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Some minimization problems for mean field models with
competing forces

Rupert L. Frank

Abstract. We review recent results on three families of minimization problems, defined on
subsets of nonnegative functions with fixed integral. The competition between attractive and
repulsive forces leads to transitions between parameter regimes, where minimizers exist and
where they do not. The problems considered are generalized liquid drop models, swarming
models, and generalized Keller–Segel models.

1. Introduction

In this survey we discuss three families of minimization problems. They are simple
mathematical toy models for physical or biological phenomena. While their origins
are rather different, they share some mathematical similarities and differences and we
think it is worthwhile to look at them side by side.

The common feature of all three problems is that they are of mean-field type. They
involve an “energy” functional that is defined on a subset of nonnegative functions
(“densities”) whose integral is fixed (“total mass”). They are, at least on a heuristic
level, derived from microscopic, many-body models. The densities in the mean-field
models describe the distribution of the microscopic particles in the limit of a large
number of particles, and similarly the energy functionals in our models are obtained
as macroscopic approximations to microscopic energy functionals.

Another common feature of the problems discussed here is that the energy func-
tionals have two contributions that compete with each other. There are attractive
forces that keep the particles together and try to concentrate them and there are repul-
sive forces that push them apart and try to spread them out. Typically, these forces act
on different length scales and one is of short range and the other one of long range
type. The existence of a minimizer can be understood as the forces being in a local
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equilibrium, while the nonexistence typically means that one of the forces dominates
the other.

We are particularly interested in situations where, as a parameter of the problem
is varied continuously, there is either a transition between existence and nonexistence
of minimizers, or a sharp change in the properties of minimizers. A typical parameter
that is varied is the total mass, but in one of the models it is also a parameter describing
the shape of the forces acting between the particles.

The models. Let us be more specific about the three families of models that we will
consider. Throughout, N � 1 is the dimension of the underlying Euclidean space.

For the generalized liquid drop model, depending on a parameter � 2 .0; N /, we
define, for any measurable set � � RN ,

E
gld
�

Œ�� WD Per � C
1

2

“
���

dx dy

jx � yj�
: (1.1)

Here Per� denotes the perimeter in the sense of De Giorgi; see, e.g., [45]. The corres-
ponding minimization problem is, for m 2 .0;1/,

E
gld
�

.m/ WD inf
®
E

gld
�

Œ�� W � � RN measurable, j�j D m
¯
: (1.2)

The original liquid drop model, suggested by Gamow [35] for the description of
atomic nuclei, corresponds to � D 1 in dimension N D 3.

For the flocking model, depending on parameters � 2 .0; N / and ˛ 2 .0;1/, we
define, for any nonnegative, measurable function � on RN ,

E f
�;˛Œ�� WD

1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy: (1.3)

The corresponding minimization problem is, for m 2 .0;1/,

E f
�;˛.m/ WD inf

²
E f

�;˛Œ�� W � 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D m

³
: (1.4)

This model was suggested by Burchard, Choksi, and Topaloglu [7]. It is a simple
model to describe the flocking behavior in stable states of a large group of animals
such as fish or birds.

For the generalized Keller–Segel model, depending on parameters q 2 .0; 1/ and
˛ 2 .0;1/, we define, for any nonnegative function � 2 Lq.RN /,

EgKS
q;˛ Œ�� WD �

Z
RN

�q dx C
1

2

“
RN �RN

�.x/jx � yj˛�.y/ dx dy: (1.5)

The corresponding minimization problem is

EgKS
q;˛ WD inf

²
EgKS

q;˛ Œ�� W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
: (1.6)
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Note that here, in contrast to the two previous problems, we fix the integral of � to
be one. The more general case, where it is fixed to be equal to m, can be reduced
to the present one by scaling. The generalized Keller–Segel model was introduced in
[8] and generalizes the standard Keller–Segel model, which corresponds (after some
rescaling) to the limit cases q D 1 and ˛ D 0 in dimension N D 2.

Competing forces. Let us discuss in which sense in the above models two forces
compete with each other.

In the generalized liquid drop model, the perimeter term corresponds to an attrac-
tive short range force, whereas the double integral term corresponds to a repulsive
long range force. Note that by the isoperimetric inequality (see, e.g., [45])

inf
®

Per � W � � RN measurable, j�j D m
¯
D N

N�1
N jSN�1

j
1
N m

N�1
N

with equality if and only if � is a ball (up to sets of measure zero). On the other hand,
it is easy to see that

inf
²

1

2

“
���

dx dy

jx � yj�
W � � RN measurable, j�j D m

³
D 0

and the infimum is not attained. A minimizing sequence is given, for instance, by
taking � as a union of a large number of small balls placed very far apart from each
other. Next, we note that, by scaling,

E
gld
�

.m/ D inf
²

m
N�1

N Per! Cm
2N��

N
1

2

“
!�!

dx dy

jx � yj�
W ! � RN meas., j!j D 1

³
:

Since .N � 1/=N < .2N � �/=N , the perimeter term is dominant for small m,
whereas the double integral is dominant for large m. We therefore expect existence
of minimizers for small m, whereas for large m we might have nonexistence of mini-
mizers.

In the flocking model, the ˛-term corresponds to an attractive force, while the
�-term corresponds to a repulsive force. Moreover, the ˛-term is relevant on large
distances and the �-term on short ones. By rearrangement inequalities and the bathtub
principle (see, e.g., [41, Theorems 1.14 and 3.7])

inf
²

1

2

“
RN �RN

�.x/ jx � yj˛�.y/dx dy W � 2L1.RN /; 0� � � 1;

Z
RN

�dx Dm

³
is attained if and only if � is the characteristic function of a ball of volume m. More-
over, as a consequence of what we said in the generalized liquid drop model,

inf
²

1

2

“
RN �RN

�.x/�.y/

jx � yj�
dx dy W � 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D m

³
D 0
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and the infimum is not attained. Next, we note that, by scaling,

E f
�;˛.m/ D inf

²
m

2N��
N

1

2

“
RN �RN

�.x/ �.y/

jx � yj�
dx dy

C m
2NC˛

N
1

2

“
RN �RN

�.x/ jx � yj˛�.y/ dx dy W

� 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D 1

³
:

Since .2N � �/=N < .2N C ˛/=N , the ˛-term is dominant for large m and in this
regime we expect existence of minimizers and closeness to the characteristic function
of a ball. We also have

E f
�;˛.m/ D m2 inf

²
1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy W

� 2 L1.RN /; 0 � � � m�1;

Z
RN

� dx D 1

³
:

For small m, we expect that the constraint � � m�1 is irrelevant and that the mini-
mizer is m times the minimizer of the problem

inf
²

1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy W

0 � � 2 L1.RN /;

Z
RN

� dx D 1

³
;

provided that a minimizer for the latter problem exists and is bounded.
Finally, in the generalized Keller–Segel model, the Lq term corresponds to a

repulsive short range force, whereas the double integral term corresponds to an attrac-
tive long range force. Note that

inf
²
�

Z
RN

�q dx W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
D �1:

A minimizing sequence is given, for instance, by a sequence that spreads out like
`�N �.x=`/ with ` ! 1. On the other hand,

inf
²

1

2

“
RN �RN

�.x/ jx � yj˛�.y/ dx dy W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
D 0

and the infimum is not attained. A minimizing sequence is given, for instance, by a
delta sequence `�N �.x=`/ with ` ! 0. Since, as we already mentioned, in this model
the dependence on the total mass is trivial, we are looking here for a transition in
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terms of the parameters q and ˛. Intuitively, the repulsive force is stronger the smaller
q and the attractive force is stronger the larger ˛. The above examples suggest that
two mechanisms for the nonexistence of a minimizer are conceivable, namely both
spreading out and concentration of minimizing sequences.

Structure of the paper. In the following three sections we summarize what is known
about the three families of minimization problems. The presentation will be rather
compact and we refer to the original papers for the proofs. We do, however, empha-
size several open questions concerning each model. In a short appendix, we provide
details for a simple, unpublished result in the one-dimensional generalized liquid drop
model.

2. The generalized liquid drop model

In this section, we consider the energy functional (1.1) and the corresponding mini-
mization problem (1.2). We assume throughout that 0 < � < N .

Let us set, for fixed � and N ,

m� WD

�
21=N � 1

1 � 2�.N��/=N

Per B1

1
2

’
B1�B1

jx � yj�� dx dy

�N=.N��C1/

jB1j;

where B1 denotes the unit ball in RN . The number m� is the unique solution m > 0

of the equation

E
gld
�

"�
m

jB1j

�1=N

B1

#
D 2E

gld
�

"�
m

2jB1j

�1=N

B1

#
: (2.1)

Thus, the energy of a ball of mass m� is equal to the energy of two balls, each of mass
m�=2, placed infinitely far apart. For m < m� one has < instead of D in (2.1) and for
m > m� one has >.

In the physics literature, it is typically taken for granted that in the special case
� D 1 and N D 3, balls are minimizers for E

gld
�

.m/ for m � m� and there is no
minimizer for m > m�. In the mathematics literature, this appears explicitly as a
conjecture in the work of Choksi and Peletier [12, 13].

One may wonder whether the analogous conjecture is valid in the general case
0 < � < N . In dimension N D1, this is indeed the case, as can be verified by elemen-
tary computations; see Appendix A. It is shown in [37, 3] that for any N � 2 there is
a �c > 0 such that for all 0 < � < �c the conjecture is true; see [46] for an explicit
lower bound on �c for N D 2. In the remaining cases, the validity or invalidity of the
conjecture is open.

Existence. As a first step towards this conjecture, before asking whether minimizers
for E

gld
�

.m/ are balls for all m � m�, it is natural to ask whether minimizers exist for
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all m�m�. This is indeed the case, as shown in [31]. Moreover, it is shown there as
well that if there are no minimizers for m>m�, then balls are minimizers for m�m�.

The proof of [31] proceeds by verifying that for any m < m� one has the strict
binding inequality

E
gld
�

.m/ < E
gld
�

.m0/ C E
gld
�

.m � m0/ for all 0 < m0 < m:

According to a compactness result in [26] this implies the existence of a minimizer
for E

gld
�

.m/ for m � m�.

Uniqueness. We address the question of whether balls are minimizers. A convexity
argument due to Bonacini and Cristoferi [3, Theorem 2.10] shows that there is a
number mball

c 2 Œ0;1/ [ ¹1º (depending on � and N ) such that for m < mball
c balls

are the unique minimizers of E
gld
�

.m/, for m D mball
c > 0 balls are minimizers of

E
gld
�

.m/, and for m > mball
c balls are not minimizers of E

gld
�

.m/. (This part of [3]
does not use the assumption � < N � 1.)

An important result is that mball
c > 0, that is, for small m > 0 balls are minimizers

for E
gld
�

.m/. In the full parameter regime, this result is due to [21], extending earlier
results in [37,38,36,3]. The proofs in these papers are based directly or indirectly on
the quantitative form of the isoperimetric inequality (see [33] and also [22, 15]) and
the regularity theory for quasiminimizers of the perimeter (see, e.g., [45, Part III]).
As far as we are aware, these proofs use compactness arguments and do not give a
numerical lower bound on mball

c .
On the other hand, one can show that mball

c < 1, that is, for large m > 0 balls are
not minimizers for E

gld
�

.m/. Indeed, setting

mstab
c WD

�
N C 1

�.N � �/

Per B1

1
2

’
B1�B1

jx � yj�� dx dy

�N=.N��C1/

jB1j;

one finds that for m < mstab
c the ball is stable against small volume-preserving per-

turbations and for m > mstab
c it is unstable. (Stability here means that the Hessian is

positive definite except for zero modes coming from translations. Instability means
that the Hessian is not positive semidefinite.) This computation goes back to Bohr
and Wheeler [2] for N D 3, � D 1 and can be found in the general case in [3, 21].
Clearly, mball

c � mstab
c , so the former quantity is indeed finite.

Nonexistence. Let us discuss the nonexistence of minimizers for E
gld
�

.m/. For fixed
� and N we set

mn:e:
c WD sup

®
m > 0 W there is a minimizer for E

gld
�

.m/
¯
:

Then, if � � 2 (and � < N , as always), one can show that mn:e:
c < 1, that is, there

is no minimizer for large m. This is due to [37, 38, 43, 31]. It seems to be unknown
whether mn:e:

c is finite or not for 2 < � < N .
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In [25], it is shown that for �D 1, N D 3, one has mn:e:
c � 8. This is to be compared

with mstab
c D 10 for these values of � and N . Thus there is a regime 8 < m < 10, where

balls are stable local minimizers, but not global minimizers. For comparison, for these
values of � and N one has m� D 5.21=3 � 1/=.1 � 2�2=3/ � 3:512.

Problem 2.1. For N D 3 and � D 1, show that balls are minimizers for m � m� and
there are no minimizers for m > m�. In which parameter region of �’s and N ’s is the
analogous conjecture valid?

The following two problems are special cases of the previous one.

Problem 2.2. Do there exist minimizers for E
gld
�

.m/ for arbitrarily large m in case
2 < � < N ?

Problem 2.3. Find an explicit numerical lower bound on mball
c , in particular, in the

case N D 3 and � D 1.

We conclude this section by briefly mentioning two further, related models.
The first one concerns the liquid drop model in the presence of a neutralizing

background. This problem is motivated, for instance, by the physics of neutron stars
and there are interesting mathematical questions; see, e.g., [39]. For simplicity we
focus here on the case � D N � 2 in dimension N � 3, although there are similar
versions in dimensions N D 1; 2 [29]. For a (large) parameter L > 0 one sets ƒL WD

.0; L/N and considers the minimization problem

EL.�/ WD inf
²

Per � C
1

2

“
ƒL�ƒL

�
1�.x/ � �

��
1�.y/ � �

�
jx � yjN�2

dx dy W

� � ƒL; j�j D �jƒLj

³
:

(Sometimes, the kernel jx � yj�NC2 is replaced by a constant multiple of the periodic
or Neumann Green’s function of the Laplacian and the perimeter is replaced by its
periodic version or a relative perimeter, but this does not qualitatively change the
results discussed below.)

A major open problem is to prove that (for N D 3, for simplicity) there are
0 < �c1 < �c2 < 1=2 such that the following holds approximately for minimizers for
EL.�/ for large L > 0 “in the bulk”: for 0 < � < �c1, minimizers are periodic with
respect to a three-dimensional lattice, for �c1 < � < �c2, minimizers are periodic with
respect to a two-dimensional lattice, and for �c2 < � � 1=2, minimizers are periodic
with respect to a one-dimensional lattice. For 1=2 < � < 1, the situation reverses,
with 1 � � replacing �. This would correspond to what is known as “nuclear pasta”
phases in astrophysics.
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A fundamental result by Alberti, Choksi, and Otto [1] gives precise bounds on
the energy distribution of minimizers that are indicative of the emergence of a regular
(e.g., periodic) structure. More precise results about the structure of minimizers are
restricted only to the dilute regime. The case � � L�3 is treated in [12] (see also [16]
and references therein), the case � � L�2 in [39], and the case � � 1 (independently
of L) in [20].

The second generalization of the generalized liquid drop model concerns the addi-
tion of an external potential V ,

inf
²

E
gld
�

Œ�� C

Z
�

V dx W � � RN measurable, j�j D m

³
:

Lu and Otto [44] suggested this model with V.x/ D �Zjxj�1 in N D 3, � D 1 as
a toy problem for the ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker
theory and proved that there is no minimizer for m � Z C C max¹1; Z2=3º. Nonexis-
tence for m � Z C C max¹1; Z1=3º, as well as the ionization conjecture in Thomas–
Fermi–Dirac–von Weizsäcker theory were proved in [32]. For more on the ionization
conjecture, also for more complicated models, we refer to [47].

Finally, returning to the standard liquid drop model with � D 1 and N D 3, we
mention the open problem to make the global bifurcation picture of Bohr and Wheeler
[2] rigorous. For an initial local bifurcation result, see [23].

3. A simple model for flocking

In this section, we consider the energy functional (1.3) and the corresponding mini-
mization problem (1.4). We assume throughout that 0 < � < N and ˛ > 0.

It is easy to see that there is a minimizer of E f
�;˛

.m/ for any m > 0 [11]. We would
like to understand properties of minimizers and, in particular, qualitative changes in
these properties as m varies. For instance, one is interested in the existence of the
following three “phases” [27]. A first, “liquid” phase occurs when any minimizer
� for E f

�;˛
.m/ satisfies � < 1 almost everywhere. A second, “intermediate” phase

occurs when there is a minimizer � for E f
�;˛

.m/ such that ¹0 < � < 1º has positive
measure strictly less than m. A third, “solid” phase occurs when any minimizer � for
E f

�;˛
.m/ satisfies � D 1 almost everywhere.

Some initial results. The case N � 3, � D N � 2, and ˛ D 2 can be solved explicitly
[7] and one finds that there is an explicit mN 2 .0;1/ such that the unique (up to
translations) minimizer for E f

�;˛
.m/ is a multiple of the characteristic function of a

ball of measure mN if m � mN and the characteristic function of a ball of measure
m if m > mN . In particular, in this special case, the second, intermediary phase does
not occur.
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In the case 2 � ˛ � 4 (and any N � 1 and 0 < � < N ), one can show that for any
m > 0 minimizers of E f

�;˛
.m/ are unique up to translations [42] and, in particular,

radially symmetric. This relies on an interesting convexity argument. Moreover, the
case N D 3, � D 1, and ˛ D 4 is explicitly solved in [42]. In particular, there are
critical constants 0 < m0 < m00 < 1 such that the system is in phase one for m � m0,
in phase two for m0 < m < m00, and in phase three for m � m00.

Small m regime. In [27], it is shown that for N D 3 and � D 1 (and any ˛ � 1) there
is an m� > 0, depending on ˛, such that for all m < m� any minimizer � of E f

1;˛.m/

satisfies � < 1 almost everywhere. This result extends, with the same proof, to the
case � D N � 2 in arbitrary dimension N � 3.

The proof relies on the fact, due to [10], that for � D N � 2 minimizing measures
of the problem

E�;˛ WD inf
²

1

2

“
RN �RN

�
jx�yj��

Cjx�yj˛
�
d�.x/d�.y/ W �2P.RN /

³
(3.1)

are absolutely continuous with respect to Lebesgue measure with a bounded density.
Here P.RN / denotes the set of Borel probability measures on RN . More precisely,
one needs a bound on the density depending only on N and ˛.

There are also results in [10] concerning the problem E�;˛ for 0�N � 2 < � < N

and certain assumptions on ˛. Using these results, one should be able to prove that for
certain N , �, ˛, there is an m0

� > 0, depending on N , �, ˛, such that for all m < m0
�

there are minimizers � of E f
�;˛

.m/ satisfying � < 1.

Large m regime. Under the assumption � < N � 1, it is shown in [30] that there
is an m� < 1, depending on N , �, ˛, such that for m > m� the only minimizers of
E f

�;˛
.m/ are characteristic functions of balls. The assumption on � is optimal in the

sense that for N � 1 � � < N and any m > 0, balls are not even critical points for
the problem E f

�;˛
.m/.

The results in [30] improve earlier results in [7] for ˛ D 2 and in [27] for � D

N � 2, obtained by different methods.
The technique used in [30] is that of symmetric decreasing rearrangement and,

more precisely, a quantitative version of the Riesz rearrangement inequality. This
quantitative version is due to M. Christ [14], with some minor extensions and a par-
tially alternate proof in [28]. As an aside, we mention that from the quantitative
Riesz rearrangement inequality one can derive quantitative rearrangement inequal-
ities for Riesz potentials. Those were proved, simultaneously and independently, in a
restricted range in [34]; see also [4, 48, 5].

Let us conclude this section by mentioning some open problems. Relatively little
seems to be known about minimizers of E f

�;˛
.m/ outside of the asymptotic regimes

m ! 0 and m ! 1.
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Problem 3.1. Study qualitative properties of minimizers of E f
�;˛

.m/.

Concrete questions to be studied are, for instance, the following. Known examples
of minimizers are radially symmetric. Can symmetry breaking occur? For arguments
in favor of this, see [6]. Is the support of a minimizer convex? As m increases, do the
regions ¹� > 0º and ¹� D 1º increase (fixing the center of mass, for instance), where
� is a minimizer? Are minimizers concave or convex on their supports for ˛ < 2 and
˛ > 2, respectively?

In view of the above small m results, it would be interesting to better understand
the case 0 < � < N � 2. We consider the minimization problem (3.1) and wonder
whether the result from [10] extends to 0 < � < N � 2. An affirmative answer would
be related to the existence, for small m, of minimizers � for E f

�;˛
.m/ with � < 1

almost everywhere. Examples, however, suggest that the answer might be negative.

Problem 3.2. For 0 < � < N � 2, are minimizers � of E�;˛ absolutely continuous
with respect to Lebesgue measure with a bounded density?

In view of the large m results for � < N � 1, it seems interesting to investigate
in more detail the case N � 1 � � < N . We expect that minimizers for large m have
values close to one in a large core region and then drop down to zero in a relatively
small region. It would be interesting to find the scaling behavior of these regions and,
if possible, the transition profile.

Problem 3.3. For N � 1 � � < N study the shape of minimizers of E f
�;˛

.m/ for
large m.

The dynamical problem. The energy function E f
�;˛

considered on functions 0 �

� � 1 leads via a formal Wasserstein-2 gradient flow to an evolution equation called
the constrained aggregation equation; see [17, 18]. It would be interesting to under-
stand the long time behavior of solutions to this equation. In particular, for � < N � 1

and large m such that characteristic functions of balls are the only optimizers for
E f

�;˛
.m/, one might wonder whether the solution approaches the characteristic func-

tion of a ball for large times.

4. The generalized Keller–Segel model

In this section, we consider the energy functional (1.5) and the corresponding mini-
mization problem (1.6). We assume throughout that 0 < q < 1 and ˛ > 0. We sum-
marize the results from [8, 9].

The basic fact is that E
gKS
q;˛ D �1 for 0 < q � N=.N C ˛/ and E

gKS
q;˛ > �1 for

N=.N C ˛/ < q < 1 [8, Proposition 20]. Thus, in the following discussion we will
always assume that q > N=.N C ˛/.
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It is known and elementary that the case ˛ D 2 (and any N=.N C 2/ < q < 1)
can be solved explicitly by expanding the square jx � yj2 and setting the center of
mass to zero; see [8, Corollary 6 and Proposition 20]. We comment below on the case
˛ D 4, which can also be solved to some extent.

It is deeper that the case q D 2N=.2N C ˛/ can be solved explicitly as well. This
was observed by Dou and Zhu [19], who discovered a conformal symmetry in this
case, similarly as in Lieb’s work on the Hardy–Littlewood–Sobolev inequality [40].
The case q D 2N=.2N C ˛/ is also of some conceptual importance. If we reinstate
the mass in the variational problem (1.6) and define E

gKS
q;˛ .m/ in the natural way, then

EgKS
q;˛ .m/ D m

2N�.2NC˛/q
N�˛�Nq EgKS

q;˛ :

Thus, for q D 2N=.2N C ˛/, E
gKS
q;˛ .m/ is independent of m. As we will see, there are

differences between the cases q > 2N=.2N C ˛/ and q < 2N=.2N C ˛/.

Existence in the superconformal case. In the case 2N=.2N C ˛/ < q < 1, there is a
minimizer for E

gKS
q;˛ [8, Proposition 8], and any minimizer is radially symmetric with

respect to some point, nonincreasing with respect to the distance from this point and
positive almost everywhere [8, Lemma 9]. Symmetric decreasing rearrangment plays
an important role in the proof of existence and in the derivation of the properties of
minimizers.

Existence and nonexistence in the subconformal case. The case N=.N C ˛/ <

q < 2N=.2N C ˛/ is less understood and there are some open questions about the
existence of minimizers. A brief summary of the results in this case is as follows.
Either there is a minimizer or there is no minimizer, but instead a generalized mini-
mizer. The latter consists of a symmetric nonincreasing function together with a Dirac
delta measure at the center of symmetry. Moreover, sufficient conditions for the exis-
tence of a “proper” minimizer were given in [8]. The fact that in some cases there
are no minimizers, but only generalized minimizers, was shown in [9]. The exis-
tence of a generalized minimizer can be understood as a partial mass concentration
phenomenon. We find the appearance of this phenomenon in such a model rather
surprising.

Let us be more specific. For N=.N C ˛/ < q < 2N=.2N C ˛/, we consider the
relaxed functional, defined on pairs .�; M/, where 0 � � 2 Lq.RN / and M > 0,

E rgKS
q;˛ Œ�; M � WD �

Z
RN

�q dx C
1

2

“
RN �RN

�.x/jx � yj˛�.y/ dx dy

C M

Z
RN

jxj˛�.x/ dx: (4.1)
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The corresponding minimization problem is

E rgKS
q;˛ WD inf

²
E rgKS

q;˛ Œ�� W 0 � � 2 Lq.RN /; M � 0;

Z
RN

� dx C M D 1

³
: (4.2)

Intuitively, the energy E
rgKS
q;˛ Œ�; M � corresponds to the energy functional E

gKS
q;˛ evalu-

ated at � plus a Dirac delta measure of mass M at the origin. Making this intuition
rigorous, one finds that [8, equation (5)]

E rgKS
q;˛ D EgKS

q;˛

and that E
gKS
q;˛ has a minimizer if and only if E

rgKS
q;˛ has a minimizer .��; M�/ with

M� D 0. Moreover, the same arguments as those applied for q > 2N=.2N C ˛/ imply
that E

rgKS
q;˛ has a minimizer [8, Proposition 10] and that for any minimizer .��; M�/

the function �� is radially symmetric with respect to some point, nonincreasing with
respect to the distance from this point and positive almost everywhere [8, Lemma 9].

In view of the above discussion, for N=.N C ˛/ < q < 2N=.2N C ˛/, the prob-
lem of existence of minimizers for E

gKS
q;˛ is equivalent to the existence of a minimizer

.��; M�/ for the problem E
rgKS
q;˛ with M� D 0. In [8], we gave sufficient conditions

for this. Namely, for N D 1; 2, there is always a minimizer for E
gKS
q;˛ . The same is true

for N � 3 and ˛ � 2N=.N � 2/. If N � 3 and ˛ > 2N=.N � 2/, this is true provided
q � 1 � 2=N [8, Proposition 11].

In [9], the case ˛ D 4 was analyzed and an example of a minimizer for E
rgKS
q;˛

with M� > 0 was given. More precisely, it was shown that, for N � 6, the problem
E

rgKS
q;4 has a minimizer with M� > 0 if q < .N � 2/.3N C 4/=..N C 2/.3N //. More-

over, this result is optimal, in the sense that, for N � 6 and q � .N � 2/.3N C 4/=

..N C 2/.3N //, as well as for N � 5, every minimizer of the problem E
rgKS
q;4 has

M� D 0. The proof is based on a semiexplicit solution.
The paper [9] contains also numerical experiments that are consistent with the

appearance of minimizers with M� > 0 for E
rgKS
q;4 . This concentration phenomenon

seems to be more pronounced for larger N , smaller q, and larger ˛.

Problem 4.1. Prove the existence of a “large” region of parameters q; ˛ for which
E

rgKS
q;˛ has a minimizer .��; M�/ with M� > 0.

Uniqueness. Uniqueness (up to translations) of minimizers, including minimizers of
the relaxed functional, is known in two regimes, namely for 2 � ˛ � 4 and for ˛ � 1

and q � 1 � 1=N [8, Theorem 27]. The first result follows by a small generalization
of a proof by Lopes [42], and the latter by the standard tool of displacement convexity
in optimal mass transport.
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The dynamical problem. The energy functional E
gKS
q;˛ or, more precisely, its rescaled

version

�
1

1 � q

Z
RN

�q dx C
1

2˛

“
RN �RN

�.x/jx � yj˛�.y/ dx dy (4.3)

appears in connection with the aggregation-diffusion equations

@t� D ��q
Cr �

�
�r.W � �/

�
; W.x/ D ˛�1

jxj˛: (4.4)

Indeed, this time-dependent equation is the formal gradient flow with respect to the
Wasserstein-2 distance of the free energy functional (4.3). Minimizers or, more gen-
erally, critical points of the free energy functional, restricted to probability densities,
should play an important role for the long time behavior of solutions of (4.4). It seems
particularly interesting to investigate whether in the dynamical setting there is a con-
centration effect similar to what we have seen for minimizing sequences for E

gKS
q;˛

in case there is no minimizer, or equivalently there is a minimizer for E
rgKS
q;˛ with

M� > 0.

Problem 4.2. Investigate the long time behavior of solutions of (4.4) in the case
where E

rgKS
q;˛ has a minimizer with M� > 0.

To conclude this section, we mention that while we have focused on the free
energy functional (4.3) in the case ˛ > 0 and 0 < q < 1, it has been studied for all
q > 0 and ˛ > �N . (Here we use the convention that ˛�1jx � yj˛ is understood
as ln jx � yj for ˛ D 0 and .1 � q/�1�q is understood as �� ln � for q D 1.) The
nonexistence phenomenon via partial mass concentration that we discussed above,
however, appears at most in the region ˛ > 0 and 0 < q < 1. The case ˛ > 0 and
q � 1 is treated in [8, Appendix B]. For N D 2, q D 1, and ˛ D 0 one obtains the
original Keller–Segel free energy functional.

A. The generalized liquid drop model in 1D

In this appendix, we consider the minimization problem E
gld
�

.m/ in the generalized
liquid drop model for 0 < � < 1 in dimension N D 1. We will show that for m � m�,
single intervals are the unique (up to sets of measure zero) minimizers and for m > m�

there are no minimizers. The computations are elementary.
It is well known (see, e.g., [45, Proposition 12.13]) that any set in R of finite

measure and finite perimeter coincides, up to sets of measure zero, with a finite num-
ber of bounded intervals with disjoint closures. Moreover, the perimeter is twice the
number of intervals. Clearly, if there is more than one interval, these intervals want to
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be infinitely far apart. Therefore,

E
gld
�

.m/ D inf

´
2K C

1

2

KX
kD1

Z mk=2

�mk=2

Z mk=2

�mk=2

dx dy

jx � yj�
W K 2 N;

KX
kD1

mk D m

µ

D inf

´
2K C

1

.1 � �/.2 � �/

KX
kD1

m2��
k W K 2 N;

KX
kD1

mk D m

µ
D inf

K2N

�
2K C

1

.1 � �/.2 � �/
K�1C�m2��

�
and there is a minimizer if and only if the infimum occurs at K D 1. Here we used

KX
kD1

m2��
k � K�1C�

 
KX

kD1

mk

!2��

(with equality if and only if all mk are equal). The infimum is attained at K D 1 if
and only if 2 C .1 � �/�1.2 � �/�1m2�� � 2K C .1 � �/�1.2 � �/�1K�1C�m2��

for all K � 2, which is the same as

m �

�
2.1 � �/.2 � �/ inf

K�2

K � 1

1 � K�1C�

�1=.2��/

D

�
2.1 � �/.2 � �/

1 � 2�1C�

�1=.2��/

D m�:

Here we used the fact that � 7! .� � 1/=.1 � ��1C�/ is increasing on .1;1/. This
proves the claimed result.

Acknowledgments. The author would like to thank the organizers of the 8th Euro-
pean Congress of Mathematics for the organization of the meeting and for the invita-
tion to speak. Since the topic of his invited talk was recently and rather exhaustively
reviewed in [24], this contribution is based on a talk in a minisymposium at the
congress, organized by L. Pick, to whom the author is very grateful. The results
reviewed here were obtained in collaboration with many researchers and it is a plea-
sure to thank, in particular, José Carrillo, Matías Delgadino, Jean Dolbeault, Franca
Hoffmann, Rowan Killip, Mathieu Lewin, Elliott Lieb, and Phan Thành Nam for
many stimulating discussions.

Funding. This research was supported in part by NSF grants DMS-1363432 and
DMS-1954995 and the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy EXC-2111-390814868.



Some minimization problems 291

References

[1] G. Alberti, R. Choksi, and F. Otto, Uniform energy distribution for an isoperimetric prob-
lem with long-range interactions. J. Amer. Math. Soc. 22 (2009), no. 2, 569–605
Zbl 1206.49046 MR 2476783

[2] N. Bohr and J. A. Wheeler, The mechanism of nuclear fission. Phys. Rev. (2) 56 (1939),
426–450 Zbl 0022.19003

[3] M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperi-
metric problem on RN . SIAM J. Math. Anal. 46 (2014), no. 4, 2310–2349
Zbl 1301.49114 MR 3226747

[4] A. Burchard and G. R. Chambers, Geometric stability of the Coulomb energy. Calc. Var.
Partial Differential Equations 54 (2015), no. 3, 3241–3250 Zbl 1331.26034
MR 3412409

[5] A. Burchard and G. R. Chambers, A stability result for Riesz potentials in higher dimen-
sions. 2020, arXiv:2007.11664

[6] A. Burchard, R. Choksi, and E. Hess-Childs, On the strong attraction limit for a class of
nonlocal interaction energies. Nonlinear Anal. 198 (2020), 111844 Zbl 1443.49021
MR 4083145

[7] A. Burchard, R. Choksi, and I. Topaloglu, Nonlocal shape optimization via interactions
of attractive and repulsive potentials. Indiana Univ. Math. J. 67 (2018), no. 1, 375–395
Zbl 1402.49033 MR 3776026

[8] J. A. Carrillo, M. G. Delgadino, J. Dolbeault, R. L. Frank, and F. Hoffmann, Reverse
Hardy–Littlewood–Sobolev inequalities. J. Math. Pures Appl. (9) 132 (2019), 133–165
Zbl 1442.35011 MR 4030251

[9] J. A. Carrillo, M. G. Delgadino, R. L. Frank, and M. Lewin, Fast diffusion leads to partial
mass concentration in Keller-Segel type stationary solutions. Math. Models Methods Appl.
Sci. 32 (2022), no. 4, 831–850 Zbl 07544556 MR 4421218

[10] J. A. Carrillo, M. G. Delgadino, and A. Mellet, Regularity of local minimizers of the
interaction energy via obstacle problems. Comm. Math. Phys. 343 (2016), no. 3, 747–781
Zbl 1337.49066 MR 3488544

[11] R. Choksi, R. C. Fetecau, and I. Topaloglu, On minimizers of interaction functionals with
competing attractive and repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire
32 (2015), no. 6, 1283–1305 Zbl 1329.49019 MR 3425263

[12] R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer prob-
lem: I. Sharp-interface functional. SIAM J. Math. Anal. 42 (2010), no. 3, 1334–1370
Zbl 1210.49050 MR 2653253

[13] R. Choksi and M. A. Peletier, Small volume-fraction limit of the diblock copolymer prob-
lem: II. Diffuse-interface functional. SIAM J. Math. Anal. 43 (2011), no. 2, 739–763
Zbl 1223.49056 MR 2784874

[14] M. Christ, A sharpened Riesz–Sobolev inequality. 2017, arXiv:1706.02007

https://zbmath.org/?q=an:1206.49046&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2476783
https://zbmath.org/?q=an:0022.19003&format=complete
https://zbmath.org/?q=an:1301.49114&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3226747
https://zbmath.org/?q=an:1331.26034&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3412409
https://arxiv.org/abs/2007.11664
https://zbmath.org/?q=an:1443.49021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4083145
https://zbmath.org/?q=an:1402.49033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3776026
https://zbmath.org/?q=an:1442.35011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4030251
https://zbmath.org/?q=an:07544556&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4421218
https://zbmath.org/?q=an:1337.49066&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3488544
https://zbmath.org/?q=an:1329.49019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3425263
https://zbmath.org/?q=an:1210.49050&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2653253
https://zbmath.org/?q=an:1223.49056&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2784874
https://arxiv.org/abs/1706.02007


R. L. Frank 292

[15] M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperi-
metric inequality. Arch. Ration. Mech. Anal. 206 (2012), no. 2, 617–643
Zbl 1257.49045 MR 2980529

[16] M. Cicalese and E. Spadaro, Droplet minimizers of an isoperimetric problem with long-
range interactions. Comm. Pure Appl. Math. 66 (2013), no. 8, 1298–1333
Zbl 1269.49085 MR 3069960

[17] K. Craig, I. Kim, and Y. Yao, Congested aggregation via Newtonian interaction. Arch.
Ration. Mech. Anal. 227 (2018), no. 1, 1–67 Zbl 1384.35136 MR 3740370

[18] K. Craig and I. Topaloglu, Aggregation-diffusion to constrained interaction: minimizers
& gradient flows in the slow diffusion limit. Ann. Inst. H. Poincaré Anal. Non Linéaire 37
(2020), no. 2, 239–279 Zbl 1436.49015 MR 4072808

[19] J. Dou and M. Zhu, Reversed Hardy–Littewood–Sobolev inequality. Int. Math. Res. Not.
IMRN 2015 (2015), no. 19, 9696–9726 Zbl 1329.26033 MR 3431607

[20] L. Emmert, R. L. Frank, and T. König, Liquid drop model for nuclear matter in the dilute
limit. SIAM J. Math. Anal. 52 (2020), no. 2, 1980–1999 Zbl 1439.81090 MR 4089505

[21] A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and stability prop-
erties of balls with respect to nonlocal energies. Comm. Math. Phys. 336 (2015), no. 1,
441–507 Zbl 1312.49051 MR 3322379

[22] A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative
isoperimetric inequalities. Invent. Math. 182 (2010), no. 1, 167–211 Zbl 1196.49033
MR 2672283

[23] R. L. Frank, Non-spherical equilibrium shapes in the liquid drop model. J. Math. Phys. 60
(2019), no. 7, 071506, 19 Zbl 1416.81223 MR 3981098

[24] R. L. Frank, The Lieb–Thirring inequalities: recent results and open problems. In Nine
Mathematical Challenges, pp. 45–86, Proc. Sympos. Pure Math. 104, Amer. Math. Soc.,
Providence, RI, 2021 MR 4337417

[25] R. L. Frank, R. Killip, and P. T. Nam, Nonexistence of large nuclei in the liquid drop
model. Lett. Math. Phys. 106 (2016), no. 8, 1033–1036 Zbl 1347.49069 MR 3520116

[26] R. L. Frank and E. H. Lieb, A compactness lemma and its application to the existence of
minimizers for the liquid drop model. SIAM J. Math. Anal. 47 (2015), no. 6, 4436–4450
Zbl 1332.49042 MR 3425373

[27] R. L. Frank and E. H. Lieb, A “liquid-solid” phase transition in a simple model for swarm-
ing, based on the “no flat-spots” theorem for subharmonic functions. Indiana Univ. Math.
J. 67 (2018), no. 4, 1547–1569 Zbl 1420.49040 MR 3853918

[28] R. L. Frank and E. H. Lieb, A note on a theorem of M. Christ. 2019, arXiv:1909.04598

[29] R. L. Frank and E. H. Lieb, Periodic energy minimizers for a one-dimensional liquid drop
model. Lett. Math. Phys. 109 (2019), no. 9, 2069–2081 Zbl 1428.82062 MR 3996003

[30] R. L. Frank and E. H. Lieb, Proof of spherical flocking based on quantitative rearrange-
ment inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 3, 1241–1263
Zbl 07417802 MR 4334319

https://zbmath.org/?q=an:1257.49045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2980529
https://zbmath.org/?q=an:1269.49085&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3069960
https://zbmath.org/?q=an:1384.35136&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3740370
https://zbmath.org/?q=an:1436.49015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4072808
https://zbmath.org/?q=an:1329.26033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3431607
https://zbmath.org/?q=an:1439.81090&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4089505
https://zbmath.org/?q=an:1312.49051&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3322379
https://zbmath.org/?q=an:1196.49033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2672283
https://zbmath.org/?q=an:1416.81223&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3981098
https://mathscinet.ams.org/mathscinet-getitem?mr=4337417
https://zbmath.org/?q=an:1347.49069&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3520116
https://zbmath.org/?q=an:1332.49042&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3425373
https://zbmath.org/?q=an:1420.49040&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3853918
https://arxiv.org/abs/1909.04598
https://zbmath.org/?q=an:1428.82062&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3996003
https://zbmath.org/?q=an:07417802&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4334319


Some minimization problems 293

[31] R. L. Frank and P. T. Nam, Existence and nonexistence in the liquid drop model. Calc.
Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 223 Zbl 07414044
MR 4314139

[32] R. L. Frank, P. T. Nam, and H. Van Den Bosch, The ionization conjecture in Thomas–
Fermi–Dirac–von Weizsäcker theory. Comm. Pure Appl. Math. 71 (2018), no. 3, 577–614
Zbl 1386.49063 MR 3762278

[33] N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann.
of Math. (2) 168 (2008), no. 3, 941–980 Zbl 1187.52009 MR 2456887

[34] N. Fusco and A. Pratelli, Sharp stability for the Riesz potential. ESAIM Control Optim.
Calc. Var. 26 (2020), Paper No. 113 Zbl 1473.26036 MR 4185064

[35] G. Gamow, Mass defect curve and nuclear constitution. Proc. Roy. Soc. Lond. Ser. A 126
(1930), 632–644 Zbl 56.0762.02

[36] V. Julin, Isoperimetric problem with a Coulomb repulsive term. Indiana Univ. Math. J. 63
(2014), no. 1, 77–89 Zbl 1311.49110 MR 3218265

[37] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal
term I: The planar case. Comm. Pure Appl. Math. 66 (2013), no. 7, 1129–1162
Zbl 1269.49087 MR 3055587

[38] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal
term II: The general case. Comm. Pure Appl. Math. 67 (2014), no. 12, 1974–1994
Zbl 1302.49064 MR 3272365

[39] H. Knüpfer, C. B. Muratov, and M. Novaga, Low density phases in a uniformly charged
liquid. Comm. Math. Phys. 345 (2016), no. 1, 141–183 Zbl 1346.49017 MR 3509012

[40] E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities.
Ann. of Math. (2) 118 (1983), no. 2, 349–374 Zbl 0527.42011 MR 717827

[41] E. H. Lieb and M. Loss, Analysis. 2nd edn., Grad. Stud. Math. 14, Amer. Math. Soc.,
Providence, RI, 2001 Zbl 0966.26002 MR 1817225

[42] O. Lopes, Uniqueness and radial symmetry of minimizers for a nonlocal variational prob-
lem. Commun. Pure Appl. Anal. 18 (2019), no. 5, 2265–2282 MR 3962176

[43] J. Lu and F. Otto, Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker
model. Comm. Pure Appl. Math. 67 (2014), no. 10, 1605–1617 Zbl 1301.49002
MR 3251907

[44] J. Lu and F. Otto, An isoperimetric problem with Coulomb repulsion and attraction to a
background nucleus. 2015, arXiv:1508.07172

[45] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction
to Geometric Measure Theory. Cambridge Stud. Adv. Math. 135, Cambridge University
Press, Cambridge, 2012 Zbl 1255.49074 MR 2976521

[46] C. B. Muratov and A. Zaleski, On an isoperimetric problem with a competing non-local
term: quantitative results. Ann. Global Anal. Geom. 47 (2015), no. 1, 63–80
Zbl 1312.49053 MR 3302176

https://zbmath.org/?q=an:07414044&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4314139
https://zbmath.org/?q=an:1386.49063&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3762278
https://zbmath.org/?q=an:1187.52009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2456887
https://zbmath.org/?q=an:1473.26036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4185064
https://zbmath.org/?q=an:56.0762.02&format=complete
https://zbmath.org/?q=an:1311.49110&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3218265
https://zbmath.org/?q=an:1269.49087&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3055587
https://zbmath.org/?q=an:1302.49064&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3272365
https://zbmath.org/?q=an:1346.49017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3509012
https://zbmath.org/?q=an:0527.42011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=717827
https://zbmath.org/?q=an:0966.26002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1817225
https://mathscinet.ams.org/mathscinet-getitem?mr=3962176
https://zbmath.org/?q=an:1301.49002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3251907
https://arxiv.org/abs/1508.07172
https://zbmath.org/?q=an:1255.49074&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2976521
https://zbmath.org/?q=an:1312.49053&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3302176


R. L. Frank 294

[47] P. T. Nam, The ionization problem. Eur. Math. Soc. Newsl. (2020), no. 118, 22–27
Zbl 1458.81046 MR 4226843

[48] X. Yan and Y. Yao, Sharp stability for the interaction energy. 2020, arXiv:2008.07502

Rupert L. Frank
Mathematisches Institut, Ludwig–Maximilans Universität München, Theresienstr. 39,
80333 München; Munich Center for Quantum Science and Technology, Schellingstr. 4,
80799 München, Germany; and Mathematics 253-37, Caltech, Pasadena, CA 91125, USA;
r.frank@lmu.de

https://zbmath.org/?q=an:1458.81046&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4226843
https://arxiv.org/abs/2008.07502
mailto:r.frank@lmu.de

