of inverse problems, there is first a (continuous) forward operator
F W U ! V , which is typically not invertible and if it is on a subset of V , the inverse
is discontinuous. The set of ideal data is a subset of F.U/, and there the multivalued
operator

ˆ0 W VD ! P .U/; v 7! F �1.v/

can be defined. In order to obtain a unique (generalized) inverse, a further selection
operator † W P .U/ ! U is defined to obtain ˆ WD † ı ˆ0. Let us mention that there
are standard examples of the selection operator such as the minimum norm solution,
but often this issue is treated in a hidden or unprecise way. We refer to [3] for a
detailed discussion of selection operators in inverse problems.
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The standard notion of noise is the perturbation of the data, i.e. v � v�, either as a
deterministic or a stochastic quantity. The norm of v � v� in the Banach space V (or
the expectation of some power of the norm) serves as a definition of the noise level.

The solution of the inverse problem can then be cast as the solution of the ill-
posed operator equation

F.u/ D v

or as the minimization of
D.u/ D L

�
F.u/; v

�
; (2.1)

where L is some distance measure between the predicted data F.u/ and the measured
data v. If statistical information about the noise is available or the forward model
contains other stochastic elements, L is typically a negative log-likelihood functional.

As mentioned above, regularization methods are families of multivalued operators
ˆ˛ WV !P .U/; in most cases the parameter domain A is a subset of the positive real
numbers. The well-posedness of ˆ˛ is characterized by some set-valued continuity,
e.g. if un ! u, then ˆ˛.un/ contains a convergent subsequence and each limit v of a
convergent subsequence satisfies v 2 ˆ˛.u/. In most cases the regularization operator
satisfies a stronger stability estimate of the form

dU .u1; u2/ � C˛dV .v1; v2/ 8u1 2 ˆ˛.v1/; u2 2 ˆ˛.v2/; (2.2)

where dU and dV are appropriate distance measures (that may be degenerate in the
sense that dU .u1; u2/ can vanish also if u1 ¤ u2).

Regularization methods are constructed along several different paradigms.

� Data smoothing or mollifier methods, which are of the form ˆ˛ D F �1 ı M˛ ,
where M˛ W V !VD is a family of mollifying (smoothing) operators into an
appropriate subspace of V on which there exists a continuous inverse of F . In
order to obtain suitable regularization methods, a quite detailed characterization
of the forward operator is needed in order to be sure to construct a mollification to
the right subspace. Consequently, such methods became popular for inverse prob-
lems with well-understood forward operators such as tomography (cf. [43, 44]).

� Direct approximation of the operator F by continuously invertible operators (cf.
[24,37,41,56] and references therein). The construction of approximations is usu-
ally done only in the case of linear forward operators based on modifying (small)
singular vectors or by approximating the normal equation, i.e. F �F . The latter
is however related to the minimization of the least-squares function kF.u/ � vk2

and can thus be viewed as a variational method. Another approach modifying the
forward operator is discretization, the regularization parameter thus being related
to the discretization fineness.
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� Variational methods are based on a perturbation of the likelihood minimization,
with ˆ˛ mapping v to the set of minimizers of

D˛.u/ D L
�
F.u/; v

�
C ˛J.u/

for some regularization functional J that introduces the needed compactness
properties for the existence of minimizers and ˛ 2 RC being the regularization
parameter (cf. [3, 54]).

� Iterative regularization methods use a well-defined iteration method such as a
fixed-point iteration or some descent scheme for the likelihood minimization to
define an approximation of the inverse of F , with the iteration number ˛ 2 N
being the regularization parameter (cf. [14, 24, 34, 35, 49]). Since the majority of
iterative methods, in particular in the nonlinear case, are iterative methods for
variational problems, there is an intimate connection to variational regularization
methods.

� Learned regularization methods are of increasing relevance recently (cf. [1,3] and
references therein), which are categorized into supervised and semi-supervised
approaches. The supervised approach tries to learn the regularization operator
ˆ˛ directly from a collection of pairs of training data .ui ; vi /, e.g. by approx-
imation with a deep neural network. Consistent data pairs are however difficult
to obtain in many inverse problems, in particular with realistic input data ui and
realistic noise in vi . The alternative semi-supervised approach mainly works on
suitable solutions ui , e.g. images for reconstruction tasks, and tries to learn a more
conventional regularization approach, e.g. the regularization functional J in vari-
ational regularization methods. With certain restrictions such as convex networks
those become accessible for theoretical arguments of regularization theory.

Besides providing a well-posed problem for fixed ˛, which often requires some
advanced analysis itself (e.g. existence of minimizers for variational problems), a
major goal of regularization theory is to study the convergence of regularized solu-
tions. While a qualitative convergence theory can be developed under generic condi-
tions, it is well known that a quantitative theory will rely on additional assumptions
on the ideal solution u� due to the underlying ill-posedness. To understand the possi-
bility to derive such estimates and the used assumptions from a generic point of view,
let us consider a sequence of data vn ! v� and a parameter choice ˛n, assuming
that ˛n is a nonnegative scalar sequence converging to zero (e.g. the regularization
parameters in a variational regularization method or ˛n D

1
kn

with kn the maximal
iteration number in an iterative regularization method). Now assume that the stabil-
ity estimate (2.2) holds and that u� satisfies a range condition for the regularization
operator (cf. [3]).
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Definition 2.1. An element u� 2 U is said to satisfy a range condition for the regu-
larization operator ˆ˛ if for all ˛ there exists v�

˛ such that u� 2 ˆ˛.v�
˛/.

Under a range condition we can write

un � u�
2 ˆ˛n

.vn/ � ˆ˛n
.v�

˛n
/

and exploit the stability estimate (2.2) to obtain

dU .u�; un/ � C˛n
dV .v�

˛n
; v�/:

Thus, if we can control the range condition in the sense that we can construct an
element v�

˛n
out of v� such that the distance can be estimated, we directly obtain

an error estimate. This will be made more precise in the next section on variational
regularization methods.

2.2. Learning and risk minimization

In the typical case of machine learning problems (cf. [33,45]) we are given (randomly
sampled) input samples xi 2 X and output samples yi 2 Y, i D 1; : : : ;N , and want to
infer a parametrized map f� W X ! Y reasonably reproducing these training data and
generalizing further to other data of the same kind. These properties are frequently
obtained from risk minimization arguments. Given a loss ` measuring deviations in
the output space, the empirical risk is given by

yR.�/ D
1

N

NX
iD1

`
�
f� .xi /; yi

�
and approximate solutions are constructed as approximate minimizers of yR, e.g. via
variational regularization methods minimizing

D˛.�/ D yR.�/ C ˛J.�/

or by iterative methods such as the gradient descent

�kC1
D �k

� �k yR0.�k/

or even more often by stochastic gradient descent, where the term implicit regulariza-
tion is common (cf. [48]).

Generalization is usually measured by the behavior on the population risk, i.e.

R.�/ D E.x;y/�P

�
`
�
f� .x/; y

��
I
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in particular the generalization error defined by

G.�/ D R.�/ � yR.�/;

evaluated at a regularized solution. Note that the generalization error is actually a
random variable depending on the samples .xi ; yi /

N
iD1, hence it is relevant to consider

its distribution among the random sampling.
The ideal model could be defined in two ways, depending on what variable is

identified to be the relevant one. In any case the ideal solution is perceived as a min-
imizer of the population risk, however one could define u� as the optimal parameter
value or the optimal function. Thus we are led to the following cases.

(i) The first case, corresponding to classical approaches in statistics such as
regression, is to define U as the set of possible parameters, genuinely a
finite-dimensional space (with few generalizations to infinite-dimensional
models recently, cf. [39, 47]). Thus, the ideal solution is given by

��
2 arg min

�2U
R.�/:

(ii) The second case rather corresponds to the perspective of modern learning
theory; it extends the population risk to some function class F and com-
putes for f 2 F

S.f / D E.x;y/�P

�
`
�
f .x/; y

��
:

The ideal solution is given by

f �
2 arg min

f 2F
S.f /:

Another obvious question in this case is how to define the ideal and perturbed
data. We follow a distributional viewpoint and define the ideal data v� as the data
distribution P . Correspondingly, the perturbed data are given by the empirical distri-
bution

P N
D

1

N

NX
iD1

ı.xi ;yi /;

where ız denotes the concentrated measure at z. Thus, the noise level becomes a
distance between (probability) distributions, standard distances such as the total vari-
ation distance or Wasserstein metrics.

The regularization operator ˆ˛ maps from a space of probability distributions to
(a set of) regularized solutions. Take the variational regularization of minimizing D˛

as an example. Then in case (i), ˆ˛ is given by

ˆ˛ W P N
7! arg min

�
D˛.�/;
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while in the second case (ii) we have

ˆ˛ W P N
7!

®
f� j � 2 arg min

�
D˛.�/

¯
:

We finally mention that these models can obviously be generalized, in particu-
lar to the case of further data errors in the samples .xi ; yi /. Then the samples can
be considered to be drawn from a distribution P 0 and the effective error is not just
determined by sampling but also by the distance of P and P 0.

Thus, we see that regularized learning problems can be reformulated in the lan-
guage of regularization theory for inverse problems (see also [12,53]). In turn we will
see that many inverse problems can be reformulated as risk minimization problems,
in particular if there is additional sampling of measurement points.

2.3. Risk minimization formulation of inverse problems

Many inverse problems are dealing with data being functions of a variable x, e.g.
in integral equations of the first kind or tomography, where x is a set of distances
and angles (cf. [46]). Denoting the unknown of the inverse problem by � , we thus
obtain F.�/ as a function of x and denote f .xI �/ D F.�/.x/. Moreover, standard
log-likelihood functionals in this setting are of the form

L
�
F.�/; v

�
D

Z
�

`
�
F.�/.x/; v.x/

�
dx

for some function `. Thus, choosing P D L�ıv.x/, where L� denotes the Lebesgue
measure on �, we obtain

L
�
F.�/; v

�
D E.x;y/�P

�
`
�
F.�/.x/; y

��
D E.x;y/�P

�
`
�
f .xI �/; y

��
:

The ideal problem is thus the minimization of the loss for appropriate data v�.
In a practical setting we have a finite sampling of data with additional noise, which

we consider to be additive for simplicity in the following. This means the practical
data are a finite number N of samples yi D F.�/.xi / C ni , where ni are the noise
samples drawn from some distribution. The practical distribution of samples and data
is of the form

P N
D

1

N

NX
iD1

ıxi
˝ ıF .��/.xi /Cni

;

where the xi are drawn from a prior distribution (usually a deterministic one) and the
ni are drawn from the noise distribution.

Example 2.2. As a simple example consider the inversion of the Radon transform on
a domain � � R2. Then in the standard parametrization we can choose x 2 Œ0; �/ �
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Œ0; L� as the angle and distance to origin of the lines to be integrated on. Correspond-
ingly F.�/.x/ is the line integral of the density function � on the line parametrized
by x. Now let x be drawn from the uniform distribution on Œ0;�/� Œ0;L� and let each
n be drawn from a Gaussian distribution G� with zero mean and finite variance. Then
the population risk becomes

R.�/ D
1

2L�

Z
Œ0;�/�Œ0;L�

Z
R

ˇ̌
F.�/.x/ � F.��/.x/ � n

ˇ̌2
dG� .n/ dx

D
1

2L�

Z
Œ0;�/�Œ0;L�

ˇ̌
F.�/.x/ � F.��/.x/

ˇ̌2
dx C

Z
R

n2 dG� .n/:

Hence, after affine transform with terms independent of � , the population risk equals
the squared L2-distance of the Radon transforms of � and ��, which is the usual data
discrepancy L. The empirical risk on the other hand is of the form

yR.�/ D
1

2N

NX
iD1

ˇ̌
F.�/.xi / � yi

ˇ̌2
;

which is the standard functional minimized in practice.

For a more general noise model one may construct the conditional distribution
for y based on using the appropriate push-forward of the noise distribution based on
applying the noise to F.��/.x/ and an appropriately chosen loss function. Moreover,
errors in the forward model could be included in the stochastic model, which will
imply that even in the ideal model the conditional distribution of y given x is not
concentrated.

3. Variational regularization

In the following we present some key steps in the analysis of iterative regulariza-
tion methods, for the sake of a simpler presentation restricting ourselves to a linear
forward model and a quadratic data fidelity in a Hilbert space, i.e.

D˛.u/ D
1

2
kF u � vk2

C ˛J.u/; (3.1)

where J W U ! R [ ¹C1º is assumed to be convex and proper. Moreover, we
assume V to be a Hilbert space and U a Banach space being the dual of some Banach
space W , with the additional property that the weak-star topology on U is metrizable
on bounded sets. The operator F W U ! V is assumed to be bounded and the adjoint
of a bounded linear operator E W V ! W . With abuse of notation we shall write
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F � D E. Finally, we need some additional property of the regularization functional;
we assume that it is the convex conjugate of some other functional H W W ! R, i.e.

J.u/ D sup
w2W

hu; wi � H.w/:

Let us mention that convex conjugates are weak-star lower semicontinuous, which is
obviously an important property of the functional and can be inferred by similar argu-
ments as the weak lower semicontinuity results in [23]. Finally, a coercivity property
is needed to apply weak-star compactness arguments (based on the Banach–Alaoglu
theorem); we assume that the sublevel sets

MC D
®
u 2 U j J.u/ � C

¯
are bounded in U for C > 0. The final property we need is that J is bounded below;
we can assume directly that J is nonnegative.

There are various important examples in literature motivating the above model
and assumptions. A popular and reasonably easy to compute approach is classical
Tikhonov–Phillips regularization with U being a Hilbert space and

J.u/ D
1

2
kuk2:

Possibly the most prominent example with a variety of applications is total variation
regularization (cf. [16, 19]), i.e. U D BV.�/ and

J.u/ D sup
g2C 1

0
.�/d ; kgk1�1

Z
�

ur � g dL�;

where � � Rd is the domain on which the function to be reconstructed is defined.
There are various variants of total variation, including higher order versions, which
received considerable attention. Another class of important regularization methods
are sparsity-enforcing priors (cf. [50]), in the simplest setup U D `1 and

J.u/ D
X

jui j:

An interesting case in deconvolution problems as well as mean-field approaches to
learning with neural networks is the continuum variant, the total variation norm of
Radon measures (cf. [7, 22]). Here we have U D M.�/ and

J.u/ D sup
w2C0.�/

Z
�

w du:
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3.1. Basic properties of variational regularization methods

A key result, often found for special cases in literature (cf. e.g. [16, 55]), is the exis-
tence of a minimizer and some stability, which verifies the well-posedness of the
regularization operator ˆ˛.v/ WD arg minu D˛.u/.

Theorem 3.1. Under the above assumptions on U, V , F , and J there exists a min-
imizer of D˛.u/ for every v 2 V and every ˛ > 0. Moreover, if ˛ > 0, vn ! v, and
un 2 ˆ˛.vn/, then there exists a weak-star convergent subsequence vnk

and the limit
u of every weak-star convergent subsequence satisfies u 2 ˆ˛.v/.

In general, no uniqueness can be shown under the above conditions, which is any-
way not to be expected for the rather degenerate examples above. However, a weaker
type of uniqueness can be inferred from the convexity and optimality condition

F �.F u � v/ C ˛p D 0; p 2 @J.u/;

where @J.u/ denotes the subdifferential

@J.u/ D
®
w 2 U�

j J.u/ C hw; Qu � ui � J. Qu/ 8 Qu 2 U
¯
:

From the assumptions on F we see that F � effectively maps to the predual space W ,
thus the subgradients in the optimality condition effectively satisfy p 2 W , which is
a weak regularity condition. A key concept needed in the following is the Bregman
distance or generalized Bregman distance (cf. [11, 38]).

Definition 3.2. Let J W U ! R [ ¹C1º be a convex proper functional and let
u; Qu 2 U with p 2 @J.u/. Then the (generalized) Bregman distance d

p
J . Qu; u/ is

defined by
d

p
J . Qu; u/ D J. Qu/ � J.u/ � hp; Qu � ui:

If Qp 2 @J. Qu/, the symmetric Bregman distance d
Qp;p

J . Qu; u/ is defined by

d
Qp;p

J . Qu; u/ D h Qp � p; Qu � ui:

Now assume that there are two minimizers u1 and u2 of the variational regular-
ization problem, then the difference in optimality conditions yields

F �F.u1 � u2/ C ˛.p1 � p2/ D 0

and from a duality product with u1 � u2 we inferF.u1 � u2/
2

C ˛d
p1;p2

J .u1; u2/ D 0:
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Hence, by the nonnegativity of both terms we obtain uniqueness of the output value,
i.e., F u1 D F u2 as well as a vanishing symmetric Bregman distance between u1

and u2.
Finally, we can turn our attention to convergence properties of the regularization

method. For this sake we use an exposition based on �-convergence (cf. [6]).

Lemma 3.3. Let vn ! v� D F u� in V and ˛n ! 0. Then the sequence of functionals
D˛n

defined by

D˛n
.u/ D

1

2
kF u � vnk

2
C ˛nJ.u/

�-converges to

D0.u/ D
1

2
kF u � v�

k
2

with respect to the weak-star topology in U.

This kind of convergence is not strong enough to infer convergence of minimizers,
in particular since there is no equicoercivity property. To achieve this, we need to
rescale the functional, i.e. use �-convergence by development to the next order.

Lemma 3.4. Let vn ! v� D F u� in V and ˛n ! 0 such that

kvn � v�k2

˛n

! 0:

Then the sequence of functionals E˛n
defined by

E˛n
.u/ D

1

2˛n

kF u � vnk
2
C J.u/

�-converges to

E0.u/ D

´
J.u/ if F u D v�;

C1 else;

with respect to the weak-star topology in U.

Let us mention that we obtain divergence, i.e. E˛n
converges to the functional

identically equal to C1, if the condition on the parameter choice is violated, i.e.
lim inf kvn�v�k2

˛n
> 0. Since E˛ � J and J is coercive, we immediately conclude the

equicoercivity of the sequence E˛n
.

Corollary 3.5. Let vn ! v� D F u� in V and ˛n ! 0 such that

kvn � v�k2

˛n

! 0:
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Moreover, let un be a sequence of minimizers of D˛n
(or equivalently E˛n

), then there
exists a subsequence converging with respect to the weak-star topology in U and the
limit u�� of each weakly convergent subsequence is a minimizer of E0. Moreover,
J.un/ ! J.u��/.

Corollary 3.5 confirms that indeed the regularization operator defined by

ˆ˛.v/ D arg min
u

D˛.u/

yields a convergent regularization. Let us mention some further direct consequences.

� If the J -minimizing solution is unique, i.e. u�� is the unique minimizer of E0,
then the whole sequence un converges weakly-star to u��. Moreover, if there is
p�� 2 @J.u/ \ W , then due to the convergence of J and the weak-star conver-
gence we conclude

d
p��

J .un; u��/ ! 0:

� If u� satisfies F u� D v�, but is not a J -minimizing solution (a minimizer of E0),
it cannot be reconstructed by the regularization method, i.e. it is not the limit of
minimizers of the variational regularization for positive ˛. This is related to the
question whether the regularization functional introduces the right type of prior
knowledge. If we are interested in reconstructing a solution like u� that is not
J -minimizing, then J is not a suitable choice.

� If J is the norm in U as in many frequent examples and U satisfies a Radon-
Riesz property, the previous result indeed implies a strong convergence of subse-
quences.

The above analysis was based on a deterministic approach, but in a similar way a
stochastic theory can be developed, e.g. for a sequence of random variables vn with
variance E.kvn � v�k2/ converging to zero.

3.2. Quantitative estimates

As mentioned above, it is important to derive quantitative estimates between solutions
of the regularized problem and ideal solutions, which we present here based on using
range conditions as sketched above. In the following we denote by u˛ a regularized
solution, i.e. a minimizer of D˛ . Due to convexity u˛ 2 ˆ˛.v/ is characterized as the
solution of the optimality condition

F �.F u˛ � v/ C ˛p˛ D 0; p˛ 2 @J.u˛/:

Taking two such solutions one can establish a stability estimate for the Bregman dis-
tance (cf. [3]).
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Theorem 3.6. Let u˛ 2 ˆ˛.v/ and Qu˛ 2 ˆ˛. Qv/. Then the estimate

1

2
kF u˛ � F Qu˛k

2
C ˛d

p˛ ; Qp˛

J .u˛; Qu˛/ �
1

2
kv � Qvk2

holds, where p˛ respectively Qp˛ are the subgradients appearing in the optimality
condition for u˛ respectively Qu˛ .

Now we turn to the range condition, effectively reformulating a result from [15].

Lemma 3.7. An element u� 2 U with v� D F u� satisfies the range condition for the
variational regularization operator ˆ˛ if and only if it satisfies the source condition

9 z�
2 V W F �z�

2 @J.u�/:

The key part of the proof is the explicit construction v�
˛ D v� C ˛z�, which allows

to obtain an estimate of the right-hand side in the error estimate, due to

kv � v�
˛k � kv � v�

k C kv�
� v�

˛k D kv � v�
k C ˛kz�

k:

This leads to the error estimates as derived in [15].

Corollary 3.8. Let u˛ 2 ˆ˛.v/ and let v� D F u�, with u� satisfying the source
condition p� D F �z� 2 @J.u�/. Then the estimate

1

2
kF u˛ � F u�

k
2
C ˛d

p˛ ;p�

J .u˛; u�/ � kv � v�
k

2
C ˛2

kz�
k

2:

In the error estimate we see again the condition on the choice of ˛ needed for
the convergence of regularization methods. While the estimate on the output error
kF u˛ � F u�k is uniform in ˛; the effective estimate for the Bregman distance is of
the form

d
p˛ ;p�

J .u˛; u�/ �
kv � v�k2

˛
C ˛kz�

k
2;

which is small again only if ˛ and the quotient kv�v�k2

˛
are small.

One also observes a bias-variance decomposition inherent in the estimate, even
more clearly when we assume an underlying stochastic noise model, i.e., v is a ran-
dom variable. Without systematic errors in the measurements, we have E.v/ D v�

and hence

E
�
d

p˛ ;p�

J .u˛; u�/
�
�

E
�
kv � v�k2

�
˛

C ˛kz�
k

2:

The measure on the left-hand side is the natural generalization of the mean-squared
error to the case of convex variational regularization, and the right-hand side is com-
posed of the data variance and the bias term kz�k2, scaled by the regularization
parameter.
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Let us mention that the above estimates in Bregman distances lead to estimates in
norms if J satisfies strong convexity conditions (cf. [54]). In the case of not strictly
convex functionals, the Bregman distance can vanish even if u˛ ¤ u�, e.g. in total
variation regularization if they differ by a change of contrast u˛ D h.u/ with a mono-
tone function h, but rather measures a deviation of the discontinuity sets (cf. [3, 16]).
In such cases the multivaluedness of the subdifferential can even be an advantage that
needs to be exploited, since we do not have just a single estimate, but actually an esti-
mate for each p� satisfying a source condition. Estimates for other quantities can then
be derived from the Bregman distance estimates by optimizing over the possible p�

and the associated source elements z� (respectively, their norm appearing in the error
estimates). An example are estimates for the total variation regularization for piece-
wise constant functions; it has been shown already in [15] how the total variation of
u˛ away from the discontinuity set of u� can be estimated by choosing appropriate
subgradients.

Again the above type of conditions and estimates are the canonical ones, but can
be developed much farther (cf. e.g. [2, 25, 26, 28, 30–32, 51, 52, 57]). The first issue
is the question of having better estimates under stronger conditions, and a typical
example is an improved source condition p� D F �F �� 2 @J.u�/ for some �� 2 U.
In this case the element �� can be used to construct an approximate solution u�

˛ D

u� � ˛�� instead of approximate data for a range condition. This was carried out in
[51] (see also [29]) to obtain the estimate

d
p�

J .u˛; u�/ � d
p�

J .u�
� ˛��; u�/ C

kv � v�k2

2˛
:

The exact characterization of d
p�

J .u� � ˛��; u�/ depends on the properties of the
functional and may be on u� itself. For J being Fréchet-differentiable with Lipschitz-
continuous (or Hölder-continuous) derivative, it is always quadratic in ˛; hence the
estimate is of higher order in ˛. For the nonsmooth functionals like total variation
or the `1-norm the situation is different; at a first glance it cannot be expected that
d

p�

J .u� � ˛��; u�/ is of higher order in ˛. However, in such situations we can even
have d

p�

J .u� � ˛��; u�/ D 0 for ˛ small, e.g. in `1 regularization if the support of
�� is contained in the support of u�.

The opposite question of weaker estimates arises if u� does not satisfy the source
condition p� D F �z�. In this case approximate source conditions are used, which
measure the deviation from the source condition. A frequently used concept is the
so-called distance function

D�.p�/ D inf
®
kF �z � p�

k j z 2 V ; kzk � �
¯
;

which is useful in particular under strong convexity assumptions and allows to build a
theory in a similar way by optimizing the value � that finally appears in the error esti-
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mate. For functionals not being strictly convex and in particular the one-homogeneous
cases like total variation, a reformulation in terms of a dual problem is more suitable
as seen in [13]. There the measure

e˛;�.p�/ D inf
z2V

�J �

�
F �z � p�

�

�
C

˛

2
kzk2

was used to derive estimates. One observes some duality to the concept of distance
functions, noticing that for J being a norm in Banach space we just have

e˛;�.p�/ D ˛ inf
®
kzk j z 2 V ; kF �z � p�

k� � �
¯
;

where k�k� is the dual norm to J . It was also shown that approximate source condi-
tions are inherently related to the case of large noise, which is particularly relevant
for stochastic models like white noise having non-finite variance (cf. [5, 13, 36]).

While the literature was focused on asymptotic results for a long time, the spe-
cific shape of solutions at a fixed positive ˛ became a more attractive topic in the last
two decades. In order to understand this issue, a better understanding of the range
condition for the regularization method is needed, which means the source condi-
tion p� D F �z� in the case of variational regularization. Since F is modeled as a
smoothing operator in inverse problems, F � is smoothing as well, which implies that
the source condition is an abstract smoothness condition. However, the smoothness
is rather indirect, since it concerns the subgradient p� and not directly u�. Various
results on the structure of minimizers, from sparsity properties for J D `1 or its coun-
terpart in the space of measures to total variation and staircasing phenomena can be
found in literature (cf. [18, 19]).

Another issue that found strong recent interest is debiasing, since in the case of
large noise the bias caused by the regularization term (and the large value of ˛ that
is needed to achieve stability) spoils the possible quality of regularized solutions.
The influence of bias can also be seen from the term depending on kz�k in the error
estimates, and in practice it is often observed that the reconstruction of the subgradient
is better than the one of the primal solution due to bias. First debiasing methods (also
called refitting) appeared in `1 regularization, where in a first step the variational
regularization is used and in a second step a simple least-squares problem is used
on the support obtained from the first step, sometimes also with a sign constraint as
obtained from the subgradient in the first step (cf. [21, 42]). This approach can be
translated to a more general two-step approach for debiasing as worked out in [8],
which computes

ˆ˛.v/ D arg min
®
d

p˛

J .u; u˛/ j u˛ 2 ˆ0
˛.v/

¯
;

with ˆ0
˛ being the regularization operator from the variational regularization method.
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Another approach effectively leading to debiasing, but also with other advan-
tages, are iterative regularization methods such as the Bregman iteration (cf. [49]). In
the case of a quadratic functional, it can be formulated as an augmented Lagrangian
method for computing the J -minimizing solution of F u D v, i.e.

ukC1
2 arg min

u

1

2
kF u � vk

k
2
C ˛J.u/;

vkC1
D vk

C v � F ukC1;

with v0 D v. To have a suitable generalization also for other loss functionals this can
be reformulated as

ukC1
2 arg min

u

1

2
kF u � vk2

C ˛d
pk

J .u; uk/;

pkC1
D pk

C
1

˛
F �.v � F ukC1/ 2 @J.ukC1/:

The regularization parameter in this case is not ˛, which is to be chosen rather larger
in order to achieve good results, but the number of iterations carried out. Due to the
variational structure in each iteration step, variational methods can be employed to
prove well-definedness of the regularization operator, convergence, and error esti-
mates. We refer to [3, 17, 49] for a detailed discussion of such iterative approaches
and their analysis. Let us finally mention that in this respect there is another rela-
tion to machine learning, since Bregman iterations for `1 regularizations have been
developed further recently for the training of sparse deep neural networks and their
architecture design (cf. [9, 10]).

4. Variational regularization and generalization

In this final part we discuss some possible relations between the setup in machine
learning and the above results on variational regularization theory. In particular we
highlight some connections between the typical error measures used in the two fields,
namely generalization errors on the one hand and Bregman distances on the other.

4.1. Error decomposition and generalization error

Let us return to the setup of machine learning with the minimization of the empirical
risk with a convex loss `, taking the viewpoint that the ideal solution is the function
f �. While we have seen that naturally Bregman distances are estimated in the theory
of variational regularization, the generalization error

G D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�PN

�
`
�
f .xI �/; y

��
is the commonly used quantity in machine learning.
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In order to understand the connections to Bregman distances, consider an ideal
solution f � 2 F minimizing the population risk, i.e.

f �
2 arg min

f 2F
E.x;y/�P

�
`
�
f .x/; y

��
D arg min

f 2F
R�.f /:

Since the population risk is convex with respect to f , we conclude that 0 2 @R�.f �/,
which implies that

d 0
R�

�
f .�; �/; f �

�
D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�P

�
`
�
f �.x/; y

��
:

The latter can be decomposed in a similar spirit to the error decomposition in [4]:

d 0
R�

�
f .�; �/; f �

�
D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�PN

�
`
�
f .xI �/; y

��
C E.x;y/�PN

�
`
�
f .xI �/; y

�
� `

�
f �.x/; y

��
C E.x;y/�PN

�
`
�
f �.x/; y

��
� E.x;y/�P

�
`
�
f �.x/; y

��
:

We see that the Bregman distance is decomposed into three parts: in addition to the
generalization error in the first line, we have an approximation error in the second
line (or rather a term that can be controlled with an approximation error in standard
spaces) and a sampling error in the last line. The approximation error can be esti-
mated beforehand or is often even negligible, since overparametrized models such as
deep neural networks can usually be trained to have E.x;y/�PN .`.f .xI �/; y// � 0

and the second part is nonpositive. Moreover, the last term vanishes on expectation
over the sampling if P N is obtained from i.i.d. samples. Thus, in order to control the
expected Bregman distance, the most important term is indeed the expected general-
ization error.

4.2. Estimates with operator errors and generalization

Errors due to sampling are effectively related to operator errors in inverse problems,
which we see also from Example 2.2, where effectively the operator F is replaced
by an operator zF being the concatenation of F with a random sampling operator.
Moreover, we assume again a source condition of the form p� D F �z� 2 @J.u�/.

The generalization error in this notation is given by (noticing that we might need
to use different norms for the two terms)

G.u/ D kF u � vk2
� k zF u � Qvk2:

Hence, let us start again with the optimality condition of a regularized solution

u˛ 2 arg min
u

1

2
k zF u � Qvk2

C ˛J.u/;
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which is given by

zF �. zF u˛ � Qv/ C ˛p˛ D 0; p˛ 2 @J.u˛/:

Rewriting to

F �F.u˛ � u�/ C ˛.p˛ � p�/ D F �.F u˛ � v/ � zF �. zF u˛ � Qv/ � ˛F �z�;

we are in a position to derive the kind of estimate we are after. A duality product with
u˛ � u� and several applications of Young’s inequality imply

1

4

F.u˛ � u�/
2

C ˛d
p˛ ;p�

J .u˛; u�/ � ˛2
kz�

k
2
C k zF u�

� Qvk2
C

1

2
G.u˛/:

In the case of consistent data, such as obtained from sampling F , we further have
Qv D zF u�; i.e., we obtain in particular

d
p˛ ;p�

J .u˛; u�/ � ˛kz�
k

2
C

1

2˛
G.u˛/:

Thus, the error in the Bregman distance is controlled by the systematic error and the
generalization error.

4.3. Regularized risk minimization problems

The above arguments can be extended to convex risk minimization problems of the
form

D˛.�/ D E.x;y/�PN

�
`
�
f .xI �/; y

�
C ˛J.�/

�
:

For simplicity we assume that the model f is linear, i.e. f .xI �/ D .F �/.x/ with a
linear operator F mapping to an appropriate function space F , and ` is the squared
Euclidean norm. Consequently, we will consider F as a bounded linear operator from
some parameter space ‚ to L2

P .�/m for some domain � � Rd . The ideal solution
�� is a minimizer of the population risk

R.�/ D E.x;y/�P

�.F �/.x/ � y
2�

:

With this setup, the regularization operator is given by

ˆ˛.P N / D arg min
�

E.x;y/�PN

�
1

2

.F �/.x/ � y
2

C ˛J.�/

�
: (4.1)

Moreover, the source condition becomes

p�
D F �z�

2 @J.��/ with z�
2 L2

P .�/m: (4.2)
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Similar to the reasoning in the previous section we can use the optimality condition

E.x;y/�PN

�˝
.F �˛/.x/ � y; F � 0

˛�
D C˛p˛ D 0; p˛ 2 @J.�˛/

for all � 0 2 ‚ to derive the following result.

Theorem 4.1. Let �˛ 2ˆ˛.P N / be defined by (4.1) and let the source condition (4.2)
be satisfied. Then for appropriate p˛ 2 @J.u˛/ the estimate

1

4
E.x;y/�P

�.F �˛/.x/ � .F ��/.x/
2�

C ˛d
p˛ ;p�

J .�˛; ��/

�
1

2
G.�˛/ C ˛2

kz�
k

2
C E.x;y/�PN

�.F ��/.x/ � y
2�

;

with the generalization error

G.�˛/ D E.x;y/�P

�
1

2

.F �˛/.x/ � y
2
�
� E.x;y/�PN

�
1

2

.F �˛/.x/ � y
2
�

:
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