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Abstract. Some aspects of computer algebra (notably computation group theory and compu-
tational number theory) have some good databases of examples, typically of the form “all the
X up to size n”. But most of the others, especially on the polynomial side, are lacking such,
despite the utility they have demonstrated in the related fields of SAT and SMT solving. We
claim that the field would be enhanced by such community-maintained databases, rather than
each author hand-selecting a few, which are often too large or error-prone to print, and therefore
difficult for subsequent authors to reproduce.

1. Introduction

Mathematicians have long had useful collections, either of systematic data or ex-
amples. One of the oldest known such is the cuneiform tablet known as Plimpton 322,
which dates back to roughly 1800BC; see [23, pp. 172—-176], or a more detailed
treatment in [42, 50]. This use of systematic tables of data spawned the develop-
ment on logarithmic, trigonometric, and nautical tables: Babbage’s difference engine
was intended to mechanise the production of such tables. But there were also tables
of purely mathematical interest: the author recalls using an 1839 table of logarithms
and what are now known as Zech logarithms [59] (but in fact they go back at least
to [41]), i.e., tables of the function log x + log(1 + x), at least over R; Jacobi’s table
[34] was modulo p” for all the prime powers p” < 1000.

1.1. Data citation

Citation and referencing is an important point of modern scholarship—Harvard-style
referencing is generally attributed to [43], and the history of Science Citation Index
is described in [29]. It is well understood, and practically all research students, and
many undergraduates, get lessons in article citation practices.
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Figure 1. Overlaps between data citation harvesters [56, Figure 5].

Despite the success of article citation, data citation is a mess in practice [56]: only
1.16% of dataset DOISs in Zenodo are cited' (and 98.5% of these are self-citations). It
is still a subject of some uncertainty: [36,46] and significant changes are still being
proposed [25]. Worse, perhaps, it is poorly harvested; see Figure 1. Assuming inde-
pendence and looking at the overlap statistics, we can estimate that there are between
4,000 to 20,000 datasets waiting to be cited. In such circumstances, de facto people
cite a paper if they can find one.

2. Pure mathematics

2.1. On-line Encyclopedia of Integer Sequences

This database [52] can be said to have “colonised the high ground” in mathematics:
mathematicians from all sub-disciplines use it. It has evolved from a private enter-
prise, for a long time at http://www.research.att.com/~njas/sequences, to a system
maintained by a foundation, and now at https://oeis.org/. The recommended citation
is “OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org, [date]”, but the author had originally to
search the website to find it!

2.2. Group theory

The classification of finite simple groups, as well as being a four de force in mathem-
atics, also means that we have a complete database here. In most other areas, we have
to be content with “small” databases.

'In contrast, 60% of papers in Natural Science and Engineering had a citation in the next
two years [39,49].
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An example of this is the transitive groups acting on n points, where various
authors have contributed: [17] (n <11);[51] (n=12);[16] (n =14,15); [32] (n = 16);
[33]1 (17 <n < 31); [18] (n = 32). These are available in the computer algebra system
GAP (and MAGMA), except that (for reasons of space) n = 32 is not in the default
build for GAP.

These are really great resources (if that is what you want), but how does one cite
this resource: “[55, transgrp library]”?

There are several other libraries such as primitive groups. But it could be argued
that (finite) group theory is “easy”: for a given n, there are a finite number and we
“just” have to list them.

2.3. L-functions and modular forms

The L-functions and modular forms database, known as LMFDB and hosted at
Imfdb.org is a third example of mathematical databases. The recommended cita-
tion, “The LMFDB Collaboration, The L-functions and modular forms database,
http://www.Imfdb.org, 2021 is directly linked from the home page, which is a good
model to follow.

Computation in this area had a long history, from [9] and [54] to the current
database, which is the work of a significant number of people. The early computa-
tions gave rise to the Birch—Swinnerton-Dyer conjectures [10], now a Clay Millen-
nium Prize topic. The current computations are in active use by mathematicians; see
Poonen’s remarks in [27].

3. SAT and SMT solving

3.1. SAT solving

SAT solving is normally seen as solving a Boolean expression written in conjunctive
normal form (CNF).

The 3-SAT problem is as follows: given a 3-literals/clause CNF satisfiability prob-
lem,

aVvihpVvhz) Al i Viga Vi) A= AN Ving VIN3). (D

Clause 1

where /; ; € {X1,X1, X2, X2, ...}; is it satisfiable? In other words, is there an assign-
ment of {T, F'} to the x; such that all the clauses are simultaneously true.

3-SAT is the quintessential NP-complete problem [24]. 2-SAT is polynomial, and
k-SAT for k > 3 is polynomial-transformable into 3-SAT. In practice, we deal with
SAT—i.e., no limitations on the length of the clauses and no requirement that all
clauses have the same length.
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Let n be the number of i such that x; (and/or Xx;) actually occur. Typically # is of
a similar size to N.

Despite the problem class being NP-complete, nearly all examples are easy (e.g.,
SAT-solving has been routinely used in the German car industry for over twenty years
[38]): either easily solved (SAT) or easily proved insoluble (UNSAT). For random
problems there seems to be a distinct phase transition between the two [2,3,30], with
the hard problems typically lying on the boundary.

This means that constructing difficult examples is itself difficult, and a topical
research area [5,53].

SAT solving has many applications, so we want effective solvers for “real” prob-
lems, not just “random” ones. This gives us the fundamental question: what does this
mean?

3.2. SAT contests

These are described at http://www.satcompetition.org. They have been run since 2002.
In the early years, there were distinct tracks for industrial’/handmade/random prob-
lems; this has been abandoned.

The methodology is that the organisers accept submissions (from contestants” and
others), then produce a list of problems (in DIMACS, a standard format), set a time
(and memory) limit, and see how many of the problems the submitted systems can
solve on the contest hardware.

SAT is easy to certify (the solver just produces a list of values of the x;). Verifying
UNSAT is much harder, but since 2013 the contest has required proofs of UNSAT for
the UNSAT track, and since 2020 in all tracks, in DRAT: a specified format (some of
these proofs have been > 100 GB).

The general feeling is that these contests have really pushed the development of
SAT solvers, roughly speaking x2/year. For comparison, Linear Programming has
done x1.8 over a greater timeline and with more rigorous dcoumentation [11].

3.3. SMT: Life beyond SAT

Consider a theory T, with variables y;, and various Boolean-valued statements in 7'
of the form F;(y1,..., ), and a CNF £ in the form of (1) with F;(y1,..., y,) rather
than just x;. In principle, 7 can be anything: those currently supported® are given in
Figure 2.

2In 2020, contestants were required to submit at least 20 problems, as well as a solver.
3By the SMT-LIB standard [6], which also says * New logics are added to the standard
opportunistically, once enough benchmarks are available”.
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Figure 2. Available logics (March 2022) https://smtlib.cs.uiowa.edu/logics.shtml.

For example QF_NRA is the quantifier-free theory of nonlinear real arithmetic,
and QF_LRA (linear real arithmetic) is included in this. Both QF_NRA and QF_UFLRA
(uninterpreted functions and linear real arithmetic) are included in QF _UFNRA.

Then the SAT/UNSAT question is similar: do there exist values of y; such that
&£ is true (SAT), or can we state that no such exist (UNSAT), and the community
runs SMT competitions (https://smt-comp.github.io/2022/). There is a separate track
for each theory T', as the problems will be different. Within each, the problems are
subdivided as industrial/crafted/random.

The SMT-LIB format [6] provides a standard input format. The question of prov-
ing UNSAT is in general unsolved (but see [37] for one particular theory 7).

There has been substantial progress in SMT-solving over the years, possibly sim-
ilar to SAT, and probably also spurred by the contests.

4. Computer algebra: Where are we?

Obviously, group theory and others are parts of computer algebra: What about the
rest of computer algebra?

In general, the problems of computer algebra have a bad worst-case complex-
ity, and we want effective solvers for “real” problems, not just “random” ones. The
question, as in SAT and SMT, is “what does this mean?”.

But there are also various logistical challenges.

(1) Format: there is no widely accepted common standard. We do have Open-
Math [15], but it is not as widely supported as we would like.
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(2) Contests: there are currently none. Could SIGSAM organise them?

(3) Problem sets: there are essentially no independent ones. Each author chooses
his own.

(4) Archive: not really.

We now consider various specific problems.

4.1. Polynomial GCD

This problem is NP-hard (for sparse polynomials, even univariate) [26, 48]. Even
for dense polynomials, it can be challenging for multivariates. There is no standard
database: one has to trawl previous papers (and often need to ask the authors, as the
polynomials were too big to print in the paper). Verification is a challenge: one can
check that the result is a common divisor, but verifying greatest is still NP-hard [48].

4.2. Polynomial factorisation

This is known to be polynomial time for dense encodings [40], even though their
exponent is large, and much work has gone into better algorithms; e.g. [1]. Presum-
ably it is NP-hard for sparse encodings, though the author does not know of an explicit
proof. There is no standard database: one has to trawl previous papers (and often
needs to ask the authors, as the polynomials were too big to print in the paper).

Verification is a challenge: one can check that the result is a factorisation, but
checking completeness (i.e., that these factors are irreducible) seems to be as hard as
the original problem in the worst cases.

It is worth noting that, with probability 1, a random dense polynomial is irredu-
cible (and easily proved so by the Musser test [47]), so the question “what are the
interesting problems?” is vital.

4.3. Grobner bases

The computation of Grobner bases has many applications, from engineering to cryp-
tography. But this has doubly exponential (with respect to n, the number of variables)
worst-case complexity [45], even for a prime ideal [20]. If we take n “random” equa-
tions in n variables, they will satisfy the conditions for the Shape Lemma [7] and have
D < n" solutions, so a Grobner base in a purely lexicographical order will look like

{P1(x1).x2 — pa(x1). X3 — p3(x1). ... X0 — pu(x1)}, (2)

where p; is a polynomial of degree D in x; and the other p; are polynomials of
degree at most D — 1 in x;. Experience shows that the coefficients of the p; will
generally be large (theoretically, they can be D times as long as the input coefficients).
Conversely, if we have n 4 1 equations, there are generally no solutions and the
Grobner base is {1}, much shorter than (2).
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The good news from the point of view of this paper is that there is a collection [8],
but it is very old (1996), so most of the examples are trivial with today’s hardware
and software, and completely static. Worse, some of the examples are only available
in PDF.

There is always a Grobner base (no concept of UNSAT as such) but it is not clear
what a useful certificate of “G is a Grobner base for input L”” might mean in general
(but see [4]). If G = {g1,...,gm} is a Grobner base of F = {fi1,..., fn}, then a
general certificate would consist of three components:

(1) aproof that G is a Grobner base, which would mean that every S-polynomial
S(gi, gj) reduces to 0 under G, which is easily checked;

(2) a proof that (F') € (G), which could be a set of A; ; such that every f; =
2 i &)

(3) a proof that (G) € (F), which could be a set of u; ; such that every g; =
> i fi-

However, the A; ; and p; ; might be (and generally are) extremely large.

4.4. Real algebraic geometry

Again, the problem of describing the decomposition of R” sign-invariant for a set .S of
polynomials f; in n variables has doubly exponential (with respect to n) worst-case
complexity [14]. However, unlike Grobner bases, it seems that this is the “typical”
complexity, though the author knows no formal statement of this. For a given prob-
lem, the complexity can vary greatly: [14, Theorem 7] is an example of a polynomial
p in 3n + 4 variables such that any cylindrical algebraic decomposition (CAD), with
respect to one order, of R¥ ™ sign-invariant for p has O (22") cells, but with respect
to another order has 3 cells:

P = X" ((yn—l - %)2 + (xn—1 — Zn)z) ((yn—l - Zn)2 + (xn—1 — xn)z)

n—1
+ Y X (im = 9% + (i — 202 (ie1 — 2% + (xio1 — X))

i=1

+ x(()’o —2x0)% + (a2 + (xo - %))2)

x ((yo —2+ 20 + (@ + (o — %))2) +a.

The bad order (eliminating x, then yy, @, X9, z1, Y1, Z1, - - - , Xn, @) needs 0(22n)
(Maple: 141 when n = 0) cells. Any order eliminating a first says that R3"*3 is
undecomposed, and the only question is p = 0, which is linear in a, and we get three
cells: p <0, p=0,and p > 0.
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However, if we replace a by a3, the topology is essentially the same, but the
discriminant is no longer trivial, and the “good” order now generates 213 cells in
Maple, rather than three.

There is a collection [58], not quite as old as [8] (2014 was the last update), but
still completely static. The DEWCAD project [ 12] might update this, but there are still
issues of long-term conservation. The format has learned from [8] and each example
is available in text, Maple input, and QEPCAD.

If we are just looking at computing a CAD, which we might wish to do for motion
planning purposes [57], there is no concept of UNSAT, and the question of certificates
of correctness is essentially unsolved. Attempts to produce a formally verified CAD
algorithm have also so far been unsuccessful [21].

However, CAD was invented [22] for the purpose of quantifier elimination, i.e.,
converting Qg Xg OQr41Xk+1 - OQnXxn®(fi), where Q; € {3, V} and ® is a Boolean

combination of equalities and inequalities in the f;, into W(gy,..., gn’), where ¥
is a Boolean combination of equalities and inequalities in the g;, polynomials in
X1,...,Xk—1, and if the statement is fully quantified, the result is a Boolean. A com-

mon case, particularly in program verification, is the fully existential case (all Q;
are 3), where @ is “something has gone wrong”, and we want to show that this can-
not happen. Then SAT is easy (exhibit values of x; such that ® is true, but UNSAT is
much harder to certify. See [37] for some steps in this direction.

4.5. Integration

The computational complexity of integration (i.e., given a formula f in a class £, is
there a formula g € &£, or in an agreed extension of &£, such that g’ = f) is essen-
tially unknown (but integration certainly involves GCD, factorisation, etc.). When
£ includes algebraic functions, difficult questions of algebraic geometry arise (see
[28, as corrected in [44]]), and there is no known bound on the complexity of these.

“Paper” mathematics produced large databases of integrals (e.g. [31]), but these
are (at best) in PDF, and the way they are commonly printed makes it extremely hard
to recover semantics from the layout. Probably the best current database is described
in [35]. But these databases are almost entirely of successful (SAT in our notation)
examples, and there is almost no collection of UNSAT (4g € £ : g’ = f) examples.
Algorithm-based software (e.g. [28]) has an internal proof of UNSAT, but I know of
no software that can exhibit it. That proof is typically very reliant on the underlying
mathematics.

A new question here is the “niceness” of the output in the SAT case. Jeffrey and
Rich [35] give the example of

5x4 x>
/ ST 3
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where Maple’s answer is

10 5 5 I 10
T+ " (0+0* (40 (135 d+»02

Note that (4) is not just an ugly form of the right-hand side of (3): the two differ by 1,
which is a legitimate constant of integration.

While some element of “niceness” is probably beyond automation, “simplicity”
in the sense of [19], essentially minimal Kolmogorov complexity, is probably a good
proxy, and could be automatically judged (at least in principle: there are probably
some messy system-dependent issues in practice).

“4)

5. Conclusions

(1) The field of computer algebra really ought to invest in the sort of contests that
have stimulated the SAT and SMT worlds.

(2) This requires much larger databases of “relevant” problems than we currently
have, and they need to be properly curated.

+ The technology of collaborative working, e.g. wikis or GitHub, has
greatly advanced since the days of [8], which should make collaborat-
ive construction of example sets easier, and would also help with the
preservation challenge.

— Although OpenMath is in principle a suitable system-neutral notation
that could be the standard input (and output) format, such a use would
challenge OpenMath implementations. This would be a good develop-
ment, though.

(3) This would allow much better benchmarking practices; see the description
in [13].

(4) There are significant challenges in providing “certificates”, not just of
UNSAT in the case of integration, but elsewhere in algebra. For example,
asserting g = gcd( f1, f2) involves, not just the claim that g divides f; and f3,
but also that f1/g, f2/g are relatively prime, which may be much harder to
demonstrate.
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