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Smooth compactifications in derived non-commutative
geometry

Alexander I. Efimov

Abstract. This is a short overview of the author’s results related to the notion of a smooth cat-
egorical compactification. We cover the construction of a categorical smooth compactification
of the derived categories of coherent sheaves, using the categorical resolution of Kuznetsov
and Lunts. We also mention examples of homotopically finitely presented DG categories which
do not admit a smooth compactification. This is closely related to Kontsevich’s conjectures
on the generalized versions of categorical Hodge-to-de Rham degeneration, which we dis-
proved. Finally, we mention our new result on the DG categorical analogue of Wall’s finiteness
obstruction, which in particular gives a criterion for existence of a smooth compactification of
a homotopically finite DG category.

1. Introduction

We give a short overview of some of our results concerning smooth compactifications
of differential graded categories [8–10].

Suppose that X � xX is a smooth compactification, i.e., X is open in xX and xX is
smooth and proper over a base field k. Then the restriction functor

Db
coh. xX/ ! Db

coh.X/

is a localization. Namely, the induced functor

Db
coh. xX/=Db

coh; xX�X
. xX/ ! Db

coh.X/

is an equivalence of categories.
This motivates a general categorical notion of a smooth compactification. There

are notions of smoothness and properness for DG categories, which are defined in
terms of the diagonal bimodule. By definition, a categorical smooth compactification
of a pre-triangulated DG category A is given by a smooth and proper pre-triangulated
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DG category C , with a functor ˆ W C ! A, such that ˆ is a localization up to direct
summands, with an additional assumption that ker.ˆ/ is generated by a single object
(see Definition 3.5). Here being a localization means that the induced functor x̂ W

C=ker.ˆ/!A is fully faithful, and it is essentially surjective up to direct summands.
Existence of a categorical smooth compactification of a DG category A auto-

matically implies that A is smooth. Moreover, A is actually homotopically finitely
presented (hfp); see Definition 3.3.

The following result has been proved in [9].

Theorem 1.1 ([9, Theorem 1.8, part (1)]). Let X be a separated scheme of finite type
over a field k of characteristic zero. Then there exists a categorical smooth compact-
ification of the form Db

coh.Y / ! Db
coh.X/, where Y is smooth and proper.

In [9], Theorem 1.1 was used to prove the homotopy finiteness for derived cate-
gories of coherent sheaves over a field of characteristic zero, confirming a conjecture
of Kontsevich.

The construction of a smooth compactification in Theorem 1.1 uses the categori-
cal resolution of singularities of Kuznetsov and Lunts [15], as well as Orlov’s results
on semi-orthogonal gluings of geometric DG categories [21].

The statement of Theorem 1.1 is conceptually very closely related with the fol-
lowing conjecture of Bondal and Orlov.

Conjecture 1.2 ([2]). Let Y be a variety with rational singularities, and f W X !

Y a resolution of singularities. Then the functor Rf� W Db
coh.X/ ! Db

coh.Y / is a
localization.

The methods of the proof of Theorem 1.1 allow to prove Conjecture 1.2 in a
certain class of cases.

Theorem 1.3 ([9, Theorem 1.10]). Suppose that Y has rational singularities, Z �

Y is a closed smooth subscheme, and X D BlZY is smooth, so that f W X ! Y

is a resolution of singularities. Denote by T D f �1.Z/ the exceptional divisor, by
p W T ! Z the induced morphism, and by j W T ! X the embedding. Suppose that
Rf�I n

T D I n
Z for n � 1. Then the functor Rf� W D

b
coh.X/ ! Db

coh.Y / is a localization,
and its kernel is generated by j�..p�Db

coh.Z//?/.

In particular, Theorem 1.3 applies in the case when Y is a cone over a projectively
normal embedding of a smooth Fano variety, and Z is the origin.

The following question for general homotopically finite DG categories was for-
mulated by Toën.

Question 1.4. Is it true that any homotopically finite DG category admits a categori-
cal smooth compactification?
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It turns out surprisingly that the answer is “no”, and a counterexample has been
obtained in [8]. Question 1.4 is closely related with two (unpublished) conjectures of
Kontsevich on the generalized versions of Hodge-to-de Rham degeneration, which
we disproved in [8] (these are Conjectures 5.3 and 5.4).

One can further ask “what are the necessary and sufficient conditions for an hfp
DG category to have a categorical smooth compactification?”. We have the following
(new) result.

Theorem 1.5 ([10]). Let A be an hfp pre-triangulated DG category. The following
are equivalent.

(1) A admits a smooth categorical compactification.

(2) There exists a DG functor C ! A, where C is smooth and proper, such that

ŒIA� 2 Im
�
K0.C ˝ Cop/ ! K0.A ˝ Aop/

�
:

Here IA is the diagonal A-A-bimodule.

This theorem is closely related with a certain DG categorical analogue of Wall’s
finiteness obstruction theorem; see Section 6.

The paper is organized as follows.
In Section 2, we briefly recall some basic notions and statements about triangu-

lated categories and DG categories.
In Section 3, we discuss the general notion of a categorical smooth compactifica-

tion.
In Section 4, we formulate our result on smooth compactifications of derived

categories of coherent sheaves, and briefly explain the idea of the proof.
Section 5 discusses the question of existence of smooth compactifications, and

the closely related Conjectures 5.3 and 5.4.
Finally, in Section 6 we briefly mention our new results on the DG categorical

analogue of Wall’s finiteness obstruction theorem about finitely dominated spaces.
This in particular gives a criterion for when a homotopically finite DG category has a
smooth compactification.

2. Some preliminaries on triangulated categories and DG categories

For a very nice introduction to DG categories and their derived categories, we refer to
[12]. For triangulated categories, we refer to Neeman’s book [19]. The notion of a DG
enhancement of a triangulated category has been introduced in [3]. The notion of a
DG quotient of DG categories has been introduced in [13] and an explicit construction
has been given in [6]. For model structures on the categories of DG algebras and DG
categories we refer to [22, 23].
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Fix some base field k. For a quasi-projective scheme X over k, we have the cat-
egory of finite rank vector bundles on X , or equivalently the category of locally free
sheaves of finite rank. After adding to it the cokernels, we get the abelian category
Coh.X/ of coherent sheaves. More generally, the abelian category Coh.X/ can be
defined for any noetherian (or even locally coherent) scheme X . In this note, we deal
only with separated schemes of finite type over k.

The objects of the derived category Db.Coh.X// D Db
coh.X/ are bounded com-

plexes of coherent sheaves. The morphisms are more complicated: they are obtained
from the naive category of complexes by inverting the quasi-isomorphisms. A quasi-
isomorphism is a morphism of complexes that induces an isomorphism in cohomol-
ogy.

The derived category Db
coh.X/ is always triangulated. It has a full triangulated

subcategory of perfect complexes Dperf.X/ � Db
coh.X/, which is formed by bounded

complexes of locally free sheaves (that is, of vector bundles). More precisely, if X is
not necessarily quasi-projective, an object F 2 Db

coh.X/ is a perfect complex if it is
locally quasi-isomorphic to a bounded complex of locally free sheaves.

A DG category A is given by the following data:

� a class of objects Ob.A/;

� for any pair of objects x; y 2 Ob.A/, a complex of vector spaces A.x; y/ D

HomA.x; y/;

� for any objects x;y;z2Ob.A/, a composition map A.y;z/˝A.x;y/!A.x;z/.

The composition maps are required to be morphisms of complexes: they are ho-
mogeneous of degree zero and satisfy the (super-)Leibniz rule. They are also required
to be associative. For each object x 2 Ob.A/, it is required that there is a unit mor-
phism 1x of degree zero (and automatically d.1x/ D 0).

The homotopy category of a DG category A is a k-linear category H 0.A/ which
has the same objects as A, and the morphisms are given by

H 0.A/.x; y/ D H 0
�
A.x; y/

�
:

It is also convenient to define similarly the k-linear category Z0.A/ with the same
objects as A, and with the morphisms given by Z0.A/.x; y/ D Z0.A.x; y//.

For a small DG category A, just as for DG algebras, there is a notion of a right
DG A-module: it is a DG functor Aop ! Mod-k, where Mod-k is the DG category of
complexes of vector spaces. DG A-modules form a DG category Mod-A. The derived
category D.A/ of right A-modules is obtained from H 0.Mod-A/ by inverting quasi-
isomorphisms. Equivalently, D.A/ is obtained from Z0.Mod-A/ by inverting quasi-
isomorphisms. Again, as for DG algebras, Dperf.A/ � D.A/ is the full subcategory
of compact objects.
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The Yoneda embedding A ,! Mod-A induces a fully faithful functor H 0.A/ ,!

D.A/. If its image is a triangulated subcategory of D.A/, then we call the DG cat-
egory A pre-triangulated. In this case, we have Dperf.A/ ' H 0.A/Kar – Karoubi
completion.

The basic example is the following: for a separated scheme X of finite type
over k we take the DG category Db

coh.X/ of bounded below complexes of injective
quasi-coherent sheaves with bounded coherent cohomology. Then Db

coh.X/ is pre-
triangulated and H 0.Db

coh.X// is equivalent to Db
coh.X/. We denote by Perf.X/ �

Db
coh.X/ the full DG subcategory of perfect complexes.

If T is a small triangulated category and � � T is a full triangulated subcategory,
then there is a notion of a quotient category T =� , due to Verdier [26,27]. The category
T =� is again triangulated, and we have an exact quotient functor T ! T =� . The
category T =� is obtained from T by inverting the morphisms f W x ! y such that
Cone.f / 2 � .

The basic example is coming from geometry: let X be as above, Z � X a closed
subscheme, and U D X � Z. Denote by Db

coh;Z.X/ � Db
coh.X/ the full subcategory

of complexes whose cohomology is supported on Z. Then we have an equivalence

Db
coh.X/=Db

coh;Z.X/ ' Db
coh.U /I

see [20, Lemma 2.2].
There is a notion of a DG quotient A=B of a small DG category A by a full

DG subcategory B � A, which was first defined by Keller [13], and then an explicit
construction has been given by Drinfeld [6]. The main property of the DG quotient
is its compatibility with the Verdier quotient of triangulated categories. Namely, if
A is a pre-triangulated small DG category, and B � A is a full pre-triangulated DG
subcategory, then we have an equivalence H 0.A=B/ ' H 0.A/=H 0.B/.

In particular, within the above notation we have a quasi-equivalence

Db
coh.X/=Db

coh;Z.X/ ' Db
coh.U /:

3. Categorical smooth compactifications

The following notions of smoothness and properness for DG categories are due to
Kontsevich.

A DG category A is called proper (over k) if for any x;y2A the complex A.x;y/

has finite-dimensional total cohomology, and the triangulated category Dperf.A/ is
generated by a single object. Here and below we say that a triangulated category T

is generated by an object x if T is the smallest idempotent complete triangulated
subcategory of T containing x. Equivalently, any (isomorphism class of an) object of
T can be obtained from x using cones and direct summands.
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A DG category A is called smooth (over k) if the diagonal A-A-bimodule IA is
perfect over A ˝ Aop. Here IA.x; y/ D A.x; y/.

These properties are compatible with the corresponding properties of schemes.
Namely, the following holds.

Proposition 3.1 ([21, Proposition 3.30] and [17, Proposition 3.13]). If X is a sep-
arated scheme of finite type over k, then the DG category Perf.X/ is smooth (resp.
proper) if and only if X is smooth (resp. proper).

Much more surprising is the following theorem of Lunts.

Theorem 3.2 ([17, Theorem 6.3]). For any separated scheme X of finite type over a
perfect field k, the DG category Db

coh.X/ is smooth.

There is a notion of an hfp DG category. Before giving its formal definition, we
mention that it is an analogue of the notion of a finitely dominated topological space.
Recall that a (possibly infinite) CW complex X is called finitely dominated if there
exists a finite CW complex Y and continuous maps f W X ! Y , g W Y ! X such that
gf � idX . Equivalently, the identity map idX is homotopic to a map r W X ! X such
that the closure r.X/ is compact.

Formal definition of hfp DG algebras and DG categories is the following.

Definition 3.3 ([25]). (1) A finite cell DG algebra B is a DG algebra which is iso-
morphic as a graded algebra to the free finitely generated associative algebra:

Bgr
Š khx1; : : : ; xni;

and moreover we have

dxi 2 khx1; : : : ; xi�1i; 1 � i � n: (3.1)

(2) A DG algebra A is hfp if in the homotopy category Ho.dgalgk/ the object A

is a retract of some finite cell DG algebra B .
(3) A DG category A is hfp if it is Morita equivalent to an hfp DG algebra.

Recall that in any category C an object X is a retract of Y iff there exists mor-
phisms f W X ! Y , g W Y ! X such that gf D idX .

Proposition 3.4 ([25]). Let A be a small DG category over k.

(1) If A is hfp, then A is smooth.

(2) If A is smooth and proper, then A is hfp.

Informally, an hfp DG category is a smooth DG category “given by a finite
amount of data”. For example, the k-algebra of rational functions k.x/ is smooth
but not hfp.
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An equivalent definition of an hfp DG category is the following. First, there is a
notion of a finite cell DG category: as a k-linear graded category, it is a path category
of a finite graded quiver with arrows x1; : : : ; xn such that the differential satisfied the
condition analogous to (3.1). Now, a DG category A is hfp if it is a retract of a finite
cell DG category in the Morita homotopy category of DG categories HoM .dgcatk/

(which is obtained by inverting Morita equivalences).
Recall that a usual smooth compactification of a smooth algebraic variety X is

given by a smooth and proper variety xX and an open embedding X ,! xX . Denote
by Z D xX � X the infinity locus. As already mentioned in the previous section, we
have an equivalence Db

coh.X/ ' Db
coh. xX/=Db

coh;Z. xX/. Hence, we also have a quasi-
equivalence of DG categories

Db
coh.X/ ' Db

coh. xX/=Db
coh;Z. xX/:

This motivates a general definition of a categorical smooth compactification,
which we already mentioned in the introduction.

Definition 3.5. A smooth categorical compactification of a DG category A is a DG
functor F W C ! A, where the DG category C is smooth and proper, the extension
of scalars functor F W Perf.C/ ! Perf.A/ is a localization (up to direct summands),
and its kernel is generated by a single object.

We have the following implication, which is quite easy to prove.

Proposition 3.6 ([9, Corollary 2.9]). If a DG category A has a smooth categorical
compactification, then it is hfp.

4. Smooth compactifications of derived categories of coherent sheaves

We have the following general result.

Theorem 4.1 ([9, Theorem 1.8]). For any separated scheme X of finite type over
a field k of characteristic zero, there exists a smooth projective variety Y and a
quasi-equivalence Db

coh.Y /=� ' Db
coh.X/, where � � Db

coh.Y / is a pre-triangulated
subcategory generated by a single object. In particular, the DG category Db

coh.Y / is
hfp.

This confirms a conjecture of Kontsevich on the homotopy finiteness of the DG
category Db

coh.X/.

Remark. A similar result is expected to hold over any perfect field. In our proof, we
cannot get rid of the characteristic zero assumption: we use the categorical resolution
of singularities of Kuznetsov and Lunts, which in turn uses the classical Hironaka’s
theorem.
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We now explain the idea of the proof of Theorem 4.1. It is based on the following
constructions.

The first one is the categorical resolution of singularities due to Kuznetsov and
Lunts [15]. Let us restrict to proper schemes. For any proper scheme X over k, they
construct a smooth and proper DG category C together with a fully faithful functor
Perf.X/ ,! C . Moreover, this DG category C has a semi-orthogonal decomposition
into derived categories of some smooth and proper varieties:

C D
˝
Db

coh.Y1/; : : : ; Db
coh.Ym/

˛
:

More precisely, one chooses a resolution Z ! Xred by a sequence of blow-ups
with smooth centers. Then the varieties Y1; : : : ; Ym are exactly the centers of the
blow-ups and the resolution Z (each of these varieties can appear in the list several
times).

Another general construction due to Orlov [21] allows to embed such a semi-
orthogonal gluing of Db

coh.Yi / into a single derived category Db
coh.Y / (here Yi and

Y are smooth and proper). Taking such embedding C ,! Db
coh.Y / (where C is as

above), we obtain the fully faithful composition functor Perf.X/ ,! C ,! Db
coh.Y /.

Passing to large categories (i.e., categories of ind-objects), we can take a right adjoint
to this embedding, which restricts to a functor ˆ W Db

coh.Y / ! Db
coh.X/. It turns out

(but it is not easy to prove) that this functor is actually a desired localization functor
promised by Theorem 4.1.

Remark. Strictly speaking, in [9] it is proved that the functor ˆ WDb
coh.Y /!Db

coh.X/

is a localization under some assumptions on the choices of integer parameters in the
construction of the category C in [15]. We do not discuss these details in the present
note.

The construction of the categorical resolution from [15] uses two general methods
to “partially resolve” the category Perf.X/. The first one allows to deal with nilpotents
in the structure sheaf OX . Namely, assuming that the reduced part Xred �X is smooth,
one can find a categorical resolution by a certain ringed space .X; AX /, where AX is
a sheaf of associative algebras (and non-commutative unless X D Xred). This ringed
space is equipped with a morphism .X; AX /

�X
��! X , and the pullback functor

��
X W Dperf.X/ ! Dperf.X; AX /

is fully faithful. It is not hard to show that the pushforward functor

�X� W Db
coh.X; AX / ! Db

coh.X/

is a localization.
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Remark. The ringed space .X; AX / is given by a certain generalization of algebras
considered by Auslander [1]. Namely, for a finite-dimensional algebra A of finite
representation type, Auslander constructs an algebra B D EndA.

L
i Mi /, where Mi

are representatives of all isomorphism classes of indecomposable finite-dimensional
A-modules. In fact, for X D Spec kŒx�=xn we have

.X; AX / D

�
pt; EndkŒx�=xn

� nM
iD1

kŒx�=xi

��
:

Another more interesting construction involved in the categorical resolution is
the “categorical blow-up”. Without going into details, this is a certain categorical
modification of the usual blow-up. Given any noetherian scheme X and a closed
subscheme S , consider the blow-up f W Y ! X , i.e., Y D ProjX .

L
n�0 I n

S /. Then
under some assumptions on S (always achievable by replacing S with its sufficiently
large infinitesimal neighborhood), one can define a certain semi-orthogonal gluing of
Db

coh.Y / and Db
coh.S/, denoted by Dcoh.Y; S/, with a functor

�� W Dcoh.Y; S/ ! Db
coh.X/:

It is proved in [9] that under some additional assumptions on S (again they always
hold after infinitesimally enlarging S ) this functor �� is a localization. This is the
most difficult part of the proof of Theorem 4.1. Note that if we use Db

coh.Y / instead
of Dcoh.Y; S/, then

(1) the pushforward functor Rf� W Db
coh.Y / ! Db

coh.X/ is usually not a local-
ization, and a necessary condition is that Rf�.OY / D OX ;

(2) if we assume that this condition is satisfied, we are not able in general to
prove that Rf� is a localization (this is a generalization of Conjecture 1.2).
So even in this case we use Dcoh.Y; S/ instead of Db

coh.Y /.

Using these localization statements as building blocks, the proof of Theorem 4.1
is obtained by induction of the number of blow-ups of smooth centers in the resolution
process of Xred.

5. Existence of smooth compactifications

In this section, we assume that the characteristic of the base field k is zero.
Recall the question of Toën, mentioned in the introduction.

Question 5.1. Let A be a homotopically finite DG category. Does it admit a smooth
compactification?
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Quite surprisingly, the paper [8] gives a negative answer. We briefly explain the
idea of a counterexample, and its close relation with generalized versions of the non-
commutative Hodge-to-de Rham degeneration.

Recall that the classical Hodge theory implies that for any smooth and proper
algebraic variety X over a field k of characteristic zero the spectral sequence

E
p;q
1 D H

q
Zar.X; �

p
X / ) H

pCq
DR .X/

degenerates. Here the limit of the spectral sequence is the algebraic de Rham coho-
mology.

The following categorical generalization was conjectured by Kontsevich and
Soibelman [14], and proved by Kaledin [11].

Theorem 5.2 ([11, Theorem 5.4]). Let A be a smooth and proper DG algebra over
a field of characteristic zero. Then the Hochschild-to-cyclic spectral sequence degen-
erates, so that we have an isomorphism HP�.A/ Š HH�.A/..u//.

The following conjectures were formulated by Kontsevich (unpublished).

Conjecture 5.3 (Kontsevich). Let A be a smooth DG algebra over a field of charac-
teristic zero. Then the composition

K0.A ˝ Aop/
ch
�!

�
HH�.A/ ˝ HH�.A

op/
�

0

id˝ı�

����!
�
HH�.A/ ˝ HC�

� .Aop/
�

1

vanishes on the class ŒA� of the diagonal bimodule.

Here ı� W HH�.A
op/ ! HC�

� .Aop/Œ�1� denotes the boundary map in the long
exact sequence

� � � ! HC�
nC1.Aop/ ! HC�

n�1.Aop/ ! HHn�1.Aop/
ı�

��! HC�
n .Aop/ ! � � � I

see for example [7, Section 3].

Conjecture 5.4 (Kontsevich). Let B be a proper DG algebra over a field k of char-
acteristic zero. Then the composition map�

HH�.B/ ˝ HC�.B
op/

�
Œ1�

id˝ıC

����! HH�.B/ ˝ HH�.B
op/ ! k (5.1)

is zero.

Here ıC W HC�.B
op/Œ1� ! HH�.B

op/ denotes the boundary map in a similar
long exact sequence

� � � ! HHnC1.Bop/ ! HCnC1.Bop/ ! HCn�1.Bop/
ıC

��! HHn.Bop/ ! � � � I
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see [16, Section 2.2]. The second map in (5.1) is given by the composition

HH�.B/ ˝ HH�.B
op/ Š HH�.B ˝ Bop/ ! HH�

�
Endk.B/

�
Š HH�.k/ D k;

where we used the Künneth isomorphism for HH , the diagonal bimodule structure
on B , and the (derived) Morita equivalence between Endk.B/ and k.

Both Conjectures 5.3 and 5.4 had a strong motivation. Namely, in the case of
smooth DG algebras, the following holds.

Proposition 5.5 ([8, Proposition 4.1]). Let B be a smooth DG algebra and F W

Perf.A/ ! Perf.B/ a localization functor, where A is a smooth and proper DG alge-
bra. Then Conjecture 5.3 holds for B .

This is easy to prove (of course, assuming Kaledin’s theorem (Theorem 5.2)).
Namely, it almost immediately follows from the commutative diagram

HH�.A/ ˝ HH�.A
op/

id˝ı�

����! HH�.A/ ˝ HC�
� .Aop/Œ�1�??y ??y

HH�.B/ ˝ HH�.B
op/

id˝ı�

����! HH�.B/ ˝ HC�
� .Bop/Œ1�;

and from the degeneration of the Hochschild-to-cyclic spectral sequence for A. We
have the following corollary.

Corollary 5.6 ([8, Corollary 4.2]). Let X be a separated scheme of finite type over k,
and G 2Db

coh.X/ – a generator. Then Conjecture 5.3 holds for the smooth DG algebra
A D R End.G /.

Indeed, this follows from Proposition 5.5 and from Theorem 1.1 (in fact, a weak-
ened version of Theorem 1.1 is sufficient; see [8, Remark 4.3]).

Similar (dual) statements hold for proper DG algebras.

Proposition 5.7 ([8, Proposition 5.1]). Let B be a proper DG algebra and Perf.B/,!

Perf.A/ a fully-faithful functor, where A is a smooth and proper DG algebra. Then
Conjecture 5.4 holds for B .

Corollary 5.8 ([8, Corollary 5.2]). Let X be a separated scheme of finite type over k,
and Z �X a closed proper subscheme. For any object F 2 PerfZ.X/, Conjecture 5.4
holds for the proper DG algebra B D R End.F /.

However, we disproved both Conjectures 5.3 and 5.4. The counterexamples are
provided by [8, Theorems 4.5 and 5.4]. The counterexample to Conjecture 5.3 is in
fact hfp, hence by Proposition 3.6 it gives a negative answer to Question 1.4.

We briefly describe the counterexample to Conjecture 5.4. Recall that given DG
algebras A and B , together with an A-B-bimodule M , we can form a gluing C D�

B 0
M A

�
. This is a DG algebra which equals A ˚ B ˚ M as a complex of vector
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spaces, and the multiplication is given by

.a; b; m/ � .a0; b0; m0/ D .aa0; bb0; am0
C mb0/:

Let us take A D kŒx�=x6 and B D kŒy�=y3, where deg.x/ D 0, deg.y/ D 1, and
dx D 0, dy D 0. Then one can show that there exists a DG A-B-bimodule M such
that H �.M/ D kŒ0� and the DG algebra C D

�
B 0
M A

�
is a counterexample to Conjec-

ture 5.4. Namely, the DG algebra C is proper (but not smooth), and its cohomology
H �.C / is 10-dimensional. Further, we have the elements x 2 H 0.C /, y 2 H 1.C /.
Using natural maps H n.C / ! HH�n.C / ! HC�n.C / and similarly for C op, we
can consider x and y as classes in Hochschild and cyclic homology, respectively:
x 2 HH0.C /, y 2 HC�1.C op/. Now, a bimodule M is constructed in such a way
that hx; ıC.y/i ¤ 0, disproving conjecture 5.4. For details see [8, Theorem 5.4].

6. Wall’s finiteness obstruction for DG categories

Here we mention some new results, to appear in [10]. In particular, we formulate a
criterion for a homotopically finite DG category to have a smooth compactification.

As we already mentioned, the notion of an hfp DG category is analogous to the
notion of a finitely dominated CW complex.

In 1959, Milnor [18] asked if every finitely dominated CW complex X is homo-
topy equivalent to a finite CW complex. This was already known in the case when
each connected component of X is simply connected, but it was considered to be a
difficult problem in general.

For simplicity, let us assume that X is connected. In 1965, C. T. C. Wall defined
an invariant w.X/ 2 fK0.ZŒ�1.X/�/ (an element of the reduced Grothendieck group
of ZŒ�1.X/�) for any finitely dominated space X . Recall that for an associative unital
ring A the group K0.A/ is generated by isomorphism classes of finitely generated
projective (right) A-modules ŒP �, subject to relations ŒP ˚ Q� D ŒP � C ŒQ�. If a ring
A is equipped with a unital homomorphism A ! Z (i.e., A is augmented), its reduced
Grothendieck group fK0.A/ is defined to be the kernel ker.K0.A/ ! K0.Z/ D Z/. In
fact, we have a decomposition K0.A/ Š Z ˚ fK0.A/. Note that for any group G the
group ring ZŒG� is naturally augmented. Wall proved the following result.

Theorem 6.1 ([28, Theorem F]). A connected finitely dominated space X has a
homotopy type of a finite CW complex if and only if w.X/ D 0.

Probably the simplest description (and different from the original one) of the class
w.X/ is the following. Recall that for a DG ring B the group K0.B/ is defined to be
the Grothendieck group K0.Dperf.B//. Here for a small triangulated category T the
group K0.T / is generated by the isomorphism classes of objects ŒX�, X 2 T , subject
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to relations ŒY � D ŒX� C ŒZ� for an exact triangle

X ! Y ! Z ! XŒ1�

in T . If the DG ring B is concentrated in degree zero, i.e., B D H 0.B/, then the
two definitions of K0.B/ agree. Moreover, if B is (cohomologically) non-positively
graded, then K0.B/ Š K0.H 0.B//; see [4, Theorem 5.3.1 and Proposition 6.2.1].

Now choose a base point x0 2 X . Consider the DG ring C�.�x0
X/ of singular

chains on the based loop space. By the result of Brav–Dyckerhoff [5, Proposition 5.1],
the DG ring C�.�x0

X/ is smooth over Z (and moreover it is hfp). It follows that the
augmentation module Z is perfect: Z 2 Perf.C�.�x0

X//. Any perfect module defines
a class in K0, hence we have a well-defined class

zw.X/ WD ŒZ� 2 K0

�
C�.�x0

X/
�
Š K0

�
Z
�
�1.X; x0/

��
;

since H0.�x0
X/ Š ZŒ�1.X;x0/�. The class w.X/ 2 fK0.ZŒ�1.X;x0/�/ is simply the

projection of zw.X/.

Remark. The class zw.X/ 2 K0.ZŒ�1.X; x0/�/ contains essentially the same infor-
mation as w.X/ 2 fK0.ZŒ�1.X; x0/�/. Namely, under the identification

K0

�
Z
�
�1.X; x0/

��
Š Z ˚ fK0

�
Z
�
�1.X; x0/

��
the class zw.X/ is given by .�.X/; w.X//, where �.X/ is the Euler characteristic.

Equivalent formulation of Wall’s theorem is thus the following: a finitely domi-
nated connected space X has a homotopy type of a finite CW complex if and only if
the class ŒZ� 2 K0.C�.�x0

X// is an integer multiple of the class ŒC�.�x0
X/�.

Now fix some base field k of arbitrary characteristic. For a small DG category A,
we put K0.A/ WD K0.Dperf.A//. Recall that we denote by IA the diagonal A-A-
bimodule.

Theorem 6.2 ([10]). For a small DG category A, the following are equivalent:

(i) A is Morita equivalent to a finite cell DG category;

(ii) A is hfp, and moreover ŒIA� 2 Im.K0.A/ ˝ K0.Aop/ ! K0.A ˝ Aop//;

(iii) A is Morita equivalent to a DG quotient E=� , where E is a pre-triangulated
proper DG category with a full exceptional collection, and � is a subcate-
gory generated by a single object.

Remark. To explain the analogy between Theorem 6.2 and Wall’s theorem, let us
consider the following three categories with a class of morphisms called weak equiv-
alences (the most important part of the model structure):

(1) the category Top of topological spaces, with a class of weak homotopy equiv-
alences;
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(2) the category Z0.Mod-A/ (see Section 2 for this notation) of right DG mod-
ules over a fixed DG category A, with a class of quasi-isomorphisms;

(3) the category dgcatk of small DG categories over a field k, with a class of
Morita equivalences.

For each of these categories, one has the class of “finite cell” objects, namely:
finite CW complexes in Top, semi-free finitely generated A-modules in Z0.Mod-A/,
and finite cell DG categories in dgcatk. Then we have the classes of hfp objects:
these are homotopy retracts of finite cell objects. Thus, the hfp objects are as fol-
lows: finitely dominated spaces in Top, perfect A-modules in Z0.Mod-A/, hfp DG
categories in dgcatk.

Now, Wall’s theorem (more precisely, an analogue of Theorem 6.1 for not neces-
sarily connected spaces) gives a K-theoretic criterion for a finitely dominated space
to have a homotopy type of a finite CW complex.

Further, Thomason’s classification of dense subcategories of triangulated cate-
gories [24, Theorem 2.1] gives a K-theoretic criterion for a perfect A-module M to
be quasi-isomorphic to a semi-free finitely generated A-module. This happens if and
only if the class ŒM � 2 K0.A/ is contained in the subgroup generated by the classes
of representable A-modules.

From this point of view, our theorem (Theorem 6.2) is an analogue of the results
of Wall and Thomason for DG categories, plus also an alternative characterization of
finite cell DG categories (equivalence (i),(iii)). The following table summarizes the
above discussion.

Topological spaces
DG modules over a small
DG category A

Small DG categories over k

Weak homotopy
equivalences

Quasi-isomorphisms Morita equivalences

Finite CW complexes
Semi-free finitely
generated A-modules

Finite cell DG categories

Finitely dominated
spaces

Perfect A-modules hfp DG categories

Wall’s finiteness
obstruction theorem

Thomason’s classification
of dense subcategories

Theorem 6.2

There are different ways to formulate a “relative” version of Theorem 6.2. We
choose the following “minimalistic” formulation.

Theorem 6.3 ([10]). Let A and B be hfp, pre-triangulated, Karoubi complete DG
categories, and B ¤ 0. The following are equivalent.
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(i) The class ŒIA� 2 K0.A ˝ Aop/ is contained in the subgroup generated by
the images Im.K0.B ˝ Bop/ ! K0.A ˝ Aop// under various pairs of
quasi-functors .B ! A; Bop ! Aop/.

(ii) We have a Morita equivalence A ' C=� , where C D hB; : : : ; Bi is a
(smooth) semi-orthogonal gluing of a finite number of copies of B, and
� � C is generated by a single object.

Using this relative version of Wall’s finiteness obstruction for DG categories, we
prove the following criterion for existence of a categorical smooth compactification.

Theorem 6.4 ([10]). Let A be an hfp pre-triangulated DG category. The following
are equivalent.

(1) A admits a smooth categorical compactification.

(2) There exists a DG functor C ! A, where C is smooth and proper, such that

ŒIA� 2 Im
�
K0.C ˝ Cop/ ! K0.A ˝ Aop/

�
:

For example, this allows to show existence of a smooth compactification of the
derived category of coherent D-modules on a separated scheme of finite type X over
a field of characteristic zero (although it is not clear how to construct such compacti-
fication explicitly).
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