
© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/22

HMS symmetries and hypergeometric systems

Špela Špenko

Abstract. The derived category of an algebraic variety might be a source of a myriad of new
(categorical) symmetries. Some are predicted by homological mirror symmetry, to be obtained
from the fundamental group of the space of complex structures of its mirror partner. These
finally lead to differential equations. We expositorily unravel a part of this conjectural master
plan for a class of toric varieties.

nasvidenje, Marjan, nekoč . . . nekje . . .

1. Overview

Hilbert’s 21st problem asks about the existence of Fuchsian linear differential equa-
tions on the Riemann sphere with prescribed singular points and monodromy rep-
resentation of the fundamental group of the complement of the singular points [25].
The first (slightly erroneous) solution was proposed by the Slovenian mathematician
Plemelj [38]. A suitably adapted version of this problem was solved and general-
ised, depending on the context, by Deligne [16], Kashiwara [33], Mebkhout [37],
Beı̆linson–Bernstein [5], and others. The solution is now known as the Riemann–
Hilbert correspondence.

Homological mirror symmetry (HMS) predicts the existence of an action of the
fundamental group of the “stringy Kähler moduli space (SKMS)” on the derived cat-
egory of an algebraic variety. The prediction was established by Halpern-Leistner and
Sam for certain toric varieties [24]. A decategorification of this action yields a rep-
resentation of the fundamental group of the SKMS, and our joint work with Michel
Van den Bergh shows that it corresponds under the Riemann–Hilbert correspondence
to a hypergeometric system of differential equations [42].

In this expository note, we aim to explain the above terms and finally present the
mentioned results.
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2. Hilbert’s 21st problem

We begin with a classical problem, namely Hilbert’s 21st problem. It is a part of the
list of 23 problems [25, 26], published by Hilbert in 1900, which has been influential
for the future mathematical development. The 21st one had the following formulation:

To show that there always exists a linear differential equation of the Fuchsian
class, with given singular points and monodromic group.

We shall first decipher the problem a little bit.

2.1. Fuchsian type

A system of linear differential equations0B@y0
1
:::

y0
n

1CA D A.z/

0B@y1

:::

yn

1CA (2.1)

is of Fuchsian type if A.z/ is holomorphic on xC n ¹a1; : : : ; aN º with a pole of order
1 at aj , 1 � j � N , where we denote xC D C [ ¹1º.

In particular,1
Pn

iD0 qi .z/y.n�i/ D 0, qn.z/ D 1, is Fuchsian if and only if the
familiar Fuchsian condition is satisfied, i.e., qi .z/.z � a/i is holomorphic at z D a

for a 2 C and qi .z/zi is holomorphic at z D 1, for 0 � i � n.2

2.2. Monodromy

Assume that we have a system of linear differential equations (2.1) with singularities
at finitely many points ¹a1; : : : ; aN º. Let  be a closed path (so .0/ D .1/) in
xC n ¹a1; : : : ; aN º.

Let y1; : : : ; yn be a basis of solutions of the system on an open set around .0/

(they exist by the local existence theorem for differential equations). These solutions
are guaranteed to exist a priori only locally. However, we can analytically continue
them along  . Let us denote by Qy1; : : : ; Qyn analytic continuations of y1; : : : ; yn

along  .
Because both y1; : : : ; yn and Qy1; : : : ; Qyn form a basis of solutions around .0/,

they should be related via an invertible linear map. We denote it by � . It turns out
that � only depends on the homotopy class of  . Therefore, we obtain a group homo-

1We may take yi D y.i/, where 0 � i � n and for A an (.n C 1/ � .n C 1/-)matrix with
nonzero entries only on the first upper diagonal where they are equal to 1 and in the last row.

2This follows by taking the n � n-matrix with ai;iC1 D �1, an;i D qn�iC1, and aij D 0

otherwise.
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morphism
�1

�
xC n ¹a1; : : : ; aN º

�
! GLn.C/; Œ� 7! � :

This is what is called a monodromy representation.
To close this discussion, we look at a concrete example of a differential equation.

Example 2.1. We take the differential equation zy0 � ˛y D 0. First, note that it has
singularities at 0 and at 1. (It is of Fuchsian type.) We take a loop  around 0. A local
solution is equal to y D z˛ and its analytic continuation along  equals Qy D e2�i˛z˛ .
To construct a monodromy representation, we first notice that the fundamental group
of xC n ¹0;1º D C n ¹0º is isomorphic to Z, and we can identify the generator 1 with
the homotopy class of  . The monodromy representation is then given by

� W �1

�
xC n ¹0; 1º

�
Š Z ! GL1.C/ Š C�; k 7! e2� ik˛:

2.3. Formulation

Let us now restate the problem. As input we have

� a finite set of points ¹a1; : : : ; aN º, and

� a representation � of �1.xC n ¹a1; : : : ; aN º/.

Then Hilbert’s 21st problem reads as follows: Does there exist a system of linear
differential equations of Fuchsian type with singular points ¹a1; : : : ; aN º and the
monodromy representation equal to �?

2.4. Progress

Already in 1908, Plemelj proposed a complete solution [38]. Unfortunately, it turned
out that Plemelj’s solution was not entirely correct. (Nevertheless, Plemelj’s proof
shows that one can find a system of linear differential equations which is Fuchsian
at all but one point, where it is regular, see Section 3.3.) In 1988, Bolibrukh found a
counterexample for N D 4 and a � of degree 3 [8].

The problem then transformed into classifying the input data that correspond to
systems of differential equations of Fuchsian type.

Among algebraic geometers, the focus was however directed towards higher di-
mensions with a suitably rendered condition. Instead of Fuchsian type, one requires
regularity, a weaker condition.

3. Riemann–Hilbert correspondence

There are plentiful variants of the Riemann–Hilbert correspondence. We first present
one in line with the previous discussion, and then its powerful generalisation to the
context of D-modules. We mostly follow [28]. We also mention [34] for a very nice
review of Deligne’s work on Hilbert’s 21st problem.
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3.1. Integrable connections

We first need to make sense of differential equations on general manifolds where we
have no global coordinates at our disposal.

Let X be a complex manifold. Let TX be the tangent sheaf on X (i.e., the sheaf of
vector fields).3

Definition 3.1. An integrable connection on X is a pair .M;r/, where M is a finite
dimensional vector bundle on X and a linear map r W TX ˝ zM ! zM , where zM is
the sheaf of sections of M such that4

� rf � .m/ D f r� .m/ for f 2 OX , � 2 TX , m 2 zM ,

� r� .f m/ D �.f /m C f r� .m/ for f 2 OX , � 2 TX , m 2 zM ,

� rŒ�1;�2�.m/ D Œr�1
;r�2

�.m/ for �1; �2 2 TX , m 2 zM .

With the natural definition of morphisms, we obtain an abelian category of con-
nections on X which we denote by Conn.X/.

Remark 3.2. For a system of differential equations (2.1) on X D C n ¹0º (i.e., 0 is
the only singularity different from 1), M is the trivial vector bundle of rank n, and
r is given by r@=@z.y/ D y0 � A.z/y for y 2 zM D .OX /n.

Conversely, if .M; r/ is an integrable connection on X D C n ¹0º, then M is
a trivial vector bundle, say of rank n. We choose an OX -basis .ei /i of zM D On

X .
Define aij .z/, 1 � i; j � n, by r@=@z.ej / D �

Pn
iD1 aij .z/ei . Then r@=@z.y/ D

r@=@z.
P

i yiei / D
P

i y0
iei C

P
i yir@=@z.ei / D y0 � A.z/y for y 2 zM .

The solutions of an integrable connection are defined as ¹m 2 zM j r� .m/ D

0 for all � 2 TXº and are called horizontal sections.

3.2. Meromorphic connections

We now extend the concept of integrable connections to allow poles as well. Let
D � X a divisor. Let OX ŒD� be a sheaf of meromorphic functions on X , holomorphic
on X n D with poles along D.

Definition 3.3. A coherent OX ŒD�-module M 5 is a meromorphic connection if there
exists a map r W M ! �1

X ˝OX
M such that

� r.f s/ D df ˝ s C f rs,

� Œr� ;r� 0 � DrŒ�;� 0� for �; � 0 2 TX (where r� W M ! M is r 0
�

for r 0 W TX ˝ M !

M obtained from r).

3Note that TX may also be identified with derivations in EndCX
.OX /.

4We use standard notation r� .m/ WD r.� ˝ m/.
5We note that the definition implies that the restriction MXnD of a meromorphic connection

M to X n D is a locally free OXnD-module.
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With the natural definition of morphisms between meromorphic connections, we
obtain an abelian category Conn.X ID/ of meromorphic connections.

Remark 3.4. This remark is an analogue of Remark 3.2. We obtain a natural one-to-
one correspondence between linear differential equations on C with possible poles
at 0 and meromorphic connections in Conn.X ID/.

3.3. Regular singularities

Here we define regular singularities of differential equations, which are a generalisa-
tion of the differential equations of Fuchsian type.

Definition 3.5. In complex dimension 1, a system of differential equations has regu-
lar singularities if every solution y on a punctured angular sector around a singular
point in ¹a1; : : : ; aN º has moderate growth, i.e.,

� aj finite: jy.z/j D O.jz � aj j
�m/ for some m � 0 as z ! aj ,

� aj D 1: jy.z/j D O.jzjm/ for some m � 0 as z ! 1.

This also has an algebraic interpretation which can be moreover generalised to
higher dimensions and all manifolds.

Definition 3.6. A meromorphic connection .M; r/ in Conn.X I D/ is regular if
.i�M/0 is regular for every i W B ! X such that i�1D D ¹0º.

We also mention that with the natural definition of morphisms between regular
meromorphic connections on .X; D/ we obtain an abelian category Connreg.X ID/.

3.4. Deligne’s Riemann–Hilbert correspondence

Theorem 3.7 ([16]). Let X be a complex manifold and let D be a divisor in X . Then
the restriction functor induces an equivalence Connreg.X ID/

�
�! Conn.X n D/.

Deligne’s theorem constitutes the essential part of the correspondence between
systems of differential equations on X with regular singularities along D and repres-
entations of the fundamental group of X n D.

Corollary 3.8. There is an equivalence of categories between Connreg.X I D/ and
rep.�1.X n D//.

This equivalence factors as

Connreg.X ID/
� //

o
��

rep
�
�1.X n D/

�
Conn.X n D/

� // Loc.X n D/;

o

OO

(3.1)

where Loc.X n D/ is the category of local systems, i.e., locally constant sheaves of
finite dimensional C-vector spaces. The first (vertical) equivalence is the restriction
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from Theorem 3.7, the second is obtained by taking the horizontal sections (“solutions
of the system”), and the last (vertical) arrow is a well-known equivalence (see e.g.
[1]) which sends a local system L to the representation of �1.X n D/ on Lx0

that
associates to every path an isomorphism of Lx0

along itself (which exists as L is
locally constant).

The statement holds also in the context of smooth algebraic varieties which was
Deligne’s original motivation.

In short, we could say that topology, here measured by the fundamental group, is
somewhat determined by analysis or algebra, here represented by differential equa-
tions with regular singularities.

3.5. D-modules

We continue towards a generalisation of Deligne’s correspondence to other systems
of linear differential equations.

For this we move on the left-hand side of the above diagram a bit more towards
the algebra direction, and replace the differential equations with modules over the
ring of differential operators. We enter the framework of so-called D-modules. We
follow [28, Introduction].

Let X be an open submanifold in Cn and let O.X/ be holomorphic functions
globally defined on X . With D we denote the set of partial differential operators with
coefficients in O.X/. Namely,

D D

² X
i1;:::;in

fi1���in

�
@

@x1

�i1

� � �

�
@

@xn

�in

j fi1���in 2 O.X/

³
;

where xi are coordinate functions on Cn. Note that D also has a ring structure. For
example, D contains the n-th Weyl algebra for X D Cn (we take only polynomial
coefficients).

Now take P in D. Then P corresponds to a differential equation.6 We can rep-
resent the holomorphic (global) solutions as follows:®

u 2 O.X/ j P u D 0
¯
Š HomD

�
D=DP; O.X/

�
; u 7! .d 7! du/:

We can proceed similarly if we have a collection of Pij 2D, 1� i � k, 1� j � l ,
corresponding to a system of differential equations. Then the solution .uj / of the
system given by the matrix .Pij / can be identified with®

.uj / j .Pij /.uj / D 0
¯
Š HomD

�
M; O.X/

�
;

6For example, x @
@x

� ˛ corresponds to the equation xy0 � ˛y D 0.
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where M is defined by the short exact sequence

Dk
.Pij /
���! Dl

! M ! 0:

In sum, we have found a way to turn systems of differential equations into finitely
presented D-modules, and have described their (global) solutions purely algebraically
using homomorphisms.

However, solutions may not exist globally, so therefore we should use a tool that
takes into account also local solutions. From modules, we should pass to sheaves,
as we have already done in the beginning of this section. Now O denotes the sheaf
of holomorphic functions. Similarly, we replace D by D (D.U / consists of par-
tial differential operators with coefficients in O.U /). Then we can look at the sheaf
HomD.M; O/ (U 7! HomD.U /.M.U /; O.U //).

There is another caveat to consider. We may be interested in relating different sys-
tems of differential equations; i.e., from solutions of two systems deduce something
about solutions of the system that is formed as the union of the two systems. The
problem that we encounter here is that the functor HomD.�; O/ is not exact. So we
should also consider “higher solutions”, namely the extension modules ExtiD.M; O/.

It will turn out that higher solutions give us almost all the topological data that we
need. Perhaps it is then a good point to ask what kind of sheaves these higher solutions
are. We know they are sheaves of C-vector spaces. Is there any other property that
distinguishes them?

Recall from (3.1) (applied with D D ;) that if M is associated to a connection,
then we obtain a local system, i.e., a locally constant sheaf of finite dimensional C-
vector spaces. It turns out that this correspondence generalises if we restrict to holo-
nomic modules7, they are those that roughly speaking give finite dimensional (higher)
solution spaces. With this assumption, all the higher solution sheaves ExtiD.M; O/

are constructible, which means that they are built from local systems. More precisely,
there exists a stratification of X D t˛X˛ into locally closed sets such that Fi jX˛

is a
local system for all i .

This is a prelude to a correspondence between holonomic D-modules on the
algebraic side and constructible sheaves on the topological side. Note that on the
topological side we obtain an entire sequence of constructible sheaves, and to com-
pute those we should also know something about the projective resolution of the
modules, again on the algebraic side. A convenient machinery to process all this data
at once and without losing too much information is the derived category.

7A coherent DX -module M is holonomic if dim Ch.M/ D dim X . Here Ch.M/ denotes
the characteristic variety of M , i.e., the support of the associated graded module gr M (for a
“good” filtration) on the cotangent bundle of X .
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3.6. Derived categories

Let A be an abelian category, for example the category mod.DX / of DX -modules
on X , or the category mod.CX / of sheaves of finite dimensional vector spaces on X ,
the categories that we have just seen.

Let C.A/ be the category of complexes on A. We say that a map f W X�!Y �

between two complexes is a quasi-isomorphism if it induces isomorphisms on co-
homology, i.e., H i .f / W H i .X�/

�
�! H i .Y �/ for all i .

We want that the derived category does not distinguish between two complexes
which are connected via a quasi-isomorphism. So we formally invert quasi-isomorph-
isms (see e.g. [43, 04VB] for localisation in categories) and define the derived cat-
egory as

D.A/ D C.A/Œqis�1�:

Furthermore, if a covariant, resp. contravariant, functor F W A ! B between
two abelian categories (with A having enough injectives, resp. projectives) is left-
exact, then there exists a corresponding functor RF W DC.A/ ! DC.B/, resp. RF W

D�.A/ ! DC.B/, between the derived categories (of bounded-below, resp. above/
below, complexes).

Let us zoom this in on our example.

Example 3.9. We take for F the solution functor F D HomD.�; O/. Then the
derived functor RF W D�.DX /o ! DC.CX / is such that its cohomology sheaves
are exactly the higher solutions; i.e., H i .RF / D Exti .�; OX /. So the derived solu-
tion functor carries the information about all higher solutions. (Note that here and
later we for brevity omit writing mod.)

3.7. Riemann–Hilbert correspondence

We are ready to state the Riemann–Hilbert correspondence in its full power and com-
plexity, to connect all the module data with the data of solutions and higher solutions.

We need to restrict to a subclass of complexes of DX -modules that have regu-
lar8 and holonomic cohomology. Roughly these conditions guarantee that the solu-
tion spaces are finite dimensional and have moderate growth. We denote the derived
category of bounded complexes of DX modules with regular and holonomic cohomo-
logy by Db

rh
.DX /. On the topological side, we look at those bounded complexes of

sheaves of C-vector spaces on X that have constructible cohomology, and we denote
the corresponding derived category by Db

c .CX /.
Under these restrictions, the derived solution functor gives the celebrated anti-

equivalence of categories.

8For the definition of regularity for DX -modules on a complex manifold X , we refer to
[28, Definition 6.1.8].
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Theorem 3.10 ([5, 32, 33, 37]9). There is an anti-equivalence of (triangulated) cat-
egories

R HomDX
.�; OX / W Db

rh.DX /o �
�! Db

c .CX /:

First we remark that we really need to pass to the derived level contrary to
Deligne’s Riemann–Hilbert correspondence. Indeed, as mentioned earlier, the solu-
tion functor is not exact so it cannot induce an equivalence of abelian categories. This
theorem is from an algebraic point of view a real advancement, and a vast general-
isation of Deligne’s Riemann Hilbert correspondence, since we can, in particular, to
every (regular holonomic) DX -module associate a topological object, a complex of
sheaves of C-vector spaces on X (with constructible cohomology), and vice versa.

These associated complexes are also rather special, they form an abelian category,
and they are called perverse sheaves, i.e.,

Perv.X/ WD R HomDX
.�; OX /.modrh Do

X /Œdim X�:

4. Homological mirror symmetry symmetries

We divert the story to mirror symmetry. There we will encounter representations of
some fundamental groups and our aim will be to realise them as monodromy repres-
entations of differential equations.

4.1. Mirror symmetry

Let us first very briefly say a few words on mirror symmetry, a theory that has its
origins in physics, more precisely in string theory. Typically, the spaces that appear
in this context have both a complex and a symplectic structure. Moreover, the spaces
come in mirror pairs X and Xo, with the complex and symplectic structures inter-
laced. The complex geometry of X mirrors the symplectic geometry of its mirror Xo,
and vice versa. The picture is still highly speculative. We refer to [15, Introduction]
for a survey of its origins and multiple predictions that mirror symmetry provides to
algebraic geometry.

4.2. HMS categorical symmetries

Mirror symmetry has been enhanced to a homological statement about the equival-
ence of certain categories (the derived category and the Fukaya category) that reflect
complex and symplectic geometry, respectively. The correspondence has been conjec-
tured by Kontsevich [36] and nowadays goes under the name of homological mirror
symmetry.

9Beı̆linson and Bernstein proved the theorem in the algebraic setting.
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We discuss here one of the consequences of HMS. For a more precise explanation
of heuristics, see [24, §1.1]. Assume that we regard X as a complex manifold. Then
the symplectic structure of the mirror Xo is fixed, but there is still room for different
complex structures. Denote by KX the space of complex structures of X0.10

Then HMS predicts the following.

Conjecture 4.1. There exists an action11

�1.KX / Õ Db.X/:

As an immediate corollary of this, we would get the following result about the
Grothendieck group of X .

Corollary 4.2. There exists an action

�1.KX / Õ K0.X/C:

It is this action about which we will wonder which system of differential equa-
tions it corresponds to.

4.3. Example

We look at the conifold, Y D Spec.CŒx; y; z; u�=.xu � yz//.12 We define X D

Bl.x;y/Y , a small resolution of Y . (In the framework of toric geometry, we might
represent Y as a cone in R3 over the unit square in R2 � ¹1º. To obtain X we should
add a diagonal hyperplane.)

There is another viewpoint that will be more useful for us. Let C� act on C4 as
t � .v1; v2; v3; v4/ D .t�1v1; t�1v2; tv3; tv4/. Then we may view Y as the (categor-
ical) quotient C4 == C� (D Spec CŒx1; x2; x3; x4�C

�

, xi D v�
i ).13 We obtain X as the

geometric invariant theory (GIT) quotient .C4 n V.x1; x2// == C�.14

Heuristics from physics [4] yield that KX D P 1 n ¹0; 1;1º.

10KX is also called the “stringy Kähler moduli space” (SKMS) of X (i.e., the space of
Kähler structures on X coming from symplectic geometry of X ). The tangent space to the
SKMS is H 2.X; C/ (the space of complexified symplectic forms). However, there is no global
definition; KX has only been explicitly defined in very few examples, the difficulty being the
determination of the mirror pair.

11We might think of Db.X/ as bounded complexes of vector bundles on X .
12One can describe the conifold also as a cone over P 1 � P 1.
13The homomorphism CŒx; y; z; u�=.xu � yz/ ! CŒx1; x2; x3; x4�C

�

, x 7! x1x3, y 7!

x1x4, z 7! x2x3, u 7! x2x4, is an isomorphism.
14Let us assume that t � v D tv, and take s D v�, assume that degs D 1, degxi D 0, 1� i � 4.

Then the GIT quotient .C4 n V.x1; x2// == C� is defined as Proj.CŒx1; x2; x3; x4; s�C
�

/.



HMS symmetries and hypergeometric systems 499

To construct a representation of �1.KX / on Db.X/, we first view Db.X/ as the
(full thick) subcategory of Db.ŒC4=C��/15, generated by OC4 , OC4 ˝ V.1/, where
V.n/ denotes the irreducible (1-dimensional) representation of C� with character n,
i.e., t � v D tnv for v 2 V.n/; see [44, Theorem 8.6].

Then it turns out that in the basis ¹OC4 ˝ V.1/; OC4º the action of the three
generating loops 0; 1; 1 2 �1.KX / is given by

1 D

�
1 0

0 1

�
; 0 D

�
2 1

�1 0

�
; 1 D

�
0 �1

1 2

�
:

See e.g. [17, 24, 41].

5. HMS symmetries: toric varieties

We will approach the conjecture in the setting of toric varieties.

5.1. Setting

We assume that W D Cd is a T WD .C�/n-representation which is unimodular (i.e.,
the sum of weights is equal to 0).

We describe how to obtain an analogue of the variety X in the case of the conifold;
cf. Section 4.3. We should remove some undesirable locus of W and then take the GIT
quotient. The variety (or stack) X that we obtain in this way is a (crepant) resolution
of singularities of W == T (D Spec CŒW �T ).

Let X.T / be the character group of T and Y.T / the group of 1-parameter sub-
groups of T . We take a generic � 2 X.T /R. Let W �;u be the �-unstable locus, i.e.,
the set of points w 2 W such that if limt!0 �.t/w for � 2 Y.T / exists, then �.�/ � 0.
Then we take

X D
�
.W n W �;u/=T

�
:

This is a priori a Deligne–Mumford quotient stack, a quotient stack whose points
have finite stabilizers. In the case that all stabilizers are trivial, the corresponding
GIT quotient variety can replace the stack (i.e., in this case the quotient stack and
the quotient variety are isomorphic). The GIT quotient is defined in the analogy with
Footnote 14.16

15Here ŒC4=C�� denotes the quotient stack. The category mod.ŒC4=C��/ consists
of C�-equivariant CŒx1; x2; x3; x4�-modules and the category coh.ŒC4=C��/ of C�-
equivariant coherent sheaves on C4. It follows that Db.ŒC4=C��/ D Db.mod.ŒC4=C��// D

Db.coh.ŒC4=C��//.
16We assume that V D Cv is the 1-dimensional T -representation with character �; i.e.,

t � v D �.t/v. Let wi be a basis of W such that t � wi D ˇi .t/wi for ˇi 2 X.T /. Set xi D w�
i

,
1 � i � d , d D v�. We assume that deg xi D 0 and deg s D 1. Then .W n W �;u/ == T WD

Proj.CŒx1; : : : ; xd ; s�T /.
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Remark 5.1. The varieties above are exactly affine normal Gorenstein toric varieties
whose class group is a torus (i.e., it has no finite group part).

5.2. Space of complex structures on Xo

In the case of toric varieties physics heuristics are rather reliable. In [18, §4.1] there
is an explicit recipe for KX that refers for evidence to [13].17

Set d D dim W . Let .ˇi /
d
iD1 be T -characters of W . Note that X.T / Š Zn and

set B D .ˇi /
d
iD1 2 Mn�d .Z/. We define A (up to an automorphism of Zd�n) by the

exact sequence

0 ! Zd�n A
�! Zd B

�! Zn
! 0: (5.1)

Then KX is the complement of a hypersurface V.EA/ � T , where EA is the principal
A-determinant. We refer to [20, §10.1.A] for the definition.18 Alternatively, see [18,
35].

In a sufficiently symmetric case, V.EA/ is much simpler.

Theorem 5.2 ([35]). If W is quasi-symmetric19, then KX is the complement of a
hyperplane arrangement (in logarithmic coordinates) in T D .C�/n.

The hyperplane arrangement in 1=.2�i/ log T D X.T /C can be explicitly de-
scribed. Let � be the Minkowski sum of Œ0; .1=2/ˇi �. Let .Hi /i be the supporting
(affine) hyperplanes of �. Then the hyperplane arrangement is the complexification
of the real hyperplane arrangement

S
i .�Hi / C X.T / (up to a suitable translation).

This is an infinite, but locally finite, hyperplane arrangement.
This hyperplane arrangement was prior to the result of Kite heuristically predicted

to coincide with KX in [24].

Example 5.3. We make a quick sanity check in the case of the conifold; cf. Sec-
tion 4.3. Then KX D P 1 n ¹0; 1; 1º. Applying 1=.2�i/ log to P 1 n ¹0; 1; 1º D

C n ¹0; 1º, we obtain C n Z. On the other hand, by the above recipe, � D Œ�1; 1� (as
.ˇi /

4
iD1 D .�1;�1; 1; 1/) and the hyperplane arrangement is given by Z. Thus, the

two descriptions are consistent.

5.3. HMS symmetries: quasi-symmetric case

Assume that Cd is a quasi-symmetric representation of .C�/n. In this case, Halpern-
Leistner and Sam [24] confirmed Conjecture 4.1.

17The heuristics are derived from the speculations that a mirror is given by a family of
Landau–Ginzburg models [27]. See also [12, 29].

18In loc. cit. EA stands for A0, where A D .A0; 1/ which we may assume since
P

i ˇi D 0.
19W is quasi-symmetric if for all lines 0 2 ` 2 X.T /R,

P
ˇi2` ˇi D 0.
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Theorem 5.4 ([24]). There exists an action of �1.KX / on Db.X/.

As in Section 4.3, Db.X/ is identified with the (full thick) subcategory D of
Db.ŒW=T �/ generated by ¹OW ˝ V.�/ j � 2 .� C �/ \ X.T /º, where V.�/ is the
irreducible T -representation with character �, and � 2 X.T /R is generic [23, 40]20.

Then this action can be explicitly described, especially relying on the concrete
description of the fundamental group of the complement of a complexified hyperplane
arrangement [39]. See Section 7.1.2.

Remark 5.5. The statement can be generalised to some reductive groups, i.e., those
groups G for which X.G/ ¤ 0, if some genericity assumptions are satisfied.21 See
[24].

6. HMS differential equations: quasi-symmetric case

In this section, we assume that we are in the setting of Section 5.1. Moreover, we
assume that W is quasi-symmetric. Having Theorem 5.4, providing evidence for
Conjecture 4.1, at our disposal, we also obtain Corollary 4.2. Hence, �1.KX / acts
on K0.X/C . We want to determine which (regular) system of differential equations
on .C�/n this action corresponds to.

6.1. Example

We first want to understand the monodromy representation in the case of the conifold;
cf. Section 4.3.

We look at the Gauss hypergeometric equation

z.1 � z/y00
C
�
c � .a C b C 1/z

�
y0

� aby D 0:

The monodromy is given by, see e.g. [7],

1 D

 
1 �e2� i.c�b/ � e2� i.c�a/ C e2� ic C 1

0 e2� i.c�a�b/

!
;

0 D

 
1 C e�2� ic 1

�e�2� ic 0

!
;

1 D

 
0 �e2� i.aCb/

1 e2� ia C e2� ib

!
:

20� is not parallel to any face of �.
21The condition

P
i Rˇi D X.T / should be satisfied and there should exist � 2 X.G/ which

is not parallel to any face of �.
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Setting a D b D c D 0, we obtain matrices that we have already encountered in
Section 4.3. From this, one may deduce that the action of �1.KX / on K0.X/C from
Theorem 5.4 in the case of the conifold corresponds to z.1 � 1/y00 � zy0 D 0, i.e.,
the Gauss differential equations with parameters a D b D c D 0 (which is regular on
P 1 with singularities at 0; 1;1).

6.2. Example with parameters

We change the focus a bit and ask whether we can find an action of �1.KX / on
K0.X/C that would give the Gauss hypergeometric equation also for other paramet-
ers. We obtained the original action from an action of �1.KX / on Db.X/. We would
want to tweak this action a little bit to open the route to other parameters.

For this, first observe that .C�/4 acts on C4 coordinate-wise. The initial C�

embeds in it via the map t 7! .t�1; t�1; t; t / determined by the action of C� on
C4; cf. Section 4.3 and (5.1). This inclusion splits, and the complement is .C�/3. We
seem to be well on the way, the dimension of the complement torus coincides with
the number of parameters in the Gauss hypergeometric equation.

Now a slightly more technical part follows. To get an action for other a; b; c, we
need to replace Db.X/ by a bigger category zD such that X..C�/3/ acts on it.

We define zD as the (full thick) subcategory of Db.ŒC4=.C�/4�/ generated by

OC4 ˝ V.�/; � 2 X
�
.C�/4

�
such that B� 2 ¹0; 1º (see (5.1) for B).

It turns out that �1.KX / still acts on zD. However, K0. zD/C is a (free rank 2)
module over C¹X..C�/3/º Š CŒ.C�/3�22. Specialising at (sufficiently generic23) h 2

.C�/3, we obtain an action of �1.KX/ on a 2-dimensional C-vector space. This action
corresponds to the Gauss hypergeometric equation with parameters �1=.2�i/ log h.

6.3. GKZ hypergeometric systems

The GKZ hypergeometric systems are systems of differential equations that gener-
alise the Gauss hypergeometric differential equation, as well as Appell, Lauricella,
Horn, etc. They were introduced and studied by Gelfand, Kapranov, and Zelevinsky
[19, 21, 22]. Allegedly, they were introduced as a unified approach to the multidi-
mensional generalisations of the Gauss hypergeometric functions. In some sense, the
construction of the GKZ hypergeometric system is dictated by the desired set of solu-
tions, which should be hypergeometric power series. See Remark 6.3.

22Here C¹X..C�/3/º is the group algebra of X..C�/3/, while CŒ.C�/3� is the coordinate
ring of .C�/3.

23This is, in particular, satisfied if a, b, a � c, b � c are all non-integers. However, one might
check that a D b D c D 0 as in Section 6.1 also work.
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Let ˛ 2 Cd�n. Recall the exact sequence (5.1). Let B� W Zn ! Zd be the dual
of B . Then the hypergeometric GKZ system with parameter ˛ is defined by the dif-
ferential operators

� homogeneity relations:
Pd

jD1 aij xj @j � ˛i , 1 � i � d � n,

� box relations: �l D
Q

li >0 @
li

i �
Q

li <0 @
�li

i , l 2 B�Zn.

Note that this is a system of differential equations on .C�/d . However, the homo-
geneity relations allow to descend these differential equations to .C�/n.24

This descent also allows us to recover the Gauss hypergeometric equation from
the GKZ hypergeometric system corresponding to the conifold, i.e., for the example
B D .�1;�1; 1; 1/.

Example 6.1. In the case of the conifold, we may take

A D

0B@�1 1 0 0

1 0 1 0

1 0 0 1

1CA :

Then a solution ˆ of the GKZ hypergeometric system satisfies

.�x1@1 C x2@2/ˆ D ˛1ˆ;

.x1@1 C x3@3/ˆ D ˛2ˆ;

.x1@1 C x4@4/ˆ D ˛3ˆ;

@1@2 � @3@4 D 0:

Setting ˛ D .c � 1;�a;�b/, a simple manipulation yields�
x�1

3 x�1
4

�
x1@2

1 � .1 C a C b/x1@1 � ab
�
� x�1

2 .x1@2
1 � c@1/

�
ˆ D 0:

Then F.x/ WD ˆ.x; 1; 1; 1/ is a solution of the Gauss hypergeometric equation.
Moreover, by homogeneity relations, F determines ˆ.

We denote the corresponding D.C�/d -module, cf. Section 3.5, by P .˛/, and its
restriction to .C�/n by P.˛/. The next proposition reveals that they are well behaved,
as required for the Riemann–Hilbert correspondence.

Proposition 6.2 ([2]). The D.C�/d -module P .˛/ is holonomic with regular singu-
larities. The same holds for the D.C�/n-module P.˛/.

24The corresponding D-module on .C�/d is weakly equivariant for the action of .C�/d�n,
hence it descends to .C�/n; see e.g. [42, Corollary A.11].
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Remark 6.3. To follow on the introduction to this subsection we record here that the
multidimensional hypergeometric (formal) series25

ˆ .x1; : : : ; xd / D
X

l2Zn

dY
iD1

x
B�lCi

i

�.B�l C i C 1/
;

where  2 .C/d is such that A D ˛, is a (formal) solution of the GKZ hypergeo-
metric system [22].26 Moreover, also Euler integrals generalise [19] to give solutions
to the GKZ hypergeometric system. Another handy class of solutions is given by
Mellin–Barnes integrals [6] that we crucially employ in the proof of Theorem 6.4
below.

6.4. Decategorification of HMS symmetries

We want to determine the system of differential equations whose monodromy rep-
resentation coincides with the representation of �1.KX / on K0.X/C obtained from
Theorem 5.4. However, we cannot quite do that. Instead, we tweak the action a bit, as
in Section 6.2.

Analogously to Section 6.2, we note that .C�/d acts on Cd coordinate-wise,
and we have the inclusion T D .C�/n ,! .C�/d which splits. The complement is
.C�/d�n.

We replace Db.X/ by a bigger category zD, the (full thick) subcategory of
Db.ŒCd =.C�/d �/ generated by®

OCd ˝ V.�/ j B� 2 .� C �/ \ X.T /
¯
I

cf. the paragraph below Theorem 5.4. Then X..C�/d�n/ acts on zD and K0. zD/C is a
C¹X..C�/d�n/º Š CŒ.C�/d�n�-module.

Theorem 6.4 ([42]). Assume that ˛ 2 Cd�n is generic.27 The monodromy represent-
ation of the GKZ system of differential equations with parameter ˛ restricted to KX

is isomorphic to the representation of �1.KX / on K0. zD/C specialised at e�2�i˛28.

As a corollary, we obtain, in particular, a description of the full monodromy of
such “quasi-symmetric” GKZ hypergeometric systems. In [6], Beukers describes the
“local” monodromy.

25We abuse the notation and denote by B� also the “complexified” B� W Cn ! Cd .
26By appropriately varying  , one can achieve that such power series are a basis of solutions

that converge on an open set.
27We require that ˛ is non-resonant, i.e., ˛ does not belong to the hyperplane arrangement

consisting of Zd�n-translates of the supporting hyperplanes of the cone RCA.
28More precisely, K0. zD/C ˝CŒ.C�/d�n� C for CŒ.C�/d�n� ! C, p 7! p.e�2�i˛/.



HMS symmetries and hypergeometric systems 505

Remark 6.5. There are various other results where an interesting system of differen-
tial equations is obtained from actions on derived categories, often also inspired by
mirror symmetry. We mention here [3, 10, 11].

7. Liftings

Theorem 5.4 (and accordingly Theorem 6.4) extend a bit further, in analogy with
D-modules introduced in Section 3.5 and the associated perverse sheaves, defined
as the image of the abelian category of D-modules by the derived solution functor
Section 3.7.

7.1. Perverse schobers

Recall that a representation of �1.KX / corresponds to a local system on KX ; cf.
Section 3.4. If �1.KX / acts instead on a category, we might say that it corresponds
to a local system of categories on KX . In the quasi-symmetric setting, KX is a
complement of a hyperplane arrangement in .C�/n (in logarithmic coordinates); cf.
Theorem 5.2. We may extend a local system on KX to a perverse sheaf on .C�/n. This
extension for the particular action of Theorem 5.4 also lifts on the level of derived cat-
egories, and we get what we might call a perverse sheaf of categories on .C�/n [41].
It also goes under the name of a perverse schober, which was coined by Kapranov
and Schechtman [30] for a categorification of a perverse sheaf.

The rest of this subsection builds on this extension and, in return, also illuminates
the proof of Theorem 5.4. Unfortunately, it is rather technical.

7.1.1. Perverse sheaves over real hyperplane arrangements. While in general the
abelian category of perverse sheaves might be difficult to describe, in the case of
complements of complexified real hyperplane arrangements there exists a concrete
combinatorial description [31], which is apt for categorification.

Let H be an affine hyperplane arrangement in a finite dimensional real vector
space V D Rn. Then H stratifies V into a set C of locally closed subsets.29 We
partially order C by C 0 � C iff C 0 � xC . A triple of faces .C1; C2; C3/ is collinear if
there exists C 0 � C1; C2; C3 and there exist ci 2 Ci such that c2 2 Œc1; c3�.

We denote by vec.C/ the category of finite dimensional C-vector spaces.

Theorem 7.1 ([31]). The category of perverse sheaves on VC with respect to the
stratification induced by HC is equivalent to the category of diagrams consisting of

� finite dimensional vector spaces EC , C 2 C , and

� linear maps C 0C W EC 0 ! EC , ıCC 0 W EC ! EC 0 for C 0 � C

29The elements of C are level sets for .sign fH /H2H , where fH is the affine map defin-
ing H .
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such that .EC ; .C 0C /CC 0/, resp. .EC ; .ıCC 0/CC 0/, is a representation of .C ; �/,
resp. .C ;�/, in vec.C/, and the following conditions are satisfied.

� C 0C ıCC 0 D idEC
for C 0 � C . In particular, �C1C2

WD C 0C2
ıC1C 0 for C 0 �

C1; C2 is well defined.
� �C1C2

is an isomorphism for all C1;C2, C1 ¤ C2, of the same dimension `, which
lie in the same `-dimensional affine space and share a facet.

� �C1C3
D �C2C3

�C1C2
for collinear triples of faces .C1; C2; C3/.

7.1.2. Perverse schobers over real hyperplane arrangements. To define perverse
schobers over real hyperplane arrangements, we may word for word translate the
description of perverse sheaves from Theorem 7.1 to the setting of triangulated cat-
egories. When we apply K0.�/C , we get back the data defining a perverse sheaf.

Definition 7.2 ([9]). A perverse schober on VC with respect to the stratification
induced by HC

30 is given by

� triangulated categories EC , C 2 C , and
� adjoint exact functors .ıCC 0 W EC ! EC 0 ; C 0C W EC 0 ! EC / for C 0 � C

such that .EC ; .ıC 0C /C 0C / defines a pseudo-functor from .C ;�/ to the 2-category of
triangulated categories satisfying the following conditions.

� The unit of the adjunction .ıCC 0 ; C 0C / defines a natural isomorphism

idEC

Š
�! C 0C ıCC 0

for C 0 � C , and thus �C1C2
WD C 0C2

ıC1C 0 for C 0 � C1; C2 is well defined up to
canonical natural isomorphism.

� �C1C2
is an equivalence for all C1; C2, C1 ¤ C2, of the same dimension `, which

lie in the same `-dimensional affine space and share a facet.
� The counit of the adjunction .ıC0C2

; C2C0
/ defines a natural isomorphism

�C2C3
�C1C2

Š
�! �C1C3

for collinear triples of faces .C1; C2; C3/.

This definition also sheds some light on the proof of Theorem 5.4 (cf. the para-
graph following it) and allows its extension.

Theorem 7.3 ([41]). The local system on KX from Theorem 5.4 extends to a perverse
schober on .C�/n.31

30A perverse schober in this context is also called an H -schober.
31We identify .C�/n with Cn=Zn, and in order to use Definition 7.2 we should also impose

an action of Zn on a perverse schober, which consists of isomorphisms �C ! �gC for g 2 Zn

satisfying some compatibility conditions; see e.g. [41, §3.3].
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Remark 7.4. By a suitable tweak as in Theorem 6.4, we obtain perverse schobers
whose decategorifications are the perverse sheaves obtained as solution complexes of
GKZ hypergeometric D-modules [42].

7.2. HMS predictions

GKZ hypergeometric systems appeared here rather ad hoc, and not really motivated.
In fact, it is HMS that indicates that they should be there [10, 14, 29].

While we only combinatorially match the two perverse sheaves, one would desire
to construct a canonical correspondence via the following sequence of maps (GM
denotes Gauss–Manin):�

K0

�
Db
�
ŒW=T �

��
�
�
K0.D/

�
�! K0.X/

�
�!

H�.X/ (for. quantum conn.)
mirror map
������! ¹rel. tw. DR-coh. at 1º(for. GM conn.)
anal. cont.
�����! ¹solutions to GKZ systemº:

However, the heuristics of why this action would lift to an action on the derived
category of X are still somewhat mysterious.32
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