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Onset of fracture in random heterogeneous particle chains

Laura Lauerbach, Stefan Neukamm, Mathias Schäffner, and
Anja Schlömerkemper

Abstract. In mechanical systems, it is of interest to know the onset of fracture in dependence
of the boundary conditions. Here we study a one-dimensional model which allows for an under-
lying heterogeneous structure in the discrete setting. Such models have recently been studied
in the passage to the continuum by means of variational convergence (�-convergence). The
�-limit results determine thresholds of the boundary condition, which mark a transition from
purely elastic behavior to the occurrence of a crack. In this article, we provide a notion of frac-
ture in the discrete setting and show that its continuum limit yields the same threshold as that
obtained from the �-limit. Since the calculation of the fracture threshold is much easier with the
new method, we see a good chance that this new approach will turn out useful in applications.

1. Introduction

The mechanical behavior of one-dimensional systems has been of interest for dec-
ades. Such systems serve as toy models for higher-dimensional theoretical invest-
igations and are of interest with respect to one-dimensional structures; see, e.g.,
[8,9,11,12,21]. In order to understand the effective behavior of materials, the systems
are studied as the number of particles tends to infinity.

In this article, we focus on the occurrence of cracks and continue a mathematical
analysis of the effective behavior of one-dimensional discrete systems in the passage
to the continuum. In particular, we strive for insight into the threshold for the overall
prescribed length ` of a chain. If ` is smaller than the threshold, the system will
show elastic behavior, whereas cracks are energetically favored if ` is larger than the
threshold. The interaction potentials between the particles or atoms of the discrete
chain are allowed to be in a large class of convex-concave potentials, which include
for instance the classical Lennard-Jones potentials. The system is then modeled with
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the help of an energy functional that is the sum of all the interaction potentials; see
(2.1). Here we restrict to the interactions of nearest neighbors; for related studies with
interactions beyond nearest neighbors we refer to [4, 5, 20].

In view of misplaced atoms or of chains consisting of several different kind
of particles, we allow for a random distribution of the interaction potentials; see
Assumption 2.1 and (2.2) for details. The limit passage is then also referred to as
stochastic homogenization; cf., e.g., [1, 7, 10, 17]. As a special case, also materials
with a periodic heterostructure are included; cf. also [15].

An appropriate mathematical technique for the passage of energy functionals
from discrete to continuous systems is based on the notion of �-convergence, which
is a notion of a variational convergence and (under coercivity assumptions) ensures
that minimizers of the discrete system converge to minimizers of the system in the
continuum limit; see, e.g., [2, 3, 19] and references cited therein. As the number of
particles tends to infinity, the energy functional converges to a functional that allows
for describing cracks. In particular, it is shown that cracks in the continuum limit
emerge if a critical stretch is exceeded. On the other hand, on the discrete level a
similar notion of a “critical stretch” or a notion for the onset of a crack has not been
introduced so far.

In this article, which is partially based on the PhD thesis [13, Chapter 7] of
L. Lauerbach, we focus on the emergence of cracks in atomistic chains. On the level
of the continuum limiting model of the chain, “crack” has a clear meaning – it is the
point where the continuum deformation features a jump and there is no interaction
between the different segments separated by the jump. In contrary, on the level of a
discrete chain with nC 1 particles, the notion of “crack” cannot be unambiguously
defined, since always neighboring particles interact. In the present paper, we intro-
duce a notion of “onset of a crack” at the discrete level for a chain with nC 1 particles.
For simplicity, we discuss the key idea in the case of a chain with nC 1 particles that
is composed of (random) potentials that are convex around its ground state and oth-
erwise concave, i.e., for deformations larger than an inflection point zfrac. We call a
deformation u elastic if the individual interaction potentials along the chain are only
evaluated in their convex region. In contrary, a deformation that is not elastic invokes
at least one bond that “lives” in the concave region of the corresponding potential.
Next, we consider the energy minimizers un of the chain with n C 1 particles and
prescribed total length ` > 0. If the minimizers un are elastic for all n 2 N, then we
do not expect the occurrence of crack in the continuum limit; while in the other case,
we expect that minimizing sequences show a concentration of strain on a finite num-
ber of weak bonds and thus a “crack” emerges in the continuum limit. Based on these
heuristics, we introduce a “critical stretch” `�n for random chains with nC 1 particles.
Firstly, we prove that it converges, for n!1, to the jump-threshold predicted by the
zeroth-order �-limit of the discrete energy, which has been obtained earlier in [14].
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Secondly, we establish a first-order expansion of the critical stretch and show that the
coefficients of the expansion term agree with the values predicted by the first-order
�-limit of the discrete energy derived in [14]. Since the proofs in [14] are technic-
ally quite involved, it is interesting to learn that there is a much simpler method for
the derivation of the jump threshold in the continuum limit. We expect that the new
notions of a fracture point and of a jump threshold in the discrete setting turn out
to be useful also in a wider class of applications. They might be compared to the
�-convergence analysis of weak-membrane and Blake–Zisserman models in [6, 18],
which invoke a combination of piecewise affine and piecewise constant interpolations
that require the identification of strain concentration on the discrete level as well.

The outline of this article is as follows: in Section 2, we introduce the model in the
discrete setting, including the assumptions on the large class of interaction potentials
in the random setting. Further, we provide the definition of a critical stretch (Defini-
tion 2.1), which corresponds to the jump threshold. We assert the asymptotic behavior
of the critical stretch as the number of particles tends to infinity (Theorem 2.1) and
compare the limit to the corresponding �-convergence results. Moreover, we consider
a rescaled setting, define the rescaled jump threshold, and assert its asymptotic beha-
vior as n tends to infinity (Theorem 2.2). Finally, we compare also this result with the
corresponding �-convergences result. All proofs are provided in Section 3.

2. Setup and main results

We consider a chain of nC 1 atoms that in a reference configuration are placed at the
sites in 1

n
Z \ Œ0; 1�; see Figure 1. The deformation of the atoms is referred to as

un W
1

n
Z \ Œ0; 1�! R:

For the passage from discrete systems to their continuous counterparts, it is useful
to identify the discrete functions with their piecewise affine interpolations, more pre-
cisely, with the functions in

An WD

°
u 2 C

�
Œ0; 1�

�
W u is affine on .i; i C 1/

1

n
; i 2 ¹0; 1; : : : ; n � 1º;

and monotonically increasing
±
:

We shall also consider clamped boundary conditions for the chain and thus introduce
for ` > 0 the set

An;` WD
®
u 2 An W u.0/ D 0; u.1/ D `

¯
:
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Figure 1. Chain of n C 1 atoms with reference position i
n

. The potential Ji describes the
nearest neighbor interaction of atom i and i C 1, i D 0; : : : ; n � 1. The characteristic length
scale is 1

n
and the interval is Œ0; 1�.

We consider a discrete energy functional of the form

An;` 3 u 7! En.u/ WD

n�1X
iD0

1

n
Ji

 
u
�

iC1
n

�
� u

�
i
n

�
1
n

!

D

n�1X
iD0

1

n
Ji

�
n

�
u

�
i C 1

n

�
� u

�
i

n

���
; (2.1)

where Ji W .0;1/! R is a potential describing the interaction between the i th atom
and its neighbor to the right. We are interested in random heterogeneous chains of
atoms, and thus assume that the potentials ¹Jiºi2Z are random with a distribution that
is stationary and ergodic. We appeal to the following standard setup: let .�;F ; P /
denote a probability space and .�i /i2Z a family of measurable maps �i W�!� such
that

� (Group property) �0! D ! for all ! 2 � and �i1Ci2 D �i1�i2 for all i1; i2 2 Z,

� (Stationarity) P .�iB/ D P .B/ for every B 2 F , i 2 Z,

� (Ergodicity) For all B 2 F , it holds that .�i .B/ D B 8i 2 Z/) P .B/ D 0 or
P .B/ D 1.

We then consider the energy functional

En W � � An ! R [ ¹C1º

with

En.!; u/ WD

n�1X
iD0

1

n
J

�
�i!; n

�
u

�
i C 1

n

�
� u

�
i

n

���
; (2.2)

where the random potential satisfies the following assumptions:

Assumption 2.1. Let J W �� R ! R [ ¹C1º be jointly measurable with J.�; z/D
1 if z � 0. For P -a.e. ! 2 �, the following conditions hold true:

(A1) (Regularity) J.!; �/ 2 C 3.0;1/.
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(A2) (Behavior at 0 and 1) There exist functions  C; � 2 C.0;1/, independ-
ent of !, such that

lim
z!0C

 �.z/ D 1 and lim
z!1

 C.z/ D 0;

and

J.!;z/� �.z/ for all 0 < z � 1 and
ˇ̌
J.!;z/

ˇ̌
� C.z/ for all z � 1:

(A3) (Convex-monotone structure) Suppose strict convexity close to 0 in form of

zfrac.!/ WD sup
®
z > 0 W J 00.!; s/ WD @2

sJ.!; s/ > 0 for all s 2 .0; z/
¯
> 0;

and assume that J.!; �/ is monotonically increasing on Œzfrac.!/;1/.

(A4) (Non-degenerate ground state) Suppose that J.!; �/ admits a unique min-
imizer ı.!/ 2 .0; zfrac.!/�, called the ground state of J.!; �/. There exists
a constant c > 0, independent of !, such that 1

c
> ı.!/ > c and

8z 2 ı.!/C .�c; c/ W c � J 00.!; z/ �
1

c
and

ˇ̌
J 000.!; z/

ˇ̌
�
1

c
:

Next, we introduce the following central quantities for a random heterogeneous
chain with nC 1 particles:

Definition 2.1 (Critical stretch of a chain with nC 1 particles). Consider the situation
of Assumption 2.1. Let n 2 N and ! 2 �. The critical stretch `�n.!/ is defined as the
largest number such that

inf
Ael

n.!/\An;`

En.!; �/ D inf
An;`

En.!; �/ for all 0 � ` < `�n.!/;

where we denote by

Ael
n.!/ WD

´
u 2 An W

u
�

iC1
n

�
� u

�
i
n

�
1
n

� zfrac.�i!/ for all i D 0; : : : ; n � 1

µ
the set of purely elastic deformations.

The idea behind the above definition is the following: a deformation u 2 Ael
n.!/

only sees the strictly convex region of the interaction potentials. Thus, we could
replace the potentials J.�i!; z/ in the definition of the energy function En by
(globally) convex potentials with superlinear growth without changing the energy for
deformations in Ael

n.!/. As it is well known, such energies do not allow for fracture
in the continuum limit. The definition of the critical stretch implies that a prescribed
macroscopic stretch (or compression) ` < `�n.!/ can be realized by a deformation in
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Ael
n.!/ and thus prohibits the formation of a jump, while, for ` > `�n.!/, deforma-

tions with minimal energy are required to explore the non-convex region of at least
one of the interaction potentials. We may refer to the bonds Œi; i C 1� that are evalu-
ated outside the convex region as “weak” bonds. If a jump occurs in the limit, then
the minimizing sequence shows a concentration of strain in the weak bonds. We thus
expect that `�n.!/ almost surely converges in the limit n! 1 to the continuum frac-
ture threshold that can be defined on the level of the continuum �-limit; see below. In
our first result, we prove that `�n indeed converges and we identify its limit, which is
the statistical mean of the ground states:

Theorem 2.1. Let Assumption 2.1 be fulfilled. Then,

lim
n!1

`�n.!/ D EŒı� for P -a.e. ! 2 �:

(The proof of Theorem 2.1 can be found in Section 3.1.)
Next, we consider the special case when ı.!/ is deterministic, say ı.!/ D 1 for

P -a.e. In that case, we establish a first-order expansion of `�n.!/ around its limit
EŒı� D 1 of the form

`�n.!/ � 1C

r
1

n

s
ˇ

˛
;

where ˇ is related to the maximal energy barrier among the random potentials J , and
1=˛ is the statistical mean of the curvatures of the random potentials at the ground
state.

Theorem 2.2. Let Assumption 2.1 be satisfied and assume that ı.!/ D 1 for P -a.e.
! 2 �. Consider the rescaled jump threshold 
�n .!/ WD

`�
n.!/�1q

1
n

. Then

lim
n!1


�n .!/ D lim
n!1

`�n.!/ � 1q
1
n

D

s
ˇ

˛
for P -a.e. ! 2 �;

where

˛ WD

�
E

��
1

2
J 00.!; 1/

��1���1

and ˇ WD ess inf
!2�

�
� J.!; 1/

�
: (2.3)

(The proof of Theorem 2.2 can be found in Section 3.2.)
We finally relate the above results to the zeroth- and first-order �-limits of En

subject to clamped boundary conditions, i.e.,

E`
n.!; �/ W L

1.0; 1/! R [ ¹C1º; E`
n.!; u/ WD

´
En.!; u/ if u 2 An;`;

C1 else:
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The zeroth-order �-limit of the discrete energy yields a homogenized energy func-
tional. In the present setting of nearest-neighbor interactions, [14] allows to charac-
terize the homogenized energy functional by

E`
hom.u/ D

Z 1

0

Jhom
�
u0.x/

�
dx;

where the homogenized energy density map z 7! Jhom.z/ is convex, lower semicon-
tinuous, monotonically decreasing and satisfies

lim
z!0C

Jhom.z/ D C1: (2.4)

Moreover, the minimum values of E`
n.!; �/ and E`

hom satisfy

lim
n!1

inf
u
E`

n.!; u/ D min
u
E`

hom.u/ D Jhom.`/;

and therefore can be calculated as

min
u
E`

hom.u/ D Jhom.`/ D

´
Jhom.`/ for ` < EŒı�;

Jhom
�
EŒı�

�
for ` � EŒı�:

Hence, the threshold between the elastic and the jump regimes is EŒı�, which is
identical to the limit of `�n.!/; see Theorem 2.1. Secondly, we recall a �-limit result
from [16] for the rescaled energy functional

H 
n
n .!; v/ D

´
Hn.!; v/ if v 2 An;
n

;

C1 otherwise;

where .
n/n is a sequence of non-negative numbers with 
n ! 
 � 0 and

Hn.!; v/ WD

n�1X
iD0

 
J

 
�i!;

v
�

iC1
n

�
� v

�
i
n

�q
1
n

C ı.�i!/

!
� J

�
�i!; ı.�i!/

�!
:

The �-limit is shown to be given as

H 
 .v/ D ˛

Z 1

0

ˇ̌
v0.x/

ˇ̌2 dx C ˇ#Sv;

with homogenized elastic coefficient ˛, jump parameter ˇ, #Sv being the number of
jumps of v, and v satisfying boundary conditions which depend on 
 . Moreover, it
holds true that

lim
n!1

inf
v
H 
n

n .!; v/ D min
v
H 
 .v/ D min¹˛
2; ˇº;
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which yields that the minima of the energy are given by

min
v
H 
 .v/ D min¹˛
2; ˇº D

8̂<̂
:
˛
2 if 
 <

q
ˇ
˛
;

ˇ if 
 �

q
ˇ
˛
:

Hence the threshold between elasticity and fracture in the rescaled case is
q

ˇ
˛

, which
equals the limit of the jump threshold 
�n in Theorem 2.2.

In summary, although the techniques by which the results are calculated are
completely different, they yield the same result regarding the jump threshold in the
continuum setting. The derivation of the limiting jump threshold with help of the
newly defined jump threshold in the discrete setting is, however, much easier and
thus is of interest for applications. It remains an open problem to analyze correspond-
ing questions in higher dimensional settings. In the following section, we provide the
proofs of the above theorems.

3. Proofs

For the upcoming analysis, it is convenient to introduce the notation

Mn.!; `/ WD min

´
1

n

n�1X
iD0

J.�i!; z
i / W

1

n

n�1X
iD0

zi
D `

µ
to denote the minimum energy of a discrete chain of length `. We begin with an ele-
mentary (yet, convenient) reformulation of the critical stretch `�n (cf. Definition 2.1).

Lemma 3.1. Consider the situation of Assumption 2.1. Let n 2 N and ! 2 �. Then,
it holds

Mn.!; `/ D min
u2An;`

En.!; u/: (3.1)

Moreover, `�n.!/ is the largest number such that for all 0 < ` < `�n.!/ there exists
Nz 2 Rn satisfying

Mn.!;`/D
1

n

n�1X
iD0

J.�i!; Nz
i /;

1

n

n�1X
iD0

Nzi
D `; Nzi

� zfrac.�i!/ 8i 2 ¹0; : : : ;n� 1º:

(3.2)

Proof of Lemma 3.1. The identity (3.1) follows by a simple change of variables, that
is by setting

zi
D n

�
u

�
i C 1

n

�
� u

�
i

n

��
;

and the direct method of the calculus of variations.
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Next, we give an argument regarding the characterization of `�n. The definition of
`�n.!/, see Definition 2.1, and (3.1) imply that

inf
Ael

n.!/\An;`

En.!; �/ DMn.!; `/ <1 8` 2
�
0; `�n.!/

�
:

Since Ael
n.!/ \ An;` is compact, there exists Nu 2 Ael

n.!/ \ An;` such that

En.!; Nu/ D inf
Ael

n.!/\An;`

En.!; �/:

Clearly, Nz 2 Rn defined as Nzi D n. Nu. iC1
n
/ � Nu. i

n
// satisfies (3.2).

Now we suppose that for some ` � `�n there exists Nz 2 Rn satisfying (3.2). With
help of the same change of variables as above, we find Nu 2 Ael

n.!/ \ An;` satisfying
En.!; Nu/ DMn.!; `/ which contradicts the definition of `�n.

Lemma 3.2. Let Assumption 2.1 be satisfied. Then, J.!; �/ is increasing on Œı.!/;1/

and it holds that
z

sup
frac WD sup

®
zfrac.!/ W ! 2 �

¯
<1: (3.3)

Proof of Lemma 3.2. For convenience we drop the dependence on ! in our notation
and simply write J.z/, ı, and zfrac instead of J.!; z/, ı.!/, and zfrac.!/, respectively.
We first prove that J is increasing on Œı;1/. On Œzfrac;1/ this directly follows from
(A3). On Œı; zfrac/ this follows from the convexity of J on .0; zfrac/ and the fact that ı
minimizes J . Next, we prove (3.3). We first note that (A2) and (A3) imply that

8z 2 .ı;1/ W J.ı/ � J.z/ � 0: (3.4)

Moreover, (A4) implies that zfrac � ı C c. Thus, for all � 2 .0; c/ we obtain

0 � J.zfrac/ D J.ı C �/C

Z zfrac

ıC�

J 0.t/ dt

� J.ı C �/C J 0.ı C �/
�
zfrac � .ı C �/

�
; (3.5)

where the second inequality holds, since J 0 is increasing on .ı C �; zfrac/ thanks to
(A3). (A4) yields

J 0.ı C �/ D J 0.ı C �/ � J 0.ı/ D

Z ıC�

ı

J 00.s/ ds � c�:

Thus, by rearranging terms in (3.5) and appealing to (3.4) and the previous estimate
we get

zfrac � ı C � �
J.ı C �/

J 0.ı C �/
� ı C � �

J.ı/

c�
: (3.6)



L. Lauerbach, S. Neukamm, M. Schäffner, and A. Schlömerkemper 936

It remains to bound ı D ı.!/ and �J.ı/ D �J.!; ı.!// by a constant that is inde-
pendent of !. From (A4) and (A2), we get

ı 2

�
c;
1

c

�
and � J.ı/� max

z2Œc; 1
c C��

max
®
� �.z/;

ˇ̌
 C.z/

ˇ̌¯
DW d <1; (3.7)

and thus, (3.6) yields zfrac �
1
c
C �C d

c�
.

3.1. Proof of Theorem 2.1

Proof of Theorem 2.1. Note that ! 7! ı.!/ is (as a minimizer of a measurable func-
tion) measurable. Moreover, by (3.7) ı is a non-negative and bounded and thus an
L1-random variable. Thus the ergodic theorem yields

lim
n!1

1

n

n�1X
iD0

ı.�i!/ D EŒı�; lim
n!1

1

n

n�1X
iD0

J
�
�i!; ı.�i!/

�
D E

�
J.ı/

�
(3.8)

for P -a.e. ! 2 �. For the rest of the proof, we consider ! 2 � such that (3.8) is valid
and drop the dependence on !. In particular, we set

ıi WD ı.�i!/; zi
frac WD zfrac.�i!/; and Ji .z/ WD J.�i!; z/:

Step 1. We show that xA WD lim supn!1 `�n � EŒı�.
Without loss of generality, we suppose that xAD limn!1 `�n and prove xA� EŒı�

by contradiction. Assume that there exists " 2 .0; c/ such that xA > EŒı� C 3". By
(3.8), we find that xN 2 N such that

`�n >
1

n

n�1X
iD0

ıi C 2" DW kn for n > xN: (3.9)

In view of Lemma 3.1, there exists a sequence . Nzn/n satisfying for n � xN

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/DMn.kn/; Nzi

n � zi
frac 8i 2 ¹0; : : : ;n� 1º: (3.10)

We claim that

lim sup
n!1

Mn.kn/ � E
�
J.ı/

�
; (3.11)

lim inf
n!1

Mn.kn/ � E
�
J.ı/

�
C c"; (3.12)

for some c" > 0. Clearly, (3.11) and (3.12) yield a contradiction. Hence the assump-
tion xA > EŒı�C 3" is wrong and xA � EŒı� follows by the arbitrariness of " > 0.
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Substep 1.1. Proof of (3.11). Let zn 2 Rn be given by zi
n WD ıi for i � 1 and z0

n WD

ı0 C 2n". Since 1
n

Pn�1
iD0 z

i
n D kn, we have

Mn.kn/ �
1

n

n�1X
iD1

Ji .ıi /C
1

n
J0.ı0 C 2n"/

D
1

n

n�1X
iD0

Ji .ıi /C
1

n

�
J0.ı0 C 2n"/ � J0.ı0/

�
:

Hence, (3.11) follows by (A2) and (3.8).

Substep 1.2. Proof of (3.12). Let Nzn be as in (3.10) and set

In WD
®
i 2 ¹0; : : : ; n � 1º W Nzi

n > ıi C "
¯
:

Obviously, it holds that 0 � jInj=n � 1 and we claim

jInj

n
�

"

z
sup
frac

> 0 for all n 2 N; (3.13)

where zsup
frac 2 .0;1/ is as in Lemma 3.2. Indeed,

1

n

n�1X
iD0

ıi C 2" D kn D
1

n

n�1X
iD0

Nzi
n D

1

n

X
i2In

Nzi
n C

1

n

X
i…In

Nzi
n

(3.10)
�

jInj

n
z

sup
frac C

1

n

n�1X
iD0

.ıi C "/

implies (3.13). Finally, using the monotonicity of Ji on .ıi ;1/ (see Lemma 3.2) and
(A4), we obtain

1

n

n�1X
iD0

Ji . Nz
i
n/ D

1

n

X
i2In

Ji . Nz
i
n/C

1

n

X
i…In

Ji . Nz
i
n/ �

1

n

X
i2In

Ji .ıi C "/C
1

n

X
i…In

Ji .ıi /

�
1

n

X
i2In

�
Ji .ıi /C

1

2
c"2

�
C
1

n

X
i…In

Ji .ıi /D
1

n

n�1X
iD0

Ji .ıi /C
jInj

n

1

2
c"2;

where c > 0 is as in (A4). Sending n! 1, we obtain with help of (3.8) and (3.13)
the claim (3.12).

Step 2. We claim A WD lim infn!1 `�n � EŒı�.
For all " > 0, we show that

`�n �
1

n

n�1X
iD0

ıi � " DW kn 8n 2 N; (3.14)
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which in combination with (3.8) implies thatA WD lim infn!1 `
�
n � EŒı� by the arbit-

rariness of " > 0.
Let Nzn be such that

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/ DMn.kn/:

We show that Nzi
n � ıi < z

i
frac 8i 2 ¹0; : : : ; n � 1º, which obviously implies (3.14).

Indeed, the optimality condition for Nzn implies that there exists a Lagrange multiplier
ƒ 2 R such that ƒ D J 0

i . Nz
i
n/ for all i 2 ¹0; : : : ; n � 1º. Since

1

n

n�1X
iD0

. Nzi
n � ıi / � �";

there exists Oi 2 ¹0; : : : ; n � 1º such that Nz
Oi
n 2 .0; ıi / and thus J 0

Oi
. Nz

Oi
n/ < 0. Hence

J 0
i . Nz

i
n/ < 0 for all i 2 ¹0; : : : ; n � 1º. Since J 0

i � 0 on .ıi ;1/ by Lemma 3.2, we
conclude that Nzi

n � ıi � zi
frac and thus `�n � kn by Lemma 3.1.

3.2. Proof of Theorem 2.2

We begin with a preliminary structure result for minimizers of the minimum problem
in the definition of Mn.!; 1C n�

1
2D/ for some D > 0; see (3.1).

Proposition 3.3. Let Assumption 2.1 be satisfied and assume that ı.!/ D 1 for P -
a.e. ! 2 �. Fix D > 0. There exist xN 2 N and a sequence .Nn/ satisfying Nn ! 1

such that the following statements hold true for P -a.e. ! 2 � and n � xN .
Let Nzn 2 Rn be such that

1

n

n�1X
iD0

Nzi
n D 1C n�

1
2D and

1

n

n�1X
iD0

J.�i!; Nz
i
n/ DMn.!; 1C n�

1
2D/: (3.15)

Then, it holds that

Nzi
n 2 Œ1; 1C c�2n�

1
2D� [ ŒNn;1/ for all i 2 ¹0; : : : ; n � 1º; (3.16)

where c > 0 is as in (A4).

Proof of Proposition 3.3. We consider ! 2 � such that ı.�i!/D 1 8i 2 N and drop
the dependence on !. Moreover, we use the shorthand notation zi

frac WD zfrac.�i!/ and
Ji .z/ WD J.�i!; z/.

Step 1. We show that

0 � J 0. Nzi
n/ �

1

c
Dn�

1
2 for all i 2 ¹0; : : : ; n � 1º; (3.17)

where c > 0 is as in (A4).
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By the optimality condition for Nzn, there exists a Lagrange multiplierƒ 2 R such
that ƒ D J 0

i . Nz
i
n/ for all i 2 ¹0; : : : ; n � 1º. Since

1

n

n�1X
iD0

Nzi
n D 1C n�

1
2D;

there exists i1 2 ¹0; : : : ; n � 1º such that Nz
i1
n � 1 C n�

1
2D > 1. Lemma 3.2 and

the assumption ı.�i!/ D 1 imply that Ji is increasing on .1;1/ and thus we have
ƒ � 0. Moreover, there exists i2 2 ¹0; : : : ; n � 1º such that Nzi2

n � 1C n�
1
2D. For n

sufficiently large such that n�
1
2D < c, where c > 0 as in (A4), we have (using that

J 0
i .1/ D 0)

0 � ƒ D J 0
i2
. Nzi2

n / D

Z Nz
i2
n

1

J 00
i2
.t/ dt

.A4/
�

1

c
n�

1
2D:

Since ƒ D J 0
i . Nz

i
n/ for all i 2 ¹0; : : : ; n � 1º, the claim (3.17) follows.

Step 2. Argument for (3.16).
We firstly observe that (3.17) implies that 1 � Nzi

n for all i 2 ¹0; : : : ; n� 1º (recall
J 0

i .z/ < 0 on .0; 1/). The remaining estimates of (3.16) are proven in three steps.

Substep 2.1. We claim that for n sufficiently large, Nzi
n � zi

frac implies that

Nzi
n � 1C c�2n�

1
2D;

where c > 0 is as in (A4). Indeed, using J 00
i .s/ > 0 on .0; zi

frac/ and (A4), we deduce
from Nzi

n � zi
frac and n sufficiently large that

c�1Dn�
1
2

(3.17)
� J 0

i . Nz
i
n/ D

Z Nzi
n

1

J 00
i .t/ dt

.A4/
� cmin¹Nzi

n � 1; cº:

From the above inequality, we deduce that Nzi
n � 1� c implies that n�D2=c6. Hence,

Nzi
n � 1 < c and thus 1 � Nzi

n � 1C c�2Dn�
1
2 for n > D2=c6.

Substep 2.2. There exists M <1, depending only on  �.1/ from (A2) and c > 0
from (A4), such that

sup
n2N

jIw
n j �M; where Iw

n WD
®
i 2 ¹0; : : : ; n � 1º W Nzi

n � zi
frac

¯
: (3.18)

Suppose that jIw
n j � 2 and consider some in 2 Iw

n . Define

Ozi
n WD

8̂̂<̂
:̂

Nzi
n if i … Iw

n ;

1 if i 2 Iw
n n ¹inº;

1C
P

i2I w
n
.Nzi

n � 1/ if i D in:

(3.19)
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By construction, we have
Pn�1

iD0 Nzi
n D

Pn�1
iD0 Ozi

n and thus by (3.15)

0 �

n�1X
iD0

�
Ji . Nz

i
n/ � Ji . Oz

i
n/
�

D

X
i2I w

n n¹inº

�
Ji .Nz

i
n/ � Ji .1/

�
C Jin. Nz

in
n / � Jin. Oz

in
n /: (3.20)

By the monotonicity of Ji on .1;1/, (A3), and (A4) in the form

Ji .z
i
frac/ � Ji .1/ � Ji .1C c/ � Ji .1/ D

Z 1Cc

1

Z s

1

J 00
i .t/ dt ds �

1

2
c3

(where c > 0 is as in (A4)), we find

Ji . Nz
i
n/ � Ji .1/ � Ji .z

i
frac/ � Ji .1/ �

1

2
c3

WD � 8i 2 Iw
n : (3.21)

Moreover, using Oz
in
n � 1 and thus Jin. Oz

in
n / � 0 (which follows from the monotonicity

of Ji on .1;1/ and (A2)), we obtain

Jin. Nz
in
n / � Jin. Oz

in
n / � Jin.1/

.A2/
�  �.1/: (3.22)

Combining (3.20)–(3.22), we deduce the uniform bound jIw
n j � 1 � ��1 �.1/.

Substep 2.3. We show that there exists .Nn/ satisfyingNn !1 as n!1 such that
Nzi
n � Nn for all i 2 Iw

n , where Iw
n is defined in (3.18).

We argue by contradiction and assume that there exists A 2 Œ1;1/ and an index
Oi 2 Iw

n such that NzOin �A. For n sufficiently large, we show that this contradicts (3.15).
Define

Qzi
n WD

8̂̂<̂
:̂
1 if i D Oi ;

Nzi
n C

�
n � jIw

n j
��1

. Nz
Oi
n � 1/ if i … Iw

n ;

Nzi
n if i 2 Iw

n n ¹Oiº:

(3.23)

By construction, we have
Pn�1

iD0 Qzi
n D

Pn�1
iD0 Nzi

n. Since Nzn is a minimizer (see (3.15)),

0 �

n�1X
iD0

�
Ji . Nz

i
n/ � Ji . Qz

i
n/
�
D JOi . Nz

Oi
n/ � JOi .1/C

X
i…I w

n

�
Ji . Nz

i
n/ � Ji . Qz

i
n/
�
:

By (3.21), we have JOi . Nz
Oi
n/ � JOi .1/ � �.c/ > 0. To obtain a contradiction, it suffices

to show that the second term on the right-hand side vanishes as n tends to infinity.
This can be seen as follows: on the one hand, we have Nzi

n 2 Œ1; 1C c�2n�
1
2D� for all

i … Iw
n by Substep 2.1, and on the other hand, we have

.n � jIw
n j/�1. Nz

Oi
n � 1/ � .n �M/�1.A � 1/;
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thanks to jIw
n j � M . Hence, Nzi

n; Qz
i
n 2 Œ1; 1C c

2
� for n sufficiently large (depending

only on c,D,M , and A). Now, a quadratic Taylor expansion of Ji at Nzi
n yields (using

jJ 00.z/j � c�1 for z 2 Œ1; 1C c/; see (A4))
nX

iD1
i…I w

n

ˇ̌
Ji . Nz

i
n/�Ji . Qz

i
n/
ˇ̌
�

n�1X
iD0

�ˇ̌
J 0

i . Nz
i
n/
ˇ̌
.n�M/�1.A�1/C c�1.n�M/�2.A�1/2

�
(3.17)
� n.n �M/�1c�1.A � 1/

�
n�

1
2D C .A � 1/.n �M/�1

�
� Cn�

1
2 ;

where C <1 depends only on A, c, D, and M .

Proof of Theorem 2.2. By the ergodic theorem, it holds that

lim
n!1

1

n

n�1X
iD0

J 00.�i!; 1/
�1

D E
�
J 00.1/�1

�
; lim

n!1
ˇn.!/ D ˇ (3.24)

for P -a.e. ! 2 �, where ˇ is defined in (2.3) and

ˇn.!/ WD min
®
� J.�i!; 1/ W i 2 ¹0; : : : ; n � 1º

¯
: (3.25)

In Step 3 below, we provide an argument for the limit ˇn ! ˇ.
In Steps 1 and 2, we consider ! 2 � such that (3.24) and the conclusion of Pro-

position 3.3 are valid. Moreover, we drop the dependence on ! and use the shorthand
notation zi

frac WD zfrac.�i!/ and Ji .z/ WD J.�i!; z/.

Step 1. We prove xA WD lim supn!1 
�n �

q
ˇ
˛

by contradiction: assume that there

exists " > 0 and xN 2 N such that

`�n > 1C n�
1
2

s
ˇ

˛
.1C "/ DW kn for n > xN: (3.26)

In view of Lemma 3.1, there exists . Nzn/n satisfying

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/DMn.kn/; Nzi

n � zi
frac 8i 2 ¹0; : : : ;n� 1º: (3.27)

We show that

lim sup
n!1

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ; (3.28)

lim inf
n!1

n

�
1

n

n�1X
iD0

Ji . Nz
i
n/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ.1C "/2: (3.29)

Clearly, (3.28) and (3.29) contradict (3.27) for n sufficiently large.
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Substep 1.1. Argument for (3.29).
We claim that there exists K <1 such that for all n sufficiently large

n

 
1

n

n�1X
iD0

Ji . Nz
i
n/ �

1

n

n�1X
iD0

Ji .1/

!
�

 
1

n

n�1X
iD0

�
1

2
J 00

i .1/

��1
!�1

ˇ

˛
.1C "/2 �

K
p
n
;

(3.30)

where x̨ and ˇ are defined in (2.3). Note that (3.24) and (3.30) imply (3.29).
We prove (3.30). By (3.26), (3.27), and Proposition 3.3 (applied with D Dq

ˇ
˛
.1C "/2), we get

1 � zi
n � 1C n�

1
2C (3.31)

for some C <1 independent of n. Hence, a Taylor expansion yields

n�1X
iD0

Ji . Nz
i
n/ D

n�1X
iD0

Ji .1/C
1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2 C

1

6

n�1X
iD0

J 000
i .�

i
n/. Nz

i
n � 1/3; (3.32)

where � i
n 2 Œ1; Nzi

n�. To estimate the second term on the right-hand side, note that
Cauchy–Schwarz’ inequality yields 

n�1X
iD0

.Nzi
n � 1/

!2

�

 
1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2

! 
n�1X
iD0

�
1

2
J 00

i .1/

��1
!
:

Combined with the identity
Pn�1

iD0. Nz
i
n � 1/ D n.kn � 1/ D

p
n
q

ˇ
˛
.1C "/, we get 

1

n

n�1X
iD0

�
1

2
J 00

i .1/

��1
!�1

ˇ

˛
.1C "/2 �

1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2: (3.33)

Moreover, (3.31) and (A4) imply for n sufficiently large that

1

6

n�1X
iD0

J 000
i .�

i
n/. Nz

i
n � 1/3 � �

C 3

6c
p
n
: (3.34)

Clearly, (3.32)–(3.34) imply (3.30) (with K D
C 3

6c
).

Substep 1.2. Argument for (3.28).
For every n 2 N, we choose Oin 2 ¹0; : : : ; n � 1º such that �JOin.1/ D ˇn (see

(3.25)) and define zn 2 Rn as

zi
n D

´
1 if i 2 ¹0; : : : ; n � 1º n ¹Oinº;

1C n.kn � 1/ if i D Oin:
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Since 1
n

Pn�1
iD0 z

i
n D kn D 1C n�

1
2

q
ˇ
˛
.1C "/, we have

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� JOin

�
1C n.kn � 1/

�
� JOin.1/

�  C

�
1C

p
n

s
ˇ

˛
.1C "/

�
C ˇn;

where the second inequality holds by (A2) and the choice of Oin. Now, (3.28) follows
from (3.24) and assumption (A2).

Step 2. Proof of A WD lim infn!1 
�n �

q
ˇ
˛

.
We show that, for every " > 0, there exists xN 2 N such that

`�n � 1C n�
1
2

s
ˇ

˛
.1 � "/ DW kn for n > xN: (3.35)

Note that (3.35) implies that lim infn!1 
�n �

q
ˇ
˛
.1 � "/ for all " > 0, and thus the

claim.
Let . Nzn/n be a sequence satisfying for all n 2 N,

1

n

n�1X
iD0

Nzi
n D kn; Mn.kn/ D

1

n

n�1X
iD0

Ji . Nz
i
n/: (3.36)

To prove (3.35), we only need to show that

zi
n � zi

frac for all i 2 ¹0; : : : ; n � 1º for n sufficiently large; (3.37)

depending only on ˛ ˇ, c, and " > 0.

Substep 2.1. We show that

lim sup
n!1

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ.1 � "/: (3.38)

Set

Ozi
n WD 1C n�

1
2

s
ˇ

˛
.1 � "/

�
1

n

n�1X
iD0

1

˛i

��1
1

˛i

;

where ˛i WD
1
2
J 00

i .1/. By construction, we have

1

n

n�1X
iD0

Ozi
n D kn; 0 � Ozi

n � 1 � n�
1
2C; (3.39)

where C < 1 depends only on ˛, ˇ, and c > 0 from (A4) (note that (A4) implies
that ˛i �

1
2c

and 1
˛i

�
2
c

). Hence, a Taylor expansion of Ji at 1 and (A4) yield for n
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sufficiently large

n�1X
iD0

�
Ji . Oz

i
n/ � Ji .1/

�
�

n�1X
iD0

˛i . Oz
i
n � 1/2 C

1

6c

n�1X
iD0

. Ozi
n � 1/3

�
ˇ

˛
.1 � "/2

�
1

n

n�1X
iD0

1

˛i

��1

C
C 3

6c
n�

1
2 ;

where C <1 is the same as in (3.39). Finally, (3.24) implies that . 1
n

Pn�1
iD0

1
˛i
/�1 �

˛.1C "/ for n sufficiently large and thus (3.38) follows.

Substep 2.2. We now prove (3.37) by contraposition. Suppose that NzOin > z
Oi
frac for some

Oi 2¹0; : : : ;n�1º. Then, Proposition 3.3 yields NzOin �Nn for some .Nn/with Nn !1,
and thus JOi . Nz

Oi
n/�� sups�Nn

 C.s/ by (A2). Hence, with Ji . Nz
i
n/� Ji .1/ and �JOi .1/

� ˇ, we therefore get

n�1X
iD0

�
Ji . Nz

i
n/ � Ji .1/

�
� JOi . Nz

Oi
n/ � JOi .1/ � ˇ � sup

s�Nn

 C.s/:

Since sups�Nn
 C.s/ ! 0 for n ! 1, the above lower bound combined with the

upper bound (3.38) and (3.36) yields a contradiction for n sufficiently large, and thus
(3.37) follows.

Step 3. Argument for ˇn ! ˇ almost surely in (3.24).
The sequence .ˇn.!//n � R is decreasing and it holds that ˇn.!/ � ˇ for all

n 2 N. Hence, there exists y̌.!/ � ˇ such that

lim
n!1

ˇn.!/ D y̌.!/ � ˇ:

It remains to show that y̌.!/ D ˇ for P -a.e. ! 2 �. We argue by contradiction and
therefore suppose that there exist " > 0 and a set �0 � � with positive measure such
that y̌.!/ � ˇ C " for all ! 2 �0. Then we obtain for all ! 2 �0 that

lim sup
n!1

1

n

n�1X
iD0

�
¹�J.�i !;1/�ˇC 1

2 "º.�i!/ D 0;

where �A denotes the indicator function. Clearly, this contradicts the ergodic theorem
and the definition of ˇ in the form

lim
n!1

1

n

n�1X
iD0

�
¹�J.�i !;1/�ˇC 1

2 "º D EŒ�
¹�J.1/�ˇC 1

2 "º� > 0 for P -a.e. ! 2 �:

Hence the theorem is proven.
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